4090 lines
96 KiB
C
4090 lines
96 KiB
C
/*
|
|
* Marvell 88e6xxx Ethernet switch single-chip support
|
|
*
|
|
* Copyright (c) 2008 Marvell Semiconductor
|
|
*
|
|
* Copyright (c) 2015 CMC Electronics, Inc.
|
|
* Added support for VLAN Table Unit operations
|
|
*
|
|
* Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/if_bridge.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mdio.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_mdio.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/phy.h>
|
|
#include <net/dsa.h>
|
|
#include <net/switchdev.h>
|
|
#include "mv88e6xxx.h"
|
|
|
|
static void assert_reg_lock(struct mv88e6xxx_chip *chip)
|
|
{
|
|
if (unlikely(!mutex_is_locked(&chip->reg_lock))) {
|
|
dev_err(chip->dev, "Switch registers lock not held!\n");
|
|
dump_stack();
|
|
}
|
|
}
|
|
|
|
/* The switch ADDR[4:1] configuration pins define the chip SMI device address
|
|
* (ADDR[0] is always zero, thus only even SMI addresses can be strapped).
|
|
*
|
|
* When ADDR is all zero, the chip uses Single-chip Addressing Mode, assuming it
|
|
* is the only device connected to the SMI master. In this mode it responds to
|
|
* all 32 possible SMI addresses, and thus maps directly the internal devices.
|
|
*
|
|
* When ADDR is non-zero, the chip uses Multi-chip Addressing Mode, allowing
|
|
* multiple devices to share the SMI interface. In this mode it responds to only
|
|
* 2 registers, used to indirectly access the internal SMI devices.
|
|
*/
|
|
|
|
static int mv88e6xxx_smi_read(struct mv88e6xxx_chip *chip,
|
|
int addr, int reg, u16 *val)
|
|
{
|
|
if (!chip->smi_ops)
|
|
return -EOPNOTSUPP;
|
|
|
|
return chip->smi_ops->read(chip, addr, reg, val);
|
|
}
|
|
|
|
static int mv88e6xxx_smi_write(struct mv88e6xxx_chip *chip,
|
|
int addr, int reg, u16 val)
|
|
{
|
|
if (!chip->smi_ops)
|
|
return -EOPNOTSUPP;
|
|
|
|
return chip->smi_ops->write(chip, addr, reg, val);
|
|
}
|
|
|
|
static int mv88e6xxx_smi_single_chip_read(struct mv88e6xxx_chip *chip,
|
|
int addr, int reg, u16 *val)
|
|
{
|
|
int ret;
|
|
|
|
ret = mdiobus_read_nested(chip->bus, addr, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*val = ret & 0xffff;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_smi_single_chip_write(struct mv88e6xxx_chip *chip,
|
|
int addr, int reg, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
ret = mdiobus_write_nested(chip->bus, addr, reg, val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mv88e6xxx_ops mv88e6xxx_smi_single_chip_ops = {
|
|
.read = mv88e6xxx_smi_single_chip_read,
|
|
.write = mv88e6xxx_smi_single_chip_write,
|
|
};
|
|
|
|
static int mv88e6xxx_smi_multi_chip_wait(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_CMD);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if ((ret & SMI_CMD_BUSY) == 0)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int mv88e6xxx_smi_multi_chip_read(struct mv88e6xxx_chip *chip,
|
|
int addr, int reg, u16 *val)
|
|
{
|
|
int ret;
|
|
|
|
/* Wait for the bus to become free. */
|
|
ret = mv88e6xxx_smi_multi_chip_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the read command. */
|
|
ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
|
|
SMI_CMD_OP_22_READ | (addr << 5) | reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the read command to complete. */
|
|
ret = mv88e6xxx_smi_multi_chip_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Read the data. */
|
|
ret = mdiobus_read_nested(chip->bus, chip->sw_addr, SMI_DATA);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*val = ret & 0xffff;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_smi_multi_chip_write(struct mv88e6xxx_chip *chip,
|
|
int addr, int reg, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
/* Wait for the bus to become free. */
|
|
ret = mv88e6xxx_smi_multi_chip_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the data to write. */
|
|
ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_DATA, val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Transmit the write command. */
|
|
ret = mdiobus_write_nested(chip->bus, chip->sw_addr, SMI_CMD,
|
|
SMI_CMD_OP_22_WRITE | (addr << 5) | reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the write command to complete. */
|
|
ret = mv88e6xxx_smi_multi_chip_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mv88e6xxx_ops mv88e6xxx_smi_multi_chip_ops = {
|
|
.read = mv88e6xxx_smi_multi_chip_read,
|
|
.write = mv88e6xxx_smi_multi_chip_write,
|
|
};
|
|
|
|
static int mv88e6xxx_read(struct mv88e6xxx_chip *chip,
|
|
int addr, int reg, u16 *val)
|
|
{
|
|
int err;
|
|
|
|
assert_reg_lock(chip);
|
|
|
|
err = mv88e6xxx_smi_read(chip, addr, reg, val);
|
|
if (err)
|
|
return err;
|
|
|
|
dev_dbg(chip->dev, "<- addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
|
|
addr, reg, *val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_write(struct mv88e6xxx_chip *chip,
|
|
int addr, int reg, u16 val)
|
|
{
|
|
int err;
|
|
|
|
assert_reg_lock(chip);
|
|
|
|
err = mv88e6xxx_smi_write(chip, addr, reg, val);
|
|
if (err)
|
|
return err;
|
|
|
|
dev_dbg(chip->dev, "-> addr: 0x%.2x reg: 0x%.2x val: 0x%.4x\n",
|
|
addr, reg, val);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Indirect write to single pointer-data register with an Update bit */
|
|
static int mv88e6xxx_update(struct mv88e6xxx_chip *chip, int addr, int reg,
|
|
u16 update)
|
|
{
|
|
u16 val;
|
|
int i, err;
|
|
|
|
/* Wait until the previous operation is completed */
|
|
for (i = 0; i < 16; ++i) {
|
|
err = mv88e6xxx_read(chip, addr, reg, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!(val & BIT(15)))
|
|
break;
|
|
}
|
|
|
|
if (i == 16)
|
|
return -ETIMEDOUT;
|
|
|
|
/* Set the Update bit to trigger a write operation */
|
|
val = BIT(15) | update;
|
|
|
|
return mv88e6xxx_write(chip, addr, reg, val);
|
|
}
|
|
|
|
static int _mv88e6xxx_reg_read(struct mv88e6xxx_chip *chip, int addr, int reg)
|
|
{
|
|
u16 val;
|
|
int err;
|
|
|
|
err = mv88e6xxx_read(chip, addr, reg, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
return val;
|
|
}
|
|
|
|
static int _mv88e6xxx_reg_write(struct mv88e6xxx_chip *chip, int addr,
|
|
int reg, u16 val)
|
|
{
|
|
return mv88e6xxx_write(chip, addr, reg, val);
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_read_direct(struct mv88e6xxx_chip *chip,
|
|
int addr, int regnum)
|
|
{
|
|
if (addr >= 0)
|
|
return _mv88e6xxx_reg_read(chip, addr, regnum);
|
|
return 0xffff;
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_write_direct(struct mv88e6xxx_chip *chip,
|
|
int addr, int regnum, u16 val)
|
|
{
|
|
if (addr >= 0)
|
|
return _mv88e6xxx_reg_write(chip, addr, regnum, val);
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_ppu_disable(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int ret;
|
|
unsigned long timeout;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
|
|
ret & ~GLOBAL_CONTROL_PPU_ENABLE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
usleep_range(1000, 2000);
|
|
if ((ret & GLOBAL_STATUS_PPU_MASK) !=
|
|
GLOBAL_STATUS_PPU_POLLING)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int mv88e6xxx_ppu_enable(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int ret, err;
|
|
unsigned long timeout;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_CONTROL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL,
|
|
ret | GLOBAL_CONTROL_PPU_ENABLE);
|
|
if (err)
|
|
return err;
|
|
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATUS);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
usleep_range(1000, 2000);
|
|
if ((ret & GLOBAL_STATUS_PPU_MASK) ==
|
|
GLOBAL_STATUS_PPU_POLLING)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
|
|
{
|
|
struct mv88e6xxx_chip *chip;
|
|
|
|
chip = container_of(ugly, struct mv88e6xxx_chip, ppu_work);
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
if (mutex_trylock(&chip->ppu_mutex)) {
|
|
if (mv88e6xxx_ppu_enable(chip) == 0)
|
|
chip->ppu_disabled = 0;
|
|
mutex_unlock(&chip->ppu_mutex);
|
|
}
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
|
|
{
|
|
struct mv88e6xxx_chip *chip = (void *)_ps;
|
|
|
|
schedule_work(&chip->ppu_work);
|
|
}
|
|
|
|
static int mv88e6xxx_ppu_access_get(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&chip->ppu_mutex);
|
|
|
|
/* If the PHY polling unit is enabled, disable it so that
|
|
* we can access the PHY registers. If it was already
|
|
* disabled, cancel the timer that is going to re-enable
|
|
* it.
|
|
*/
|
|
if (!chip->ppu_disabled) {
|
|
ret = mv88e6xxx_ppu_disable(chip);
|
|
if (ret < 0) {
|
|
mutex_unlock(&chip->ppu_mutex);
|
|
return ret;
|
|
}
|
|
chip->ppu_disabled = 1;
|
|
} else {
|
|
del_timer(&chip->ppu_timer);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_access_put(struct mv88e6xxx_chip *chip)
|
|
{
|
|
/* Schedule a timer to re-enable the PHY polling unit. */
|
|
mod_timer(&chip->ppu_timer, jiffies + msecs_to_jiffies(10));
|
|
mutex_unlock(&chip->ppu_mutex);
|
|
}
|
|
|
|
static void mv88e6xxx_ppu_state_init(struct mv88e6xxx_chip *chip)
|
|
{
|
|
mutex_init(&chip->ppu_mutex);
|
|
INIT_WORK(&chip->ppu_work, mv88e6xxx_ppu_reenable_work);
|
|
init_timer(&chip->ppu_timer);
|
|
chip->ppu_timer.data = (unsigned long)chip;
|
|
chip->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_read_ppu(struct mv88e6xxx_chip *chip, int addr,
|
|
int regnum)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_ppu_access_get(chip);
|
|
if (ret >= 0) {
|
|
ret = _mv88e6xxx_reg_read(chip, addr, regnum);
|
|
mv88e6xxx_ppu_access_put(chip);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_write_ppu(struct mv88e6xxx_chip *chip, int addr,
|
|
int regnum, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_ppu_access_get(chip);
|
|
if (ret >= 0) {
|
|
ret = _mv88e6xxx_reg_write(chip, addr, regnum, val);
|
|
mv88e6xxx_ppu_access_put(chip);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool mv88e6xxx_6065_family(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return chip->info->family == MV88E6XXX_FAMILY_6065;
|
|
}
|
|
|
|
static bool mv88e6xxx_6095_family(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return chip->info->family == MV88E6XXX_FAMILY_6095;
|
|
}
|
|
|
|
static bool mv88e6xxx_6097_family(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return chip->info->family == MV88E6XXX_FAMILY_6097;
|
|
}
|
|
|
|
static bool mv88e6xxx_6165_family(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return chip->info->family == MV88E6XXX_FAMILY_6165;
|
|
}
|
|
|
|
static bool mv88e6xxx_6185_family(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return chip->info->family == MV88E6XXX_FAMILY_6185;
|
|
}
|
|
|
|
static bool mv88e6xxx_6320_family(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return chip->info->family == MV88E6XXX_FAMILY_6320;
|
|
}
|
|
|
|
static bool mv88e6xxx_6351_family(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return chip->info->family == MV88E6XXX_FAMILY_6351;
|
|
}
|
|
|
|
static bool mv88e6xxx_6352_family(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return chip->info->family == MV88E6XXX_FAMILY_6352;
|
|
}
|
|
|
|
static unsigned int mv88e6xxx_num_databases(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return chip->info->num_databases;
|
|
}
|
|
|
|
static bool mv88e6xxx_has_fid_reg(struct mv88e6xxx_chip *chip)
|
|
{
|
|
/* Does the device have dedicated FID registers for ATU and VTU ops? */
|
|
if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
|
|
mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* We expect the switch to perform auto negotiation if there is a real
|
|
* phy. However, in the case of a fixed link phy, we force the port
|
|
* settings from the fixed link settings.
|
|
*/
|
|
static void mv88e6xxx_adjust_link(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
u32 reg;
|
|
int ret;
|
|
|
|
if (!phy_is_pseudo_fixed_link(phydev))
|
|
return;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
reg = ret & ~(PORT_PCS_CTRL_LINK_UP |
|
|
PORT_PCS_CTRL_FORCE_LINK |
|
|
PORT_PCS_CTRL_DUPLEX_FULL |
|
|
PORT_PCS_CTRL_FORCE_DUPLEX |
|
|
PORT_PCS_CTRL_UNFORCED);
|
|
|
|
reg |= PORT_PCS_CTRL_FORCE_LINK;
|
|
if (phydev->link)
|
|
reg |= PORT_PCS_CTRL_LINK_UP;
|
|
|
|
if (mv88e6xxx_6065_family(chip) && phydev->speed > SPEED_100)
|
|
goto out;
|
|
|
|
switch (phydev->speed) {
|
|
case SPEED_1000:
|
|
reg |= PORT_PCS_CTRL_1000;
|
|
break;
|
|
case SPEED_100:
|
|
reg |= PORT_PCS_CTRL_100;
|
|
break;
|
|
case SPEED_10:
|
|
reg |= PORT_PCS_CTRL_10;
|
|
break;
|
|
default:
|
|
pr_info("Unknown speed");
|
|
goto out;
|
|
}
|
|
|
|
reg |= PORT_PCS_CTRL_FORCE_DUPLEX;
|
|
if (phydev->duplex == DUPLEX_FULL)
|
|
reg |= PORT_PCS_CTRL_DUPLEX_FULL;
|
|
|
|
if ((mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip)) &&
|
|
(port >= chip->info->num_ports - 2)) {
|
|
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
|
|
reg |= PORT_PCS_CTRL_RGMII_DELAY_RXCLK;
|
|
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
|
|
reg |= PORT_PCS_CTRL_RGMII_DELAY_TXCLK;
|
|
if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID)
|
|
reg |= (PORT_PCS_CTRL_RGMII_DELAY_RXCLK |
|
|
PORT_PCS_CTRL_RGMII_DELAY_TXCLK);
|
|
}
|
|
_mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_PCS_CTRL, reg);
|
|
|
|
out:
|
|
mutex_unlock(&chip->reg_lock);
|
|
}
|
|
|
|
static int _mv88e6xxx_stats_wait(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_OP);
|
|
if ((ret & GLOBAL_STATS_OP_BUSY) == 0)
|
|
return 0;
|
|
}
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int _mv88e6xxx_stats_snapshot(struct mv88e6xxx_chip *chip, int port)
|
|
{
|
|
int ret;
|
|
|
|
if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
|
|
port = (port + 1) << 5;
|
|
|
|
/* Snapshot the hardware statistics counters for this port. */
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
|
|
GLOBAL_STATS_OP_CAPTURE_PORT |
|
|
GLOBAL_STATS_OP_HIST_RX_TX | port);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Wait for the snapshotting to complete. */
|
|
ret = _mv88e6xxx_stats_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void _mv88e6xxx_stats_read(struct mv88e6xxx_chip *chip,
|
|
int stat, u32 *val)
|
|
{
|
|
u32 _val;
|
|
int ret;
|
|
|
|
*val = 0;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
|
|
GLOBAL_STATS_OP_READ_CAPTURED |
|
|
GLOBAL_STATS_OP_HIST_RX_TX | stat);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
ret = _mv88e6xxx_stats_wait(chip);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_32);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
_val = ret << 16;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_STATS_COUNTER_01);
|
|
if (ret < 0)
|
|
return;
|
|
|
|
*val = _val | ret;
|
|
}
|
|
|
|
static struct mv88e6xxx_hw_stat mv88e6xxx_hw_stats[] = {
|
|
{ "in_good_octets", 8, 0x00, BANK0, },
|
|
{ "in_bad_octets", 4, 0x02, BANK0, },
|
|
{ "in_unicast", 4, 0x04, BANK0, },
|
|
{ "in_broadcasts", 4, 0x06, BANK0, },
|
|
{ "in_multicasts", 4, 0x07, BANK0, },
|
|
{ "in_pause", 4, 0x16, BANK0, },
|
|
{ "in_undersize", 4, 0x18, BANK0, },
|
|
{ "in_fragments", 4, 0x19, BANK0, },
|
|
{ "in_oversize", 4, 0x1a, BANK0, },
|
|
{ "in_jabber", 4, 0x1b, BANK0, },
|
|
{ "in_rx_error", 4, 0x1c, BANK0, },
|
|
{ "in_fcs_error", 4, 0x1d, BANK0, },
|
|
{ "out_octets", 8, 0x0e, BANK0, },
|
|
{ "out_unicast", 4, 0x10, BANK0, },
|
|
{ "out_broadcasts", 4, 0x13, BANK0, },
|
|
{ "out_multicasts", 4, 0x12, BANK0, },
|
|
{ "out_pause", 4, 0x15, BANK0, },
|
|
{ "excessive", 4, 0x11, BANK0, },
|
|
{ "collisions", 4, 0x1e, BANK0, },
|
|
{ "deferred", 4, 0x05, BANK0, },
|
|
{ "single", 4, 0x14, BANK0, },
|
|
{ "multiple", 4, 0x17, BANK0, },
|
|
{ "out_fcs_error", 4, 0x03, BANK0, },
|
|
{ "late", 4, 0x1f, BANK0, },
|
|
{ "hist_64bytes", 4, 0x08, BANK0, },
|
|
{ "hist_65_127bytes", 4, 0x09, BANK0, },
|
|
{ "hist_128_255bytes", 4, 0x0a, BANK0, },
|
|
{ "hist_256_511bytes", 4, 0x0b, BANK0, },
|
|
{ "hist_512_1023bytes", 4, 0x0c, BANK0, },
|
|
{ "hist_1024_max_bytes", 4, 0x0d, BANK0, },
|
|
{ "sw_in_discards", 4, 0x10, PORT, },
|
|
{ "sw_in_filtered", 2, 0x12, PORT, },
|
|
{ "sw_out_filtered", 2, 0x13, PORT, },
|
|
{ "in_discards", 4, 0x00 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_filtered", 4, 0x01 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_accepted", 4, 0x02 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_bad_accepted", 4, 0x03 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_good_avb_class_a", 4, 0x04 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_good_avb_class_b", 4, 0x05 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_bad_avb_class_a", 4, 0x06 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_bad_avb_class_b", 4, 0x07 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_0", 4, 0x08 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_1", 4, 0x09 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_2", 4, 0x0a | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "tcam_counter_3", 4, 0x0b | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_da_unknown", 4, 0x0e | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "in_management", 4, 0x0f | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_0", 4, 0x10 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_1", 4, 0x11 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_2", 4, 0x12 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_3", 4, 0x13 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_4", 4, 0x14 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_5", 4, 0x15 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_6", 4, 0x16 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_queue_7", 4, 0x17 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_cut_through", 4, 0x18 | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_octets_a", 4, 0x1a | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_octets_b", 4, 0x1b | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
{ "out_management", 4, 0x1f | GLOBAL_STATS_OP_BANK_1, BANK1, },
|
|
};
|
|
|
|
static bool mv88e6xxx_has_stat(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_hw_stat *stat)
|
|
{
|
|
switch (stat->type) {
|
|
case BANK0:
|
|
return true;
|
|
case BANK1:
|
|
return mv88e6xxx_6320_family(chip);
|
|
case PORT:
|
|
return mv88e6xxx_6095_family(chip) ||
|
|
mv88e6xxx_6185_family(chip) ||
|
|
mv88e6xxx_6097_family(chip) ||
|
|
mv88e6xxx_6165_family(chip) ||
|
|
mv88e6xxx_6351_family(chip) ||
|
|
mv88e6xxx_6352_family(chip);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static uint64_t _mv88e6xxx_get_ethtool_stat(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_hw_stat *s,
|
|
int port)
|
|
{
|
|
u32 low;
|
|
u32 high = 0;
|
|
int ret;
|
|
u64 value;
|
|
|
|
switch (s->type) {
|
|
case PORT:
|
|
ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), s->reg);
|
|
if (ret < 0)
|
|
return UINT64_MAX;
|
|
|
|
low = ret;
|
|
if (s->sizeof_stat == 4) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_PORT(port),
|
|
s->reg + 1);
|
|
if (ret < 0)
|
|
return UINT64_MAX;
|
|
high = ret;
|
|
}
|
|
break;
|
|
case BANK0:
|
|
case BANK1:
|
|
_mv88e6xxx_stats_read(chip, s->reg, &low);
|
|
if (s->sizeof_stat == 8)
|
|
_mv88e6xxx_stats_read(chip, s->reg + 1, &high);
|
|
}
|
|
value = (((u64)high) << 16) | low;
|
|
return value;
|
|
}
|
|
|
|
static void mv88e6xxx_get_strings(struct dsa_switch *ds, int port,
|
|
uint8_t *data)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
struct mv88e6xxx_hw_stat *stat;
|
|
int i, j;
|
|
|
|
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
|
|
stat = &mv88e6xxx_hw_stats[i];
|
|
if (mv88e6xxx_has_stat(chip, stat)) {
|
|
memcpy(data + j * ETH_GSTRING_LEN, stat->string,
|
|
ETH_GSTRING_LEN);
|
|
j++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int mv88e6xxx_get_sset_count(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
struct mv88e6xxx_hw_stat *stat;
|
|
int i, j;
|
|
|
|
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
|
|
stat = &mv88e6xxx_hw_stats[i];
|
|
if (mv88e6xxx_has_stat(chip, stat))
|
|
j++;
|
|
}
|
|
return j;
|
|
}
|
|
|
|
static void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds, int port,
|
|
uint64_t *data)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
struct mv88e6xxx_hw_stat *stat;
|
|
int ret;
|
|
int i, j;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
ret = _mv88e6xxx_stats_snapshot(chip, port);
|
|
if (ret < 0) {
|
|
mutex_unlock(&chip->reg_lock);
|
|
return;
|
|
}
|
|
for (i = 0, j = 0; i < ARRAY_SIZE(mv88e6xxx_hw_stats); i++) {
|
|
stat = &mv88e6xxx_hw_stats[i];
|
|
if (mv88e6xxx_has_stat(chip, stat)) {
|
|
data[j] = _mv88e6xxx_get_ethtool_stat(chip, stat, port);
|
|
j++;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
}
|
|
|
|
static int mv88e6xxx_get_regs_len(struct dsa_switch *ds, int port)
|
|
{
|
|
return 32 * sizeof(u16);
|
|
}
|
|
|
|
static void mv88e6xxx_get_regs(struct dsa_switch *ds, int port,
|
|
struct ethtool_regs *regs, void *_p)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
u16 *p = _p;
|
|
int i;
|
|
|
|
regs->version = 0;
|
|
|
|
memset(p, 0xff, 32 * sizeof(u16));
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), i);
|
|
if (ret >= 0)
|
|
p[i] = ret;
|
|
}
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
}
|
|
|
|
static int _mv88e6xxx_wait(struct mv88e6xxx_chip *chip, int reg, int offset,
|
|
u16 mask)
|
|
{
|
|
unsigned long timeout = jiffies + HZ / 10;
|
|
|
|
while (time_before(jiffies, timeout)) {
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, reg, offset);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!(ret & mask))
|
|
return 0;
|
|
|
|
usleep_range(1000, 2000);
|
|
}
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_wait(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_BUSY);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_wait(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_ATU_OP,
|
|
GLOBAL_ATU_OP_BUSY);
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_read_indirect(struct mv88e6xxx_chip *chip,
|
|
int addr, int regnum)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_22_READ | (addr << 5) |
|
|
regnum);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = mv88e6xxx_mdio_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_write_indirect(struct mv88e6xxx_chip *chip,
|
|
int addr, int regnum, u16 val)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_DATA, val);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL2, GLOBAL2_SMI_OP,
|
|
GLOBAL2_SMI_OP_22_WRITE | (addr << 5) |
|
|
regnum);
|
|
|
|
return mv88e6xxx_mdio_wait(chip);
|
|
}
|
|
|
|
static int mv88e6xxx_get_eee(struct dsa_switch *ds, int port,
|
|
struct ethtool_eee *e)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int reg;
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
|
|
return -EOPNOTSUPP;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
reg = mv88e6xxx_mdio_read_indirect(chip, port, 16);
|
|
if (reg < 0)
|
|
goto out;
|
|
|
|
e->eee_enabled = !!(reg & 0x0200);
|
|
e->tx_lpi_enabled = !!(reg & 0x0100);
|
|
|
|
reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
|
|
if (reg < 0)
|
|
goto out;
|
|
|
|
e->eee_active = !!(reg & PORT_STATUS_EEE);
|
|
reg = 0;
|
|
|
|
out:
|
|
mutex_unlock(&chip->reg_lock);
|
|
return reg;
|
|
}
|
|
|
|
static int mv88e6xxx_set_eee(struct dsa_switch *ds, int port,
|
|
struct phy_device *phydev, struct ethtool_eee *e)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int reg;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_EEE))
|
|
return -EOPNOTSUPP;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
ret = mv88e6xxx_mdio_read_indirect(chip, port, 16);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
reg = ret & ~0x0300;
|
|
if (e->eee_enabled)
|
|
reg |= 0x0200;
|
|
if (e->tx_lpi_enabled)
|
|
reg |= 0x0100;
|
|
|
|
ret = mv88e6xxx_mdio_write_indirect(chip, port, 16, reg);
|
|
out:
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_cmd(struct mv88e6xxx_chip *chip, u16 fid, u16 cmd)
|
|
{
|
|
int ret;
|
|
|
|
if (mv88e6xxx_has_fid_reg(chip)) {
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_FID,
|
|
fid);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else if (mv88e6xxx_num_databases(chip) == 256) {
|
|
/* ATU DBNum[7:4] are located in ATU Control 15:12 */
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
|
|
(ret & 0xfff) |
|
|
((fid << 8) & 0xf000));
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* ATU DBNum[3:0] are located in ATU Operation 3:0 */
|
|
cmd |= fid & 0xf;
|
|
}
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_OP, cmd);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_atu_wait(chip);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_data_write(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_atu_entry *entry)
|
|
{
|
|
u16 data = entry->state & GLOBAL_ATU_DATA_STATE_MASK;
|
|
|
|
if (entry->state != GLOBAL_ATU_DATA_STATE_UNUSED) {
|
|
unsigned int mask, shift;
|
|
|
|
if (entry->trunk) {
|
|
data |= GLOBAL_ATU_DATA_TRUNK;
|
|
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
|
|
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
|
|
} else {
|
|
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
|
|
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
|
|
}
|
|
|
|
data |= (entry->portv_trunkid << shift) & mask;
|
|
}
|
|
|
|
return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_ATU_DATA, data);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_flush_move(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_atu_entry *entry,
|
|
bool static_too)
|
|
{
|
|
int op;
|
|
int err;
|
|
|
|
err = _mv88e6xxx_atu_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
err = _mv88e6xxx_atu_data_write(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->fid) {
|
|
op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL_DB :
|
|
GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC_DB;
|
|
} else {
|
|
op = static_too ? GLOBAL_ATU_OP_FLUSH_MOVE_ALL :
|
|
GLOBAL_ATU_OP_FLUSH_MOVE_NON_STATIC;
|
|
}
|
|
|
|
return _mv88e6xxx_atu_cmd(chip, entry->fid, op);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_flush(struct mv88e6xxx_chip *chip,
|
|
u16 fid, bool static_too)
|
|
{
|
|
struct mv88e6xxx_atu_entry entry = {
|
|
.fid = fid,
|
|
.state = 0, /* EntryState bits must be 0 */
|
|
};
|
|
|
|
return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_move(struct mv88e6xxx_chip *chip, u16 fid,
|
|
int from_port, int to_port, bool static_too)
|
|
{
|
|
struct mv88e6xxx_atu_entry entry = {
|
|
.trunk = false,
|
|
.fid = fid,
|
|
};
|
|
|
|
/* EntryState bits must be 0xF */
|
|
entry.state = GLOBAL_ATU_DATA_STATE_MASK;
|
|
|
|
/* ToPort and FromPort are respectively in PortVec bits 7:4 and 3:0 */
|
|
entry.portv_trunkid = (to_port & 0x0f) << 4;
|
|
entry.portv_trunkid |= from_port & 0x0f;
|
|
|
|
return _mv88e6xxx_atu_flush_move(chip, &entry, static_too);
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_remove(struct mv88e6xxx_chip *chip, u16 fid,
|
|
int port, bool static_too)
|
|
{
|
|
/* Destination port 0xF means remove the entries */
|
|
return _mv88e6xxx_atu_move(chip, fid, port, 0x0f, static_too);
|
|
}
|
|
|
|
static const char * const mv88e6xxx_port_state_names[] = {
|
|
[PORT_CONTROL_STATE_DISABLED] = "Disabled",
|
|
[PORT_CONTROL_STATE_BLOCKING] = "Blocking/Listening",
|
|
[PORT_CONTROL_STATE_LEARNING] = "Learning",
|
|
[PORT_CONTROL_STATE_FORWARDING] = "Forwarding",
|
|
};
|
|
|
|
static int _mv88e6xxx_port_state(struct mv88e6xxx_chip *chip, int port,
|
|
u8 state)
|
|
{
|
|
struct dsa_switch *ds = chip->ds;
|
|
int reg, ret = 0;
|
|
u8 oldstate;
|
|
|
|
reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL);
|
|
if (reg < 0)
|
|
return reg;
|
|
|
|
oldstate = reg & PORT_CONTROL_STATE_MASK;
|
|
|
|
if (oldstate != state) {
|
|
/* Flush forwarding database if we're moving a port
|
|
* from Learning or Forwarding state to Disabled or
|
|
* Blocking or Listening state.
|
|
*/
|
|
if ((oldstate == PORT_CONTROL_STATE_LEARNING ||
|
|
oldstate == PORT_CONTROL_STATE_FORWARDING) &&
|
|
(state == PORT_CONTROL_STATE_DISABLED ||
|
|
state == PORT_CONTROL_STATE_BLOCKING)) {
|
|
ret = _mv88e6xxx_atu_remove(chip, 0, port, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
reg = (reg & ~PORT_CONTROL_STATE_MASK) | state;
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL,
|
|
reg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
netdev_dbg(ds->ports[port].netdev, "PortState %s (was %s)\n",
|
|
mv88e6xxx_port_state_names[state],
|
|
mv88e6xxx_port_state_names[oldstate]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_based_vlan_map(struct mv88e6xxx_chip *chip, int port)
|
|
{
|
|
struct net_device *bridge = chip->ports[port].bridge_dev;
|
|
const u16 mask = (1 << chip->info->num_ports) - 1;
|
|
struct dsa_switch *ds = chip->ds;
|
|
u16 output_ports = 0;
|
|
int reg;
|
|
int i;
|
|
|
|
/* allow CPU port or DSA link(s) to send frames to every port */
|
|
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
|
|
output_ports = mask;
|
|
} else {
|
|
for (i = 0; i < chip->info->num_ports; ++i) {
|
|
/* allow sending frames to every group member */
|
|
if (bridge && chip->ports[i].bridge_dev == bridge)
|
|
output_ports |= BIT(i);
|
|
|
|
/* allow sending frames to CPU port and DSA link(s) */
|
|
if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
|
|
output_ports |= BIT(i);
|
|
}
|
|
}
|
|
|
|
/* prevent frames from going back out of the port they came in on */
|
|
output_ports &= ~BIT(port);
|
|
|
|
reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
|
|
if (reg < 0)
|
|
return reg;
|
|
|
|
reg &= ~mask;
|
|
reg |= output_ports & mask;
|
|
|
|
return _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN, reg);
|
|
}
|
|
|
|
static void mv88e6xxx_port_stp_state_set(struct dsa_switch *ds, int port,
|
|
u8 state)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int stp_state;
|
|
int err;
|
|
|
|
switch (state) {
|
|
case BR_STATE_DISABLED:
|
|
stp_state = PORT_CONTROL_STATE_DISABLED;
|
|
break;
|
|
case BR_STATE_BLOCKING:
|
|
case BR_STATE_LISTENING:
|
|
stp_state = PORT_CONTROL_STATE_BLOCKING;
|
|
break;
|
|
case BR_STATE_LEARNING:
|
|
stp_state = PORT_CONTROL_STATE_LEARNING;
|
|
break;
|
|
case BR_STATE_FORWARDING:
|
|
default:
|
|
stp_state = PORT_CONTROL_STATE_FORWARDING;
|
|
break;
|
|
}
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
err = _mv88e6xxx_port_state(chip, port, stp_state);
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
if (err)
|
|
netdev_err(ds->ports[port].netdev,
|
|
"failed to update state to %s\n",
|
|
mv88e6xxx_port_state_names[stp_state]);
|
|
}
|
|
|
|
static int _mv88e6xxx_port_pvid(struct mv88e6xxx_chip *chip, int port,
|
|
u16 *new, u16 *old)
|
|
{
|
|
struct dsa_switch *ds = chip->ds;
|
|
u16 pvid;
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_DEFAULT_VLAN);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
pvid = ret & PORT_DEFAULT_VLAN_MASK;
|
|
|
|
if (new) {
|
|
ret &= ~PORT_DEFAULT_VLAN_MASK;
|
|
ret |= *new & PORT_DEFAULT_VLAN_MASK;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_DEFAULT_VLAN, ret);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
netdev_dbg(ds->ports[port].netdev,
|
|
"DefaultVID %d (was %d)\n", *new, pvid);
|
|
}
|
|
|
|
if (old)
|
|
*old = pvid;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_pvid_get(struct mv88e6xxx_chip *chip,
|
|
int port, u16 *pvid)
|
|
{
|
|
return _mv88e6xxx_port_pvid(chip, port, NULL, pvid);
|
|
}
|
|
|
|
static int _mv88e6xxx_port_pvid_set(struct mv88e6xxx_chip *chip,
|
|
int port, u16 pvid)
|
|
{
|
|
return _mv88e6xxx_port_pvid(chip, port, &pvid, NULL);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_wait(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return _mv88e6xxx_wait(chip, REG_GLOBAL, GLOBAL_VTU_OP,
|
|
GLOBAL_VTU_OP_BUSY);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_cmd(struct mv88e6xxx_chip *chip, u16 op)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_OP, op);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_wait(chip);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_stu_flush(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_FLUSH_ALL);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_stu_data_read(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_stu_entry *entry,
|
|
unsigned int nibble_offset)
|
|
{
|
|
u16 regs[3];
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
|
|
GLOBAL_VTU_DATA_0_3 + i);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
regs[i] = ret;
|
|
}
|
|
|
|
for (i = 0; i < chip->info->num_ports; ++i) {
|
|
unsigned int shift = (i % 4) * 4 + nibble_offset;
|
|
u16 reg = regs[i / 4];
|
|
|
|
entry->data[i] = (reg >> shift) & GLOBAL_VTU_STU_DATA_MASK;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_vtu_data_read(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
return _mv88e6xxx_vtu_stu_data_read(chip, entry, 0);
|
|
}
|
|
|
|
static int mv88e6xxx_stu_data_read(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
return _mv88e6xxx_vtu_stu_data_read(chip, entry, 2);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_stu_data_write(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_stu_entry *entry,
|
|
unsigned int nibble_offset)
|
|
{
|
|
u16 regs[3] = { 0 };
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < chip->info->num_ports; ++i) {
|
|
unsigned int shift = (i % 4) * 4 + nibble_offset;
|
|
u8 data = entry->data[i];
|
|
|
|
regs[i / 4] |= (data & GLOBAL_VTU_STU_DATA_MASK) << shift;
|
|
}
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL,
|
|
GLOBAL_VTU_DATA_0_3 + i, regs[i]);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_vtu_data_write(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
return _mv88e6xxx_vtu_stu_data_write(chip, entry, 0);
|
|
}
|
|
|
|
static int mv88e6xxx_stu_data_write(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
return _mv88e6xxx_vtu_stu_data_write(chip, entry, 2);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_vid_write(struct mv88e6xxx_chip *chip, u16 vid)
|
|
{
|
|
return _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID,
|
|
vid & GLOBAL_VTU_VID_MASK);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_getnext(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_vtu_stu_entry next = { 0 };
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_VTU_GET_NEXT);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.vid = ret & GLOBAL_VTU_VID_MASK;
|
|
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
|
|
|
|
if (next.valid) {
|
|
ret = mv88e6xxx_vtu_data_read(chip, &next);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (mv88e6xxx_has_fid_reg(chip)) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
|
|
GLOBAL_VTU_FID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.fid = ret & GLOBAL_VTU_FID_MASK;
|
|
} else if (mv88e6xxx_num_databases(chip) == 256) {
|
|
/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
|
|
* VTU DBNum[3:0] are located in VTU Operation 3:0
|
|
*/
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
|
|
GLOBAL_VTU_OP);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.fid = (ret & 0xf00) >> 4;
|
|
next.fid |= ret & 0xf;
|
|
}
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
|
|
GLOBAL_VTU_SID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.sid = ret & GLOBAL_VTU_SID_MASK;
|
|
}
|
|
}
|
|
|
|
*entry = next;
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_port_vlan_dump(struct dsa_switch *ds, int port,
|
|
struct switchdev_obj_port_vlan *vlan,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry next;
|
|
u16 pvid;
|
|
int err;
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
|
|
return -EOPNOTSUPP;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
do {
|
|
err = _mv88e6xxx_vtu_getnext(chip, &next);
|
|
if (err)
|
|
break;
|
|
|
|
if (!next.valid)
|
|
break;
|
|
|
|
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
|
|
continue;
|
|
|
|
/* reinit and dump this VLAN obj */
|
|
vlan->vid_begin = next.vid;
|
|
vlan->vid_end = next.vid;
|
|
vlan->flags = 0;
|
|
|
|
if (next.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED)
|
|
vlan->flags |= BRIDGE_VLAN_INFO_UNTAGGED;
|
|
|
|
if (next.vid == pvid)
|
|
vlan->flags |= BRIDGE_VLAN_INFO_PVID;
|
|
|
|
err = cb(&vlan->obj);
|
|
if (err)
|
|
break;
|
|
} while (next.vid < GLOBAL_VTU_VID_MASK);
|
|
|
|
unlock:
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_loadpurge(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
u16 op = GLOBAL_VTU_OP_VTU_LOAD_PURGE;
|
|
u16 reg = 0;
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!entry->valid)
|
|
goto loadpurge;
|
|
|
|
/* Write port member tags */
|
|
ret = mv88e6xxx_vtu_data_write(chip, entry);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_STU)) {
|
|
reg = entry->sid & GLOBAL_VTU_SID_MASK;
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
|
|
reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
if (mv88e6xxx_has_fid_reg(chip)) {
|
|
reg = entry->fid & GLOBAL_VTU_FID_MASK;
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_FID,
|
|
reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
} else if (mv88e6xxx_num_databases(chip) == 256) {
|
|
/* VTU DBNum[7:4] are located in VTU Operation 11:8, and
|
|
* VTU DBNum[3:0] are located in VTU Operation 3:0
|
|
*/
|
|
op |= (entry->fid & 0xf0) << 8;
|
|
op |= entry->fid & 0xf;
|
|
}
|
|
|
|
reg = GLOBAL_VTU_VID_VALID;
|
|
loadpurge:
|
|
reg |= entry->vid & GLOBAL_VTU_VID_MASK;
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_cmd(chip, op);
|
|
}
|
|
|
|
static int _mv88e6xxx_stu_getnext(struct mv88e6xxx_chip *chip, u8 sid,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_vtu_stu_entry next = { 0 };
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID,
|
|
sid & GLOBAL_VTU_SID_MASK);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_GET_NEXT);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_SID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.sid = ret & GLOBAL_VTU_SID_MASK;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_VTU_VID);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.valid = !!(ret & GLOBAL_VTU_VID_VALID);
|
|
|
|
if (next.valid) {
|
|
ret = mv88e6xxx_stu_data_read(chip, &next);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
*entry = next;
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_stu_loadpurge(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
u16 reg = 0;
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_vtu_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (!entry->valid)
|
|
goto loadpurge;
|
|
|
|
/* Write port states */
|
|
ret = mv88e6xxx_stu_data_write(chip, entry);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
reg = GLOBAL_VTU_VID_VALID;
|
|
loadpurge:
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_VID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
reg = entry->sid & GLOBAL_VTU_SID_MASK;
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_VTU_SID, reg);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_vtu_cmd(chip, GLOBAL_VTU_OP_STU_LOAD_PURGE);
|
|
}
|
|
|
|
static int _mv88e6xxx_port_fid(struct mv88e6xxx_chip *chip, int port,
|
|
u16 *new, u16 *old)
|
|
{
|
|
struct dsa_switch *ds = chip->ds;
|
|
u16 upper_mask;
|
|
u16 fid;
|
|
int ret;
|
|
|
|
if (mv88e6xxx_num_databases(chip) == 4096)
|
|
upper_mask = 0xff;
|
|
else if (mv88e6xxx_num_databases(chip) == 256)
|
|
upper_mask = 0xf;
|
|
else
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Port's default FID bits 3:0 are located in reg 0x06, offset 12 */
|
|
ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_BASE_VLAN);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
fid = (ret & PORT_BASE_VLAN_FID_3_0_MASK) >> 12;
|
|
|
|
if (new) {
|
|
ret &= ~PORT_BASE_VLAN_FID_3_0_MASK;
|
|
ret |= (*new << 12) & PORT_BASE_VLAN_FID_3_0_MASK;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_BASE_VLAN,
|
|
ret);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/* Port's default FID bits 11:4 are located in reg 0x05, offset 0 */
|
|
ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_1);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
fid |= (ret & upper_mask) << 4;
|
|
|
|
if (new) {
|
|
ret &= ~upper_mask;
|
|
ret |= (*new >> 4) & upper_mask;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
|
|
ret);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
netdev_dbg(ds->ports[port].netdev,
|
|
"FID %d (was %d)\n", *new, fid);
|
|
}
|
|
|
|
if (old)
|
|
*old = fid;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_fid_get(struct mv88e6xxx_chip *chip,
|
|
int port, u16 *fid)
|
|
{
|
|
return _mv88e6xxx_port_fid(chip, port, NULL, fid);
|
|
}
|
|
|
|
static int _mv88e6xxx_port_fid_set(struct mv88e6xxx_chip *chip,
|
|
int port, u16 fid)
|
|
{
|
|
return _mv88e6xxx_port_fid(chip, port, &fid, NULL);
|
|
}
|
|
|
|
static int _mv88e6xxx_fid_new(struct mv88e6xxx_chip *chip, u16 *fid)
|
|
{
|
|
DECLARE_BITMAP(fid_bitmap, MV88E6XXX_N_FID);
|
|
struct mv88e6xxx_vtu_stu_entry vlan;
|
|
int i, err;
|
|
|
|
bitmap_zero(fid_bitmap, MV88E6XXX_N_FID);
|
|
|
|
/* Set every FID bit used by the (un)bridged ports */
|
|
for (i = 0; i < chip->info->num_ports; ++i) {
|
|
err = _mv88e6xxx_port_fid_get(chip, i, fid);
|
|
if (err)
|
|
return err;
|
|
|
|
set_bit(*fid, fid_bitmap);
|
|
}
|
|
|
|
/* Set every FID bit used by the VLAN entries */
|
|
err = _mv88e6xxx_vtu_vid_write(chip, GLOBAL_VTU_VID_MASK);
|
|
if (err)
|
|
return err;
|
|
|
|
do {
|
|
err = _mv88e6xxx_vtu_getnext(chip, &vlan);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!vlan.valid)
|
|
break;
|
|
|
|
set_bit(vlan.fid, fid_bitmap);
|
|
} while (vlan.vid < GLOBAL_VTU_VID_MASK);
|
|
|
|
/* The reset value 0x000 is used to indicate that multiple address
|
|
* databases are not needed. Return the next positive available.
|
|
*/
|
|
*fid = find_next_zero_bit(fid_bitmap, MV88E6XXX_N_FID, 1);
|
|
if (unlikely(*fid >= mv88e6xxx_num_databases(chip)))
|
|
return -ENOSPC;
|
|
|
|
/* Clear the database */
|
|
return _mv88e6xxx_atu_flush(chip, *fid, true);
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_new(struct mv88e6xxx_chip *chip, u16 vid,
|
|
struct mv88e6xxx_vtu_stu_entry *entry)
|
|
{
|
|
struct dsa_switch *ds = chip->ds;
|
|
struct mv88e6xxx_vtu_stu_entry vlan = {
|
|
.valid = true,
|
|
.vid = vid,
|
|
};
|
|
int i, err;
|
|
|
|
err = _mv88e6xxx_fid_new(chip, &vlan.fid);
|
|
if (err)
|
|
return err;
|
|
|
|
/* exclude all ports except the CPU and DSA ports */
|
|
for (i = 0; i < chip->info->num_ports; ++i)
|
|
vlan.data[i] = dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i)
|
|
? GLOBAL_VTU_DATA_MEMBER_TAG_UNMODIFIED
|
|
: GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
|
|
|
|
if (mv88e6xxx_6097_family(chip) || mv88e6xxx_6165_family(chip) ||
|
|
mv88e6xxx_6351_family(chip) || mv88e6xxx_6352_family(chip)) {
|
|
struct mv88e6xxx_vtu_stu_entry vstp;
|
|
|
|
/* Adding a VTU entry requires a valid STU entry. As VSTP is not
|
|
* implemented, only one STU entry is needed to cover all VTU
|
|
* entries. Thus, validate the SID 0.
|
|
*/
|
|
vlan.sid = 0;
|
|
err = _mv88e6xxx_stu_getnext(chip, GLOBAL_VTU_SID_MASK, &vstp);
|
|
if (err)
|
|
return err;
|
|
|
|
if (vstp.sid != vlan.sid || !vstp.valid) {
|
|
memset(&vstp, 0, sizeof(vstp));
|
|
vstp.valid = true;
|
|
vstp.sid = vlan.sid;
|
|
|
|
err = _mv88e6xxx_stu_loadpurge(chip, &vstp);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
*entry = vlan;
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_vtu_get(struct mv88e6xxx_chip *chip, u16 vid,
|
|
struct mv88e6xxx_vtu_stu_entry *entry, bool creat)
|
|
{
|
|
int err;
|
|
|
|
if (!vid)
|
|
return -EINVAL;
|
|
|
|
err = _mv88e6xxx_vtu_vid_write(chip, vid - 1);
|
|
if (err)
|
|
return err;
|
|
|
|
err = _mv88e6xxx_vtu_getnext(chip, entry);
|
|
if (err)
|
|
return err;
|
|
|
|
if (entry->vid != vid || !entry->valid) {
|
|
if (!creat)
|
|
return -EOPNOTSUPP;
|
|
/* -ENOENT would've been more appropriate, but switchdev expects
|
|
* -EOPNOTSUPP to inform bridge about an eventual software VLAN.
|
|
*/
|
|
|
|
err = _mv88e6xxx_vtu_new(chip, vid, entry);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mv88e6xxx_port_check_hw_vlan(struct dsa_switch *ds, int port,
|
|
u16 vid_begin, u16 vid_end)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry vlan;
|
|
int i, err;
|
|
|
|
if (!vid_begin)
|
|
return -EOPNOTSUPP;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
err = _mv88e6xxx_vtu_vid_write(chip, vid_begin - 1);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
do {
|
|
err = _mv88e6xxx_vtu_getnext(chip, &vlan);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
if (!vlan.valid)
|
|
break;
|
|
|
|
if (vlan.vid > vid_end)
|
|
break;
|
|
|
|
for (i = 0; i < chip->info->num_ports; ++i) {
|
|
if (dsa_is_dsa_port(ds, i) || dsa_is_cpu_port(ds, i))
|
|
continue;
|
|
|
|
if (vlan.data[i] ==
|
|
GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
|
|
continue;
|
|
|
|
if (chip->ports[i].bridge_dev ==
|
|
chip->ports[port].bridge_dev)
|
|
break; /* same bridge, check next VLAN */
|
|
|
|
netdev_warn(ds->ports[port].netdev,
|
|
"hardware VLAN %d already used by %s\n",
|
|
vlan.vid,
|
|
netdev_name(chip->ports[i].bridge_dev));
|
|
err = -EOPNOTSUPP;
|
|
goto unlock;
|
|
}
|
|
} while (vlan.vid < vid_end);
|
|
|
|
unlock:
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static const char * const mv88e6xxx_port_8021q_mode_names[] = {
|
|
[PORT_CONTROL_2_8021Q_DISABLED] = "Disabled",
|
|
[PORT_CONTROL_2_8021Q_FALLBACK] = "Fallback",
|
|
[PORT_CONTROL_2_8021Q_CHECK] = "Check",
|
|
[PORT_CONTROL_2_8021Q_SECURE] = "Secure",
|
|
};
|
|
|
|
static int mv88e6xxx_port_vlan_filtering(struct dsa_switch *ds, int port,
|
|
bool vlan_filtering)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
u16 old, new = vlan_filtering ? PORT_CONTROL_2_8021Q_SECURE :
|
|
PORT_CONTROL_2_8021Q_DISABLED;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
|
|
return -EOPNOTSUPP;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_CONTROL_2);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
old = ret & PORT_CONTROL_2_8021Q_MASK;
|
|
|
|
if (new != old) {
|
|
ret &= ~PORT_CONTROL_2_8021Q_MASK;
|
|
ret |= new & PORT_CONTROL_2_8021Q_MASK;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_2,
|
|
ret);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
netdev_dbg(ds->ports[port].netdev, "802.1Q Mode %s (was %s)\n",
|
|
mv88e6xxx_port_8021q_mode_names[new],
|
|
mv88e6xxx_port_8021q_mode_names[old]);
|
|
}
|
|
|
|
ret = 0;
|
|
unlock:
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
mv88e6xxx_port_vlan_prepare(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int err;
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* If the requested port doesn't belong to the same bridge as the VLAN
|
|
* members, do not support it (yet) and fallback to software VLAN.
|
|
*/
|
|
err = mv88e6xxx_port_check_hw_vlan(ds, port, vlan->vid_begin,
|
|
vlan->vid_end);
|
|
if (err)
|
|
return err;
|
|
|
|
/* We don't need any dynamic resource from the kernel (yet),
|
|
* so skip the prepare phase.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_vlan_add(struct mv88e6xxx_chip *chip, int port,
|
|
u16 vid, bool untagged)
|
|
{
|
|
struct mv88e6xxx_vtu_stu_entry vlan;
|
|
int err;
|
|
|
|
err = _mv88e6xxx_vtu_get(chip, vid, &vlan, true);
|
|
if (err)
|
|
return err;
|
|
|
|
vlan.data[port] = untagged ?
|
|
GLOBAL_VTU_DATA_MEMBER_TAG_UNTAGGED :
|
|
GLOBAL_VTU_DATA_MEMBER_TAG_TAGGED;
|
|
|
|
return _mv88e6xxx_vtu_loadpurge(chip, &vlan);
|
|
}
|
|
|
|
static void mv88e6xxx_port_vlan_add(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
|
|
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
|
|
u16 vid;
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
|
|
return;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
|
|
if (_mv88e6xxx_port_vlan_add(chip, port, vid, untagged))
|
|
netdev_err(ds->ports[port].netdev,
|
|
"failed to add VLAN %d%c\n",
|
|
vid, untagged ? 'u' : 't');
|
|
|
|
if (pvid && _mv88e6xxx_port_pvid_set(chip, port, vlan->vid_end))
|
|
netdev_err(ds->ports[port].netdev, "failed to set PVID %d\n",
|
|
vlan->vid_end);
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
}
|
|
|
|
static int _mv88e6xxx_port_vlan_del(struct mv88e6xxx_chip *chip,
|
|
int port, u16 vid)
|
|
{
|
|
struct dsa_switch *ds = chip->ds;
|
|
struct mv88e6xxx_vtu_stu_entry vlan;
|
|
int i, err;
|
|
|
|
err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Tell switchdev if this VLAN is handled in software */
|
|
if (vlan.data[port] == GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER)
|
|
return -EOPNOTSUPP;
|
|
|
|
vlan.data[port] = GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER;
|
|
|
|
/* keep the VLAN unless all ports are excluded */
|
|
vlan.valid = false;
|
|
for (i = 0; i < chip->info->num_ports; ++i) {
|
|
if (dsa_is_cpu_port(ds, i) || dsa_is_dsa_port(ds, i))
|
|
continue;
|
|
|
|
if (vlan.data[i] != GLOBAL_VTU_DATA_MEMBER_TAG_NON_MEMBER) {
|
|
vlan.valid = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
err = _mv88e6xxx_vtu_loadpurge(chip, &vlan);
|
|
if (err)
|
|
return err;
|
|
|
|
return _mv88e6xxx_atu_remove(chip, vlan.fid, port, false);
|
|
}
|
|
|
|
static int mv88e6xxx_port_vlan_del(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_vlan *vlan)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
u16 pvid, vid;
|
|
int err = 0;
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_VTU))
|
|
return -EOPNOTSUPP;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
err = _mv88e6xxx_port_pvid_get(chip, port, &pvid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
|
|
err = _mv88e6xxx_port_vlan_del(chip, port, vid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
if (vid == pvid) {
|
|
err = _mv88e6xxx_port_pvid_set(chip, port, 0);
|
|
if (err)
|
|
goto unlock;
|
|
}
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_mac_write(struct mv88e6xxx_chip *chip,
|
|
const unsigned char *addr)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = _mv88e6xxx_reg_write(
|
|
chip, REG_GLOBAL, GLOBAL_ATU_MAC_01 + i,
|
|
(addr[i * 2] << 8) | addr[i * 2 + 1]);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_mac_read(struct mv88e6xxx_chip *chip,
|
|
unsigned char *addr)
|
|
{
|
|
int i, ret;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL,
|
|
GLOBAL_ATU_MAC_01 + i);
|
|
if (ret < 0)
|
|
return ret;
|
|
addr[i * 2] = ret >> 8;
|
|
addr[i * 2 + 1] = ret & 0xff;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_load(struct mv88e6xxx_chip *chip,
|
|
struct mv88e6xxx_atu_entry *entry)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_atu_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_mac_write(chip, entry->mac);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_data_write(chip, entry);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
return _mv88e6xxx_atu_cmd(chip, entry->fid, GLOBAL_ATU_OP_LOAD_DB);
|
|
}
|
|
|
|
static int _mv88e6xxx_port_fdb_load(struct mv88e6xxx_chip *chip, int port,
|
|
const unsigned char *addr, u16 vid,
|
|
u8 state)
|
|
{
|
|
struct mv88e6xxx_atu_entry entry = { 0 };
|
|
struct mv88e6xxx_vtu_stu_entry vlan;
|
|
int err;
|
|
|
|
/* Null VLAN ID corresponds to the port private database */
|
|
if (vid == 0)
|
|
err = _mv88e6xxx_port_fid_get(chip, port, &vlan.fid);
|
|
else
|
|
err = _mv88e6xxx_vtu_get(chip, vid, &vlan, false);
|
|
if (err)
|
|
return err;
|
|
|
|
entry.fid = vlan.fid;
|
|
entry.state = state;
|
|
ether_addr_copy(entry.mac, addr);
|
|
if (state != GLOBAL_ATU_DATA_STATE_UNUSED) {
|
|
entry.trunk = false;
|
|
entry.portv_trunkid = BIT(port);
|
|
}
|
|
|
|
return _mv88e6xxx_atu_load(chip, &entry);
|
|
}
|
|
|
|
static int mv88e6xxx_port_fdb_prepare(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
/* We don't need any dynamic resource from the kernel (yet),
|
|
* so skip the prepare phase.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static void mv88e6xxx_port_fdb_add(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb,
|
|
struct switchdev_trans *trans)
|
|
{
|
|
int state = is_multicast_ether_addr(fdb->addr) ?
|
|
GLOBAL_ATU_DATA_STATE_MC_STATIC :
|
|
GLOBAL_ATU_DATA_STATE_UC_STATIC;
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
if (_mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid, state))
|
|
netdev_err(ds->ports[port].netdev,
|
|
"failed to load MAC address\n");
|
|
mutex_unlock(&chip->reg_lock);
|
|
}
|
|
|
|
static int mv88e6xxx_port_fdb_del(struct dsa_switch *ds, int port,
|
|
const struct switchdev_obj_port_fdb *fdb)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
ret = _mv88e6xxx_port_fdb_load(chip, port, fdb->addr, fdb->vid,
|
|
GLOBAL_ATU_DATA_STATE_UNUSED);
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_atu_getnext(struct mv88e6xxx_chip *chip, u16 fid,
|
|
struct mv88e6xxx_atu_entry *entry)
|
|
{
|
|
struct mv88e6xxx_atu_entry next = { 0 };
|
|
int ret;
|
|
|
|
next.fid = fid;
|
|
|
|
ret = _mv88e6xxx_atu_wait(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_cmd(chip, fid, GLOBAL_ATU_OP_GET_NEXT_DB);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_atu_mac_read(chip, next.mac);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, GLOBAL_ATU_DATA);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
next.state = ret & GLOBAL_ATU_DATA_STATE_MASK;
|
|
if (next.state != GLOBAL_ATU_DATA_STATE_UNUSED) {
|
|
unsigned int mask, shift;
|
|
|
|
if (ret & GLOBAL_ATU_DATA_TRUNK) {
|
|
next.trunk = true;
|
|
mask = GLOBAL_ATU_DATA_TRUNK_ID_MASK;
|
|
shift = GLOBAL_ATU_DATA_TRUNK_ID_SHIFT;
|
|
} else {
|
|
next.trunk = false;
|
|
mask = GLOBAL_ATU_DATA_PORT_VECTOR_MASK;
|
|
shift = GLOBAL_ATU_DATA_PORT_VECTOR_SHIFT;
|
|
}
|
|
|
|
next.portv_trunkid = (ret & mask) >> shift;
|
|
}
|
|
|
|
*entry = next;
|
|
return 0;
|
|
}
|
|
|
|
static int _mv88e6xxx_port_fdb_dump_one(struct mv88e6xxx_chip *chip,
|
|
u16 fid, u16 vid, int port,
|
|
struct switchdev_obj_port_fdb *fdb,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
struct mv88e6xxx_atu_entry addr = {
|
|
.mac = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff },
|
|
};
|
|
int err;
|
|
|
|
err = _mv88e6xxx_atu_mac_write(chip, addr.mac);
|
|
if (err)
|
|
return err;
|
|
|
|
do {
|
|
err = _mv88e6xxx_atu_getnext(chip, fid, &addr);
|
|
if (err)
|
|
break;
|
|
|
|
if (addr.state == GLOBAL_ATU_DATA_STATE_UNUSED)
|
|
break;
|
|
|
|
if (!addr.trunk && addr.portv_trunkid & BIT(port)) {
|
|
bool is_static = addr.state ==
|
|
(is_multicast_ether_addr(addr.mac) ?
|
|
GLOBAL_ATU_DATA_STATE_MC_STATIC :
|
|
GLOBAL_ATU_DATA_STATE_UC_STATIC);
|
|
|
|
fdb->vid = vid;
|
|
ether_addr_copy(fdb->addr, addr.mac);
|
|
fdb->ndm_state = is_static ? NUD_NOARP : NUD_REACHABLE;
|
|
|
|
err = cb(&fdb->obj);
|
|
if (err)
|
|
break;
|
|
}
|
|
} while (!is_broadcast_ether_addr(addr.mac));
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mv88e6xxx_port_fdb_dump(struct dsa_switch *ds, int port,
|
|
struct switchdev_obj_port_fdb *fdb,
|
|
int (*cb)(struct switchdev_obj *obj))
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
struct mv88e6xxx_vtu_stu_entry vlan = {
|
|
.vid = GLOBAL_VTU_VID_MASK, /* all ones */
|
|
};
|
|
u16 fid;
|
|
int err;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
/* Dump port's default Filtering Information Database (VLAN ID 0) */
|
|
err = _mv88e6xxx_port_fid_get(chip, port, &fid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
err = _mv88e6xxx_port_fdb_dump_one(chip, fid, 0, port, fdb, cb);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
/* Dump VLANs' Filtering Information Databases */
|
|
err = _mv88e6xxx_vtu_vid_write(chip, vlan.vid);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
do {
|
|
err = _mv88e6xxx_vtu_getnext(chip, &vlan);
|
|
if (err)
|
|
break;
|
|
|
|
if (!vlan.valid)
|
|
break;
|
|
|
|
err = _mv88e6xxx_port_fdb_dump_one(chip, vlan.fid, vlan.vid,
|
|
port, fdb, cb);
|
|
if (err)
|
|
break;
|
|
} while (vlan.vid < GLOBAL_VTU_VID_MASK);
|
|
|
|
unlock:
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mv88e6xxx_port_bridge_join(struct dsa_switch *ds, int port,
|
|
struct net_device *bridge)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int i, err = 0;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
/* Assign the bridge and remap each port's VLANTable */
|
|
chip->ports[port].bridge_dev = bridge;
|
|
|
|
for (i = 0; i < chip->info->num_ports; ++i) {
|
|
if (chip->ports[i].bridge_dev == bridge) {
|
|
err = _mv88e6xxx_port_based_vlan_map(chip, i);
|
|
if (err)
|
|
break;
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void mv88e6xxx_port_bridge_leave(struct dsa_switch *ds, int port)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
struct net_device *bridge = chip->ports[port].bridge_dev;
|
|
int i;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
/* Unassign the bridge and remap each port's VLANTable */
|
|
chip->ports[port].bridge_dev = NULL;
|
|
|
|
for (i = 0; i < chip->info->num_ports; ++i)
|
|
if (i == port || chip->ports[i].bridge_dev == bridge)
|
|
if (_mv88e6xxx_port_based_vlan_map(chip, i))
|
|
netdev_warn(ds->ports[i].netdev,
|
|
"failed to remap\n");
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
}
|
|
|
|
static int _mv88e6xxx_mdio_page_write(struct mv88e6xxx_chip *chip,
|
|
int port, int page, int reg, int val)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
|
|
if (ret < 0)
|
|
goto restore_page_0;
|
|
|
|
ret = mv88e6xxx_mdio_write_indirect(chip, port, reg, val);
|
|
restore_page_0:
|
|
mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _mv88e6xxx_mdio_page_read(struct mv88e6xxx_chip *chip,
|
|
int port, int page, int reg)
|
|
{
|
|
int ret;
|
|
|
|
ret = mv88e6xxx_mdio_write_indirect(chip, port, 0x16, page);
|
|
if (ret < 0)
|
|
goto restore_page_0;
|
|
|
|
ret = mv88e6xxx_mdio_read_indirect(chip, port, reg);
|
|
restore_page_0:
|
|
mv88e6xxx_mdio_write_indirect(chip, port, 0x16, 0x0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_switch_reset(struct mv88e6xxx_chip *chip)
|
|
{
|
|
bool ppu_active = mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE);
|
|
u16 is_reset = (ppu_active ? 0x8800 : 0xc800);
|
|
struct gpio_desc *gpiod = chip->reset;
|
|
unsigned long timeout;
|
|
int ret;
|
|
int i;
|
|
|
|
/* Set all ports to the disabled state. */
|
|
for (i = 0; i < chip->info->num_ports; i++) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_PORT(i), PORT_CONTROL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(i), PORT_CONTROL,
|
|
ret & 0xfffc);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Wait for transmit queues to drain. */
|
|
usleep_range(2000, 4000);
|
|
|
|
/* If there is a gpio connected to the reset pin, toggle it */
|
|
if (gpiod) {
|
|
gpiod_set_value_cansleep(gpiod, 1);
|
|
usleep_range(10000, 20000);
|
|
gpiod_set_value_cansleep(gpiod, 0);
|
|
usleep_range(10000, 20000);
|
|
}
|
|
|
|
/* Reset the switch. Keep the PPU active if requested. The PPU
|
|
* needs to be active to support indirect phy register access
|
|
* through global registers 0x18 and 0x19.
|
|
*/
|
|
if (ppu_active)
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc000);
|
|
else
|
|
ret = _mv88e6xxx_reg_write(chip, REG_GLOBAL, 0x04, 0xc400);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Wait up to one second for reset to complete. */
|
|
timeout = jiffies + 1 * HZ;
|
|
while (time_before(jiffies, timeout)) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_GLOBAL, 0x00);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if ((ret & is_reset) == is_reset)
|
|
break;
|
|
usleep_range(1000, 2000);
|
|
}
|
|
if (time_after(jiffies, timeout))
|
|
ret = -ETIMEDOUT;
|
|
else
|
|
ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_power_on_serdes(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int ret;
|
|
|
|
ret = _mv88e6xxx_mdio_page_read(chip, REG_FIBER_SERDES,
|
|
PAGE_FIBER_SERDES, MII_BMCR);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret & BMCR_PDOWN) {
|
|
ret &= ~BMCR_PDOWN;
|
|
ret = _mv88e6xxx_mdio_page_write(chip, REG_FIBER_SERDES,
|
|
PAGE_FIBER_SERDES, MII_BMCR,
|
|
ret);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_port_read(struct mv88e6xxx_chip *chip, int port,
|
|
int reg, u16 *val)
|
|
{
|
|
int addr = chip->info->port_base_addr + port;
|
|
|
|
if (port >= chip->info->num_ports)
|
|
return -EINVAL;
|
|
|
|
return mv88e6xxx_read(chip, addr, reg, val);
|
|
}
|
|
|
|
static int mv88e6xxx_setup_port(struct mv88e6xxx_chip *chip, int port)
|
|
{
|
|
struct dsa_switch *ds = chip->ds;
|
|
int ret;
|
|
u16 reg;
|
|
|
|
if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
|
|
mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
|
|
mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
|
|
mv88e6xxx_6065_family(chip) || mv88e6xxx_6320_family(chip)) {
|
|
/* MAC Forcing register: don't force link, speed,
|
|
* duplex or flow control state to any particular
|
|
* values on physical ports, but force the CPU port
|
|
* and all DSA ports to their maximum bandwidth and
|
|
* full duplex.
|
|
*/
|
|
reg = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_PCS_CTRL);
|
|
if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) {
|
|
reg &= ~PORT_PCS_CTRL_UNFORCED;
|
|
reg |= PORT_PCS_CTRL_FORCE_LINK |
|
|
PORT_PCS_CTRL_LINK_UP |
|
|
PORT_PCS_CTRL_DUPLEX_FULL |
|
|
PORT_PCS_CTRL_FORCE_DUPLEX;
|
|
if (mv88e6xxx_6065_family(chip))
|
|
reg |= PORT_PCS_CTRL_100;
|
|
else
|
|
reg |= PORT_PCS_CTRL_1000;
|
|
} else {
|
|
reg |= PORT_PCS_CTRL_UNFORCED;
|
|
}
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_PCS_CTRL, reg);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Port Control: disable Drop-on-Unlock, disable Drop-on-Lock,
|
|
* disable Header mode, enable IGMP/MLD snooping, disable VLAN
|
|
* tunneling, determine priority by looking at 802.1p and IP
|
|
* priority fields (IP prio has precedence), and set STP state
|
|
* to Forwarding.
|
|
*
|
|
* If this is the CPU link, use DSA or EDSA tagging depending
|
|
* on which tagging mode was configured.
|
|
*
|
|
* If this is a link to another switch, use DSA tagging mode.
|
|
*
|
|
* If this is the upstream port for this switch, enable
|
|
* forwarding of unknown unicasts and multicasts.
|
|
*/
|
|
reg = 0;
|
|
if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
|
|
mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
|
|
mv88e6xxx_6095_family(chip) || mv88e6xxx_6065_family(chip) ||
|
|
mv88e6xxx_6185_family(chip) || mv88e6xxx_6320_family(chip))
|
|
reg = PORT_CONTROL_IGMP_MLD_SNOOP |
|
|
PORT_CONTROL_USE_TAG | PORT_CONTROL_USE_IP |
|
|
PORT_CONTROL_STATE_FORWARDING;
|
|
if (dsa_is_cpu_port(ds, port)) {
|
|
if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip))
|
|
reg |= PORT_CONTROL_DSA_TAG;
|
|
if (mv88e6xxx_6352_family(chip) ||
|
|
mv88e6xxx_6351_family(chip) ||
|
|
mv88e6xxx_6165_family(chip) ||
|
|
mv88e6xxx_6097_family(chip) ||
|
|
mv88e6xxx_6320_family(chip)) {
|
|
reg |= PORT_CONTROL_FRAME_ETHER_TYPE_DSA |
|
|
PORT_CONTROL_FORWARD_UNKNOWN |
|
|
PORT_CONTROL_FORWARD_UNKNOWN_MC;
|
|
}
|
|
|
|
if (mv88e6xxx_6352_family(chip) ||
|
|
mv88e6xxx_6351_family(chip) ||
|
|
mv88e6xxx_6165_family(chip) ||
|
|
mv88e6xxx_6097_family(chip) ||
|
|
mv88e6xxx_6095_family(chip) ||
|
|
mv88e6xxx_6065_family(chip) ||
|
|
mv88e6xxx_6185_family(chip) ||
|
|
mv88e6xxx_6320_family(chip)) {
|
|
reg |= PORT_CONTROL_EGRESS_ADD_TAG;
|
|
}
|
|
}
|
|
if (dsa_is_dsa_port(ds, port)) {
|
|
if (mv88e6xxx_6095_family(chip) ||
|
|
mv88e6xxx_6185_family(chip))
|
|
reg |= PORT_CONTROL_DSA_TAG;
|
|
if (mv88e6xxx_6352_family(chip) ||
|
|
mv88e6xxx_6351_family(chip) ||
|
|
mv88e6xxx_6165_family(chip) ||
|
|
mv88e6xxx_6097_family(chip) ||
|
|
mv88e6xxx_6320_family(chip)) {
|
|
reg |= PORT_CONTROL_FRAME_MODE_DSA;
|
|
}
|
|
|
|
if (port == dsa_upstream_port(ds))
|
|
reg |= PORT_CONTROL_FORWARD_UNKNOWN |
|
|
PORT_CONTROL_FORWARD_UNKNOWN_MC;
|
|
}
|
|
if (reg) {
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_CONTROL, reg);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* If this port is connected to a SerDes, make sure the SerDes is not
|
|
* powered down.
|
|
*/
|
|
if (mv88e6xxx_6352_family(chip)) {
|
|
ret = _mv88e6xxx_reg_read(chip, REG_PORT(port), PORT_STATUS);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret &= PORT_STATUS_CMODE_MASK;
|
|
if ((ret == PORT_STATUS_CMODE_100BASE_X) ||
|
|
(ret == PORT_STATUS_CMODE_1000BASE_X) ||
|
|
(ret == PORT_STATUS_CMODE_SGMII)) {
|
|
ret = mv88e6xxx_power_on_serdes(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Port Control 2: don't force a good FCS, set the maximum frame size to
|
|
* 10240 bytes, disable 802.1q tags checking, don't discard tagged or
|
|
* untagged frames on this port, do a destination address lookup on all
|
|
* received packets as usual, disable ARP mirroring and don't send a
|
|
* copy of all transmitted/received frames on this port to the CPU.
|
|
*/
|
|
reg = 0;
|
|
if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
|
|
mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
|
|
mv88e6xxx_6095_family(chip) || mv88e6xxx_6320_family(chip) ||
|
|
mv88e6xxx_6185_family(chip))
|
|
reg = PORT_CONTROL_2_MAP_DA;
|
|
|
|
if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
|
|
mv88e6xxx_6165_family(chip) || mv88e6xxx_6320_family(chip))
|
|
reg |= PORT_CONTROL_2_JUMBO_10240;
|
|
|
|
if (mv88e6xxx_6095_family(chip) || mv88e6xxx_6185_family(chip)) {
|
|
/* Set the upstream port this port should use */
|
|
reg |= dsa_upstream_port(ds);
|
|
/* enable forwarding of unknown multicast addresses to
|
|
* the upstream port
|
|
*/
|
|
if (port == dsa_upstream_port(ds))
|
|
reg |= PORT_CONTROL_2_FORWARD_UNKNOWN;
|
|
}
|
|
|
|
reg |= PORT_CONTROL_2_8021Q_DISABLED;
|
|
|
|
if (reg) {
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_CONTROL_2, reg);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Port Association Vector: when learning source addresses
|
|
* of packets, add the address to the address database using
|
|
* a port bitmap that has only the bit for this port set and
|
|
* the other bits clear.
|
|
*/
|
|
reg = 1 << port;
|
|
/* Disable learning for CPU port */
|
|
if (dsa_is_cpu_port(ds, port))
|
|
reg = 0;
|
|
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_ASSOC_VECTOR,
|
|
reg);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Egress rate control 2: disable egress rate control. */
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_RATE_CONTROL_2,
|
|
0x0000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
|
|
mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
|
|
mv88e6xxx_6320_family(chip)) {
|
|
/* Do not limit the period of time that this port can
|
|
* be paused for by the remote end or the period of
|
|
* time that this port can pause the remote end.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_PAUSE_CTRL, 0x0000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Port ATU control: disable limiting the number of
|
|
* address database entries that this port is allowed
|
|
* to use.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_ATU_CONTROL, 0x0000);
|
|
/* Priority Override: disable DA, SA and VTU priority
|
|
* override.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_PRI_OVERRIDE, 0x0000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Port Ethertype: use the Ethertype DSA Ethertype
|
|
* value.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_ETH_TYPE, ETH_P_EDSA);
|
|
if (ret)
|
|
return ret;
|
|
/* Tag Remap: use an identity 802.1p prio -> switch
|
|
* prio mapping.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_TAG_REGMAP_0123, 0x3210);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Tag Remap 2: use an identity 802.1p prio -> switch
|
|
* prio mapping.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_TAG_REGMAP_4567, 0x7654);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (mv88e6xxx_6352_family(chip) || mv88e6xxx_6351_family(chip) ||
|
|
mv88e6xxx_6165_family(chip) || mv88e6xxx_6097_family(chip) ||
|
|
mv88e6xxx_6185_family(chip) || mv88e6xxx_6095_family(chip) ||
|
|
mv88e6xxx_6320_family(chip)) {
|
|
/* Rate Control: disable ingress rate limiting. */
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port),
|
|
PORT_RATE_CONTROL, 0x0001);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Port Control 1: disable trunking, disable sending
|
|
* learning messages to this port.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_CONTROL_1,
|
|
0x0000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Port based VLAN map: give each port the same default address
|
|
* database, and allow bidirectional communication between the
|
|
* CPU and DSA port(s), and the other ports.
|
|
*/
|
|
ret = _mv88e6xxx_port_fid_set(chip, port, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = _mv88e6xxx_port_based_vlan_map(chip, port);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Default VLAN ID and priority: don't set a default VLAN
|
|
* ID, and set the default packet priority to zero.
|
|
*/
|
|
ret = _mv88e6xxx_reg_write(chip, REG_PORT(port), PORT_DEFAULT_VLAN,
|
|
0x0000);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_g1_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_01,
|
|
(addr[0] << 8) | addr[1]);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_23,
|
|
(addr[2] << 8) | addr[3]);
|
|
if (err)
|
|
return err;
|
|
|
|
return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_MAC_45,
|
|
(addr[4] << 8) | addr[5]);
|
|
}
|
|
|
|
static int mv88e6xxx_g1_set_age_time(struct mv88e6xxx_chip *chip,
|
|
unsigned int msecs)
|
|
{
|
|
const unsigned int coeff = chip->info->age_time_coeff;
|
|
const unsigned int min = 0x01 * coeff;
|
|
const unsigned int max = 0xff * coeff;
|
|
u8 age_time;
|
|
u16 val;
|
|
int err;
|
|
|
|
if (msecs < min || msecs > max)
|
|
return -ERANGE;
|
|
|
|
/* Round to nearest multiple of coeff */
|
|
age_time = (msecs + coeff / 2) / coeff;
|
|
|
|
err = mv88e6xxx_read(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
/* AgeTime is 11:4 bits */
|
|
val &= ~0xff0;
|
|
val |= age_time << 4;
|
|
|
|
return mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL, val);
|
|
}
|
|
|
|
static int mv88e6xxx_set_ageing_time(struct dsa_switch *ds,
|
|
unsigned int ageing_time)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int err;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
err = mv88e6xxx_g1_set_age_time(chip, ageing_time);
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mv88e6xxx_g1_setup(struct mv88e6xxx_chip *chip)
|
|
{
|
|
struct dsa_switch *ds = chip->ds;
|
|
u32 upstream_port = dsa_upstream_port(ds);
|
|
u16 reg;
|
|
int err;
|
|
|
|
/* Enable the PHY Polling Unit if present, don't discard any packets,
|
|
* and mask all interrupt sources.
|
|
*/
|
|
reg = 0;
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU) ||
|
|
mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU_ACTIVE))
|
|
reg |= GLOBAL_CONTROL_PPU_ENABLE;
|
|
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL, reg);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Configure the upstream port, and configure it as the port to which
|
|
* ingress and egress and ARP monitor frames are to be sent.
|
|
*/
|
|
reg = upstream_port << GLOBAL_MONITOR_CONTROL_INGRESS_SHIFT |
|
|
upstream_port << GLOBAL_MONITOR_CONTROL_EGRESS_SHIFT |
|
|
upstream_port << GLOBAL_MONITOR_CONTROL_ARP_SHIFT;
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_MONITOR_CONTROL,
|
|
reg);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Disable remote management, and set the switch's DSA device number. */
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_CONTROL_2,
|
|
GLOBAL_CONTROL_2_MULTIPLE_CASCADE |
|
|
(ds->index & 0x1f));
|
|
if (err)
|
|
return err;
|
|
|
|
/* Clear all the VTU and STU entries */
|
|
err = _mv88e6xxx_vtu_stu_flush(chip);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* Set the default address aging time to 5 minutes, and
|
|
* enable address learn messages to be sent to all message
|
|
* ports.
|
|
*/
|
|
err = mv88e6xxx_write(chip, REG_GLOBAL, GLOBAL_ATU_CONTROL,
|
|
GLOBAL_ATU_CONTROL_LEARN2ALL);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g1_set_age_time(chip, 300000);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Clear all ATU entries */
|
|
err = _mv88e6xxx_atu_flush(chip, 0, true);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Configure the IP ToS mapping registers. */
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_0, 0x0000);
|
|
if (err)
|
|
return err;
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_1, 0x0000);
|
|
if (err)
|
|
return err;
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_2, 0x5555);
|
|
if (err)
|
|
return err;
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_3, 0x5555);
|
|
if (err)
|
|
return err;
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_4, 0xaaaa);
|
|
if (err)
|
|
return err;
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_5, 0xaaaa);
|
|
if (err)
|
|
return err;
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_6, 0xffff);
|
|
if (err)
|
|
return err;
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IP_PRI_7, 0xffff);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Configure the IEEE 802.1p priority mapping register. */
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_IEEE_PRI, 0xfa41);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Clear the statistics counters for all ports */
|
|
err = _mv88e6xxx_reg_write(chip, REG_GLOBAL, GLOBAL_STATS_OP,
|
|
GLOBAL_STATS_OP_FLUSH_ALL);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Wait for the flush to complete. */
|
|
err = _mv88e6xxx_stats_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_g2_device_mapping_write(struct mv88e6xxx_chip *chip,
|
|
int target, int port)
|
|
{
|
|
u16 val = (target << 8) | (port & 0xf);
|
|
|
|
return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_DEVICE_MAPPING, val);
|
|
}
|
|
|
|
static int mv88e6xxx_g2_set_device_mapping(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int target, port;
|
|
int err;
|
|
|
|
/* Initialize the routing port to the 32 possible target devices */
|
|
for (target = 0; target < 32; ++target) {
|
|
port = 0xf;
|
|
|
|
if (target < DSA_MAX_SWITCHES) {
|
|
port = chip->ds->rtable[target];
|
|
if (port == DSA_RTABLE_NONE)
|
|
port = 0xf;
|
|
}
|
|
|
|
err = mv88e6xxx_g2_device_mapping_write(chip, target, port);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mv88e6xxx_g2_trunk_mask_write(struct mv88e6xxx_chip *chip, int num,
|
|
bool hask, u16 mask)
|
|
{
|
|
const u16 port_mask = BIT(chip->info->num_ports) - 1;
|
|
u16 val = (num << 12) | (mask & port_mask);
|
|
|
|
if (hask)
|
|
val |= GLOBAL2_TRUNK_MASK_HASK;
|
|
|
|
return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MASK, val);
|
|
}
|
|
|
|
static int mv88e6xxx_g2_trunk_mapping_write(struct mv88e6xxx_chip *chip, int id,
|
|
u16 map)
|
|
{
|
|
const u16 port_mask = BIT(chip->info->num_ports) - 1;
|
|
u16 val = (id << 11) | (map & port_mask);
|
|
|
|
return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_TRUNK_MAPPING, val);
|
|
}
|
|
|
|
static int mv88e6xxx_g2_clear_trunk(struct mv88e6xxx_chip *chip)
|
|
{
|
|
const u16 port_mask = BIT(chip->info->num_ports) - 1;
|
|
int i, err;
|
|
|
|
/* Clear all eight possible Trunk Mask vectors */
|
|
for (i = 0; i < 8; ++i) {
|
|
err = mv88e6xxx_g2_trunk_mask_write(chip, i, false, port_mask);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Clear all sixteen possible Trunk ID routing vectors */
|
|
for (i = 0; i < 16; ++i) {
|
|
err = mv88e6xxx_g2_trunk_mapping_write(chip, i, 0);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_g2_clear_irl(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int port, err;
|
|
|
|
/* Init all Ingress Rate Limit resources of all ports */
|
|
for (port = 0; port < chip->info->num_ports; ++port) {
|
|
/* XXX newer chips (like 88E6390) have different 2-bit ops */
|
|
err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
|
|
GLOBAL2_IRL_CMD_OP_INIT_ALL |
|
|
(port << 8));
|
|
if (err)
|
|
break;
|
|
|
|
/* Wait for the operation to complete */
|
|
err = _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_IRL_CMD,
|
|
GLOBAL2_IRL_CMD_BUSY);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/* Indirect write to the Switch MAC/WoL/WoF register */
|
|
static int mv88e6xxx_g2_switch_mac_write(struct mv88e6xxx_chip *chip,
|
|
unsigned int pointer, u8 data)
|
|
{
|
|
u16 val = (pointer << 8) | data;
|
|
|
|
return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MAC, val);
|
|
}
|
|
|
|
static int mv88e6xxx_g2_set_switch_mac(struct mv88e6xxx_chip *chip, u8 *addr)
|
|
{
|
|
int i, err;
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
err = mv88e6xxx_g2_switch_mac_write(chip, i, addr[i]);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mv88e6xxx_g2_pot_write(struct mv88e6xxx_chip *chip, int pointer,
|
|
u8 data)
|
|
{
|
|
u16 val = (pointer << 8) | (data & 0x7);
|
|
|
|
return mv88e6xxx_update(chip, REG_GLOBAL2, GLOBAL2_PRIO_OVERRIDE, val);
|
|
}
|
|
|
|
static int mv88e6xxx_g2_clear_pot(struct mv88e6xxx_chip *chip)
|
|
{
|
|
int i, err;
|
|
|
|
/* Clear all sixteen possible Priority Override entries */
|
|
for (i = 0; i < 16; i++) {
|
|
err = mv88e6xxx_g2_pot_write(chip, i, 0);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mv88e6xxx_g2_eeprom_wait(struct mv88e6xxx_chip *chip)
|
|
{
|
|
return _mv88e6xxx_wait(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD,
|
|
GLOBAL2_EEPROM_CMD_BUSY |
|
|
GLOBAL2_EEPROM_CMD_RUNNING);
|
|
}
|
|
|
|
static int mv88e6xxx_g2_eeprom_cmd(struct mv88e6xxx_chip *chip, u16 cmd)
|
|
{
|
|
int err;
|
|
|
|
err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, cmd);
|
|
if (err)
|
|
return err;
|
|
|
|
return mv88e6xxx_g2_eeprom_wait(chip);
|
|
}
|
|
|
|
static int mv88e6xxx_g2_eeprom_read16(struct mv88e6xxx_chip *chip,
|
|
u8 addr, u16 *data)
|
|
{
|
|
u16 cmd = GLOBAL2_EEPROM_CMD_OP_READ | addr;
|
|
int err;
|
|
|
|
err = mv88e6xxx_g2_eeprom_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_g2_eeprom_cmd(chip, cmd);
|
|
if (err)
|
|
return err;
|
|
|
|
return mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
|
|
}
|
|
|
|
static int mv88e6xxx_g2_eeprom_write16(struct mv88e6xxx_chip *chip,
|
|
u8 addr, u16 data)
|
|
{
|
|
u16 cmd = GLOBAL2_EEPROM_CMD_OP_WRITE | addr;
|
|
int err;
|
|
|
|
err = mv88e6xxx_g2_eeprom_wait(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_EEPROM_DATA, data);
|
|
if (err)
|
|
return err;
|
|
|
|
return mv88e6xxx_g2_eeprom_cmd(chip, cmd);
|
|
}
|
|
|
|
static int mv88e6xxx_g2_setup(struct mv88e6xxx_chip *chip)
|
|
{
|
|
u16 reg;
|
|
int err;
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X)) {
|
|
/* Consider the frames with reserved multicast destination
|
|
* addresses matching 01:80:c2:00:00:2x as MGMT.
|
|
*/
|
|
err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_2X,
|
|
0xffff);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X)) {
|
|
/* Consider the frames with reserved multicast destination
|
|
* addresses matching 01:80:c2:00:00:0x as MGMT.
|
|
*/
|
|
err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_MGMT_EN_0X,
|
|
0xffff);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Ignore removed tag data on doubly tagged packets, disable
|
|
* flow control messages, force flow control priority to the
|
|
* highest, and send all special multicast frames to the CPU
|
|
* port at the highest priority.
|
|
*/
|
|
reg = GLOBAL2_SWITCH_MGMT_FORCE_FLOW_CTRL_PRI | (0x7 << 4);
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_0X) ||
|
|
mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_MGMT_EN_2X))
|
|
reg |= GLOBAL2_SWITCH_MGMT_RSVD2CPU | 0x7;
|
|
err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_SWITCH_MGMT, reg);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Program the DSA routing table. */
|
|
err = mv88e6xxx_g2_set_device_mapping(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Clear all trunk masks and mapping. */
|
|
err = mv88e6xxx_g2_clear_trunk(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_IRL)) {
|
|
/* Disable ingress rate limiting by resetting all per port
|
|
* ingress rate limit resources to their initial state.
|
|
*/
|
|
err = mv88e6xxx_g2_clear_irl(chip);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_PVT)) {
|
|
/* Initialize Cross-chip Port VLAN Table to reset defaults */
|
|
err = mv88e6xxx_write(chip, REG_GLOBAL2, GLOBAL2_PVT_ADDR,
|
|
GLOBAL2_PVT_ADDR_OP_INIT_ONES);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_POT)) {
|
|
/* Clear the priority override table. */
|
|
err = mv88e6xxx_g2_clear_pot(chip);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_setup(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int err;
|
|
int i;
|
|
|
|
chip->ds = ds;
|
|
ds->slave_mii_bus = chip->mdio_bus;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
err = mv88e6xxx_switch_reset(chip);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
/* Setup Switch Port Registers */
|
|
for (i = 0; i < chip->info->num_ports; i++) {
|
|
err = mv88e6xxx_setup_port(chip, i);
|
|
if (err)
|
|
goto unlock;
|
|
}
|
|
|
|
/* Setup Switch Global 1 Registers */
|
|
err = mv88e6xxx_g1_setup(chip);
|
|
if (err)
|
|
goto unlock;
|
|
|
|
/* Setup Switch Global 2 Registers */
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_GLOBAL2)) {
|
|
err = mv88e6xxx_g2_setup(chip);
|
|
if (err)
|
|
goto unlock;
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mv88e6xxx_set_addr(struct dsa_switch *ds, u8 *addr)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int err;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
/* Has an indirect Switch MAC/WoL/WoF register in Global 2? */
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_G2_SWITCH_MAC))
|
|
err = mv88e6xxx_g2_set_switch_mac(chip, addr);
|
|
else
|
|
err = mv88e6xxx_g1_set_switch_mac(chip, addr);
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_DSA_HWMON
|
|
static int mv88e6xxx_mdio_page_read(struct dsa_switch *ds, int port, int page,
|
|
int reg)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
ret = _mv88e6xxx_mdio_page_read(chip, port, page, reg);
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_page_write(struct dsa_switch *ds, int port, int page,
|
|
int reg, int val)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int ret;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
ret = _mv88e6xxx_mdio_page_write(chip, port, page, reg, val);
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static int mv88e6xxx_port_to_mdio_addr(struct mv88e6xxx_chip *chip, int port)
|
|
{
|
|
if (port >= 0 && port < chip->info->num_ports)
|
|
return port;
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_read(struct mii_bus *bus, int port, int regnum)
|
|
{
|
|
struct mv88e6xxx_chip *chip = bus->priv;
|
|
int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return 0xffff;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
|
|
ret = mv88e6xxx_mdio_read_ppu(chip, addr, regnum);
|
|
else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
|
|
ret = mv88e6xxx_mdio_read_indirect(chip, addr, regnum);
|
|
else
|
|
ret = mv88e6xxx_mdio_read_direct(chip, addr, regnum);
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_write(struct mii_bus *bus, int port, int regnum,
|
|
u16 val)
|
|
{
|
|
struct mv88e6xxx_chip *chip = bus->priv;
|
|
int addr = mv88e6xxx_port_to_mdio_addr(chip, port);
|
|
int ret;
|
|
|
|
if (addr < 0)
|
|
return 0xffff;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
|
|
ret = mv88e6xxx_mdio_write_ppu(chip, addr, regnum, val);
|
|
else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_SMI_PHY))
|
|
ret = mv88e6xxx_mdio_write_indirect(chip, addr, regnum, val);
|
|
else
|
|
ret = mv88e6xxx_mdio_write_direct(chip, addr, regnum, val);
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e6xxx_mdio_register(struct mv88e6xxx_chip *chip,
|
|
struct device_node *np)
|
|
{
|
|
static int index;
|
|
struct mii_bus *bus;
|
|
int err;
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_PPU))
|
|
mv88e6xxx_ppu_state_init(chip);
|
|
|
|
if (np)
|
|
chip->mdio_np = of_get_child_by_name(np, "mdio");
|
|
|
|
bus = devm_mdiobus_alloc(chip->dev);
|
|
if (!bus)
|
|
return -ENOMEM;
|
|
|
|
bus->priv = (void *)chip;
|
|
if (np) {
|
|
bus->name = np->full_name;
|
|
snprintf(bus->id, MII_BUS_ID_SIZE, "%s", np->full_name);
|
|
} else {
|
|
bus->name = "mv88e6xxx SMI";
|
|
snprintf(bus->id, MII_BUS_ID_SIZE, "mv88e6xxx-%d", index++);
|
|
}
|
|
|
|
bus->read = mv88e6xxx_mdio_read;
|
|
bus->write = mv88e6xxx_mdio_write;
|
|
bus->parent = chip->dev;
|
|
|
|
if (chip->mdio_np)
|
|
err = of_mdiobus_register(bus, chip->mdio_np);
|
|
else
|
|
err = mdiobus_register(bus);
|
|
if (err) {
|
|
dev_err(chip->dev, "Cannot register MDIO bus (%d)\n", err);
|
|
goto out;
|
|
}
|
|
chip->mdio_bus = bus;
|
|
|
|
return 0;
|
|
|
|
out:
|
|
if (chip->mdio_np)
|
|
of_node_put(chip->mdio_np);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void mv88e6xxx_mdio_unregister(struct mv88e6xxx_chip *chip)
|
|
|
|
{
|
|
struct mii_bus *bus = chip->mdio_bus;
|
|
|
|
mdiobus_unregister(bus);
|
|
|
|
if (chip->mdio_np)
|
|
of_node_put(chip->mdio_np);
|
|
}
|
|
|
|
#ifdef CONFIG_NET_DSA_HWMON
|
|
|
|
static int mv88e61xx_get_temp(struct dsa_switch *ds, int *temp)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int ret;
|
|
int val;
|
|
|
|
*temp = 0;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x6);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/* Enable temperature sensor */
|
|
ret = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret | (1 << 5));
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
/* Wait for temperature to stabilize */
|
|
usleep_range(10000, 12000);
|
|
|
|
val = mv88e6xxx_mdio_read_direct(chip, 0x0, 0x1a);
|
|
if (val < 0) {
|
|
ret = val;
|
|
goto error;
|
|
}
|
|
|
|
/* Disable temperature sensor */
|
|
ret = mv88e6xxx_mdio_write_direct(chip, 0x0, 0x1a, ret & ~(1 << 5));
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
*temp = ((val & 0x1f) - 5) * 5;
|
|
|
|
error:
|
|
mv88e6xxx_mdio_write_direct(chip, 0x0, 0x16, 0x0);
|
|
mutex_unlock(&chip->reg_lock);
|
|
return ret;
|
|
}
|
|
|
|
static int mv88e63xx_get_temp(struct dsa_switch *ds, int *temp)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
|
|
int ret;
|
|
|
|
*temp = 0;
|
|
|
|
ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 27);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*temp = (ret & 0xff) - 25;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_get_temp(struct dsa_switch *ds, int *temp)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (mv88e6xxx_6320_family(chip) || mv88e6xxx_6352_family(chip))
|
|
return mv88e63xx_get_temp(ds, temp);
|
|
|
|
return mv88e61xx_get_temp(ds, temp);
|
|
}
|
|
|
|
static int mv88e6xxx_get_temp_limit(struct dsa_switch *ds, int *temp)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
|
|
return -EOPNOTSUPP;
|
|
|
|
*temp = 0;
|
|
|
|
ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*temp = (((ret >> 8) & 0x1f) * 5) - 25;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_set_temp_limit(struct dsa_switch *ds, int temp)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
|
|
return -EOPNOTSUPP;
|
|
|
|
ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
|
|
if (ret < 0)
|
|
return ret;
|
|
temp = clamp_val(DIV_ROUND_CLOSEST(temp, 5) + 5, 0, 0x1f);
|
|
return mv88e6xxx_mdio_page_write(ds, phy, 6, 26,
|
|
(ret & 0xe0ff) | (temp << 8));
|
|
}
|
|
|
|
static int mv88e6xxx_get_temp_alarm(struct dsa_switch *ds, bool *alarm)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int phy = mv88e6xxx_6320_family(chip) ? 3 : 0;
|
|
int ret;
|
|
|
|
if (!mv88e6xxx_has(chip, MV88E6XXX_FLAG_TEMP_LIMIT))
|
|
return -EOPNOTSUPP;
|
|
|
|
*alarm = false;
|
|
|
|
ret = mv88e6xxx_mdio_page_read(ds, phy, 6, 26);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
*alarm = !!(ret & 0x40);
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NET_DSA_HWMON */
|
|
|
|
static int mv88e6xxx_get_eeprom_len(struct dsa_switch *ds)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
|
|
return chip->eeprom_len;
|
|
}
|
|
|
|
static int mv88e6xxx_get_eeprom16(struct mv88e6xxx_chip *chip,
|
|
struct ethtool_eeprom *eeprom, u8 *data)
|
|
{
|
|
unsigned int offset = eeprom->offset;
|
|
unsigned int len = eeprom->len;
|
|
u16 val;
|
|
int err;
|
|
|
|
eeprom->len = 0;
|
|
|
|
if (offset & 1) {
|
|
err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
*data++ = (val >> 8) & 0xff;
|
|
|
|
offset++;
|
|
len--;
|
|
eeprom->len++;
|
|
}
|
|
|
|
while (len >= 2) {
|
|
err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
*data++ = val & 0xff;
|
|
*data++ = (val >> 8) & 0xff;
|
|
|
|
offset += 2;
|
|
len -= 2;
|
|
eeprom->len += 2;
|
|
}
|
|
|
|
if (len) {
|
|
err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
*data++ = val & 0xff;
|
|
|
|
offset++;
|
|
len--;
|
|
eeprom->len++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_get_eeprom(struct dsa_switch *ds,
|
|
struct ethtool_eeprom *eeprom, u8 *data)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int err;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
|
|
err = mv88e6xxx_get_eeprom16(chip, eeprom, data);
|
|
else
|
|
err = -EOPNOTSUPP;
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
eeprom->magic = 0xc3ec4951;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_set_eeprom16(struct mv88e6xxx_chip *chip,
|
|
struct ethtool_eeprom *eeprom, u8 *data)
|
|
{
|
|
unsigned int offset = eeprom->offset;
|
|
unsigned int len = eeprom->len;
|
|
u16 val;
|
|
int err;
|
|
|
|
/* Ensure the RO WriteEn bit is set */
|
|
err = mv88e6xxx_read(chip, REG_GLOBAL2, GLOBAL2_EEPROM_CMD, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!(val & GLOBAL2_EEPROM_CMD_WRITE_EN))
|
|
return -EROFS;
|
|
|
|
eeprom->len = 0;
|
|
|
|
if (offset & 1) {
|
|
err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
val = (*data++ << 8) | (val & 0xff);
|
|
|
|
err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
|
|
if (err)
|
|
return err;
|
|
|
|
offset++;
|
|
len--;
|
|
eeprom->len++;
|
|
}
|
|
|
|
while (len >= 2) {
|
|
val = *data++;
|
|
val |= *data++ << 8;
|
|
|
|
err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
|
|
if (err)
|
|
return err;
|
|
|
|
offset += 2;
|
|
len -= 2;
|
|
eeprom->len += 2;
|
|
}
|
|
|
|
if (len) {
|
|
err = mv88e6xxx_g2_eeprom_read16(chip, offset >> 1, &val);
|
|
if (err)
|
|
return err;
|
|
|
|
val = (val & 0xff00) | *data++;
|
|
|
|
err = mv88e6xxx_g2_eeprom_write16(chip, offset >> 1, val);
|
|
if (err)
|
|
return err;
|
|
|
|
offset++;
|
|
len--;
|
|
eeprom->len++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mv88e6xxx_set_eeprom(struct dsa_switch *ds,
|
|
struct ethtool_eeprom *eeprom, u8 *data)
|
|
{
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
int err;
|
|
|
|
if (eeprom->magic != 0xc3ec4951)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16))
|
|
err = mv88e6xxx_set_eeprom16(chip, eeprom, data);
|
|
else
|
|
err = -EOPNOTSUPP;
|
|
|
|
mutex_unlock(&chip->reg_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
static const struct mv88e6xxx_info mv88e6xxx_table[] = {
|
|
[MV88E6085] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6085,
|
|
.family = MV88E6XXX_FAMILY_6097,
|
|
.name = "Marvell 88E6085",
|
|
.num_databases = 4096,
|
|
.num_ports = 10,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6097,
|
|
},
|
|
|
|
[MV88E6095] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6095,
|
|
.family = MV88E6XXX_FAMILY_6095,
|
|
.name = "Marvell 88E6095/88E6095F",
|
|
.num_databases = 256,
|
|
.num_ports = 11,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6095,
|
|
},
|
|
|
|
[MV88E6123] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6123,
|
|
.family = MV88E6XXX_FAMILY_6165,
|
|
.name = "Marvell 88E6123",
|
|
.num_databases = 4096,
|
|
.num_ports = 3,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6165,
|
|
},
|
|
|
|
[MV88E6131] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6131,
|
|
.family = MV88E6XXX_FAMILY_6185,
|
|
.name = "Marvell 88E6131",
|
|
.num_databases = 256,
|
|
.num_ports = 8,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6185,
|
|
},
|
|
|
|
[MV88E6161] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6161,
|
|
.family = MV88E6XXX_FAMILY_6165,
|
|
.name = "Marvell 88E6161",
|
|
.num_databases = 4096,
|
|
.num_ports = 6,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6165,
|
|
},
|
|
|
|
[MV88E6165] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6165,
|
|
.family = MV88E6XXX_FAMILY_6165,
|
|
.name = "Marvell 88E6165",
|
|
.num_databases = 4096,
|
|
.num_ports = 6,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6165,
|
|
},
|
|
|
|
[MV88E6171] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6171,
|
|
.family = MV88E6XXX_FAMILY_6351,
|
|
.name = "Marvell 88E6171",
|
|
.num_databases = 4096,
|
|
.num_ports = 7,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6351,
|
|
},
|
|
|
|
[MV88E6172] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6172,
|
|
.family = MV88E6XXX_FAMILY_6352,
|
|
.name = "Marvell 88E6172",
|
|
.num_databases = 4096,
|
|
.num_ports = 7,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6352,
|
|
},
|
|
|
|
[MV88E6175] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6175,
|
|
.family = MV88E6XXX_FAMILY_6351,
|
|
.name = "Marvell 88E6175",
|
|
.num_databases = 4096,
|
|
.num_ports = 7,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6351,
|
|
},
|
|
|
|
[MV88E6176] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6176,
|
|
.family = MV88E6XXX_FAMILY_6352,
|
|
.name = "Marvell 88E6176",
|
|
.num_databases = 4096,
|
|
.num_ports = 7,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6352,
|
|
},
|
|
|
|
[MV88E6185] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6185,
|
|
.family = MV88E6XXX_FAMILY_6185,
|
|
.name = "Marvell 88E6185",
|
|
.num_databases = 256,
|
|
.num_ports = 10,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6185,
|
|
},
|
|
|
|
[MV88E6240] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6240,
|
|
.family = MV88E6XXX_FAMILY_6352,
|
|
.name = "Marvell 88E6240",
|
|
.num_databases = 4096,
|
|
.num_ports = 7,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6352,
|
|
},
|
|
|
|
[MV88E6320] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6320,
|
|
.family = MV88E6XXX_FAMILY_6320,
|
|
.name = "Marvell 88E6320",
|
|
.num_databases = 4096,
|
|
.num_ports = 7,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6320,
|
|
},
|
|
|
|
[MV88E6321] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6321,
|
|
.family = MV88E6XXX_FAMILY_6320,
|
|
.name = "Marvell 88E6321",
|
|
.num_databases = 4096,
|
|
.num_ports = 7,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6320,
|
|
},
|
|
|
|
[MV88E6350] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6350,
|
|
.family = MV88E6XXX_FAMILY_6351,
|
|
.name = "Marvell 88E6350",
|
|
.num_databases = 4096,
|
|
.num_ports = 7,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6351,
|
|
},
|
|
|
|
[MV88E6351] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6351,
|
|
.family = MV88E6XXX_FAMILY_6351,
|
|
.name = "Marvell 88E6351",
|
|
.num_databases = 4096,
|
|
.num_ports = 7,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6351,
|
|
},
|
|
|
|
[MV88E6352] = {
|
|
.prod_num = PORT_SWITCH_ID_PROD_NUM_6352,
|
|
.family = MV88E6XXX_FAMILY_6352,
|
|
.name = "Marvell 88E6352",
|
|
.num_databases = 4096,
|
|
.num_ports = 7,
|
|
.port_base_addr = 0x10,
|
|
.age_time_coeff = 15000,
|
|
.flags = MV88E6XXX_FLAGS_FAMILY_6352,
|
|
},
|
|
};
|
|
|
|
static const struct mv88e6xxx_info *mv88e6xxx_lookup_info(unsigned int prod_num)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(mv88e6xxx_table); ++i)
|
|
if (mv88e6xxx_table[i].prod_num == prod_num)
|
|
return &mv88e6xxx_table[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int mv88e6xxx_detect(struct mv88e6xxx_chip *chip)
|
|
{
|
|
const struct mv88e6xxx_info *info;
|
|
unsigned int prod_num, rev;
|
|
u16 id;
|
|
int err;
|
|
|
|
mutex_lock(&chip->reg_lock);
|
|
err = mv88e6xxx_port_read(chip, 0, PORT_SWITCH_ID, &id);
|
|
mutex_unlock(&chip->reg_lock);
|
|
if (err)
|
|
return err;
|
|
|
|
prod_num = (id & 0xfff0) >> 4;
|
|
rev = id & 0x000f;
|
|
|
|
info = mv88e6xxx_lookup_info(prod_num);
|
|
if (!info)
|
|
return -ENODEV;
|
|
|
|
/* Update the compatible info with the probed one */
|
|
chip->info = info;
|
|
|
|
dev_info(chip->dev, "switch 0x%x detected: %s, revision %u\n",
|
|
chip->info->prod_num, chip->info->name, rev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct mv88e6xxx_chip *mv88e6xxx_alloc_chip(struct device *dev)
|
|
{
|
|
struct mv88e6xxx_chip *chip;
|
|
|
|
chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
|
|
if (!chip)
|
|
return NULL;
|
|
|
|
chip->dev = dev;
|
|
|
|
mutex_init(&chip->reg_lock);
|
|
|
|
return chip;
|
|
}
|
|
|
|
static int mv88e6xxx_smi_init(struct mv88e6xxx_chip *chip,
|
|
struct mii_bus *bus, int sw_addr)
|
|
{
|
|
/* ADDR[0] pin is unavailable externally and considered zero */
|
|
if (sw_addr & 0x1)
|
|
return -EINVAL;
|
|
|
|
if (sw_addr == 0)
|
|
chip->smi_ops = &mv88e6xxx_smi_single_chip_ops;
|
|
else if (mv88e6xxx_has(chip, MV88E6XXX_FLAG_MULTI_CHIP))
|
|
chip->smi_ops = &mv88e6xxx_smi_multi_chip_ops;
|
|
else
|
|
return -EINVAL;
|
|
|
|
chip->bus = bus;
|
|
chip->sw_addr = sw_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const char *mv88e6xxx_drv_probe(struct device *dsa_dev,
|
|
struct device *host_dev, int sw_addr,
|
|
void **priv)
|
|
{
|
|
struct mv88e6xxx_chip *chip;
|
|
struct mii_bus *bus;
|
|
int err;
|
|
|
|
bus = dsa_host_dev_to_mii_bus(host_dev);
|
|
if (!bus)
|
|
return NULL;
|
|
|
|
chip = mv88e6xxx_alloc_chip(dsa_dev);
|
|
if (!chip)
|
|
return NULL;
|
|
|
|
/* Legacy SMI probing will only support chips similar to 88E6085 */
|
|
chip->info = &mv88e6xxx_table[MV88E6085];
|
|
|
|
err = mv88e6xxx_smi_init(chip, bus, sw_addr);
|
|
if (err)
|
|
goto free;
|
|
|
|
err = mv88e6xxx_detect(chip);
|
|
if (err)
|
|
goto free;
|
|
|
|
err = mv88e6xxx_mdio_register(chip, NULL);
|
|
if (err)
|
|
goto free;
|
|
|
|
*priv = chip;
|
|
|
|
return chip->info->name;
|
|
free:
|
|
devm_kfree(dsa_dev, chip);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct dsa_switch_driver mv88e6xxx_switch_driver = {
|
|
.tag_protocol = DSA_TAG_PROTO_EDSA,
|
|
.probe = mv88e6xxx_drv_probe,
|
|
.setup = mv88e6xxx_setup,
|
|
.set_addr = mv88e6xxx_set_addr,
|
|
.adjust_link = mv88e6xxx_adjust_link,
|
|
.get_strings = mv88e6xxx_get_strings,
|
|
.get_ethtool_stats = mv88e6xxx_get_ethtool_stats,
|
|
.get_sset_count = mv88e6xxx_get_sset_count,
|
|
.set_eee = mv88e6xxx_set_eee,
|
|
.get_eee = mv88e6xxx_get_eee,
|
|
#ifdef CONFIG_NET_DSA_HWMON
|
|
.get_temp = mv88e6xxx_get_temp,
|
|
.get_temp_limit = mv88e6xxx_get_temp_limit,
|
|
.set_temp_limit = mv88e6xxx_set_temp_limit,
|
|
.get_temp_alarm = mv88e6xxx_get_temp_alarm,
|
|
#endif
|
|
.get_eeprom_len = mv88e6xxx_get_eeprom_len,
|
|
.get_eeprom = mv88e6xxx_get_eeprom,
|
|
.set_eeprom = mv88e6xxx_set_eeprom,
|
|
.get_regs_len = mv88e6xxx_get_regs_len,
|
|
.get_regs = mv88e6xxx_get_regs,
|
|
.set_ageing_time = mv88e6xxx_set_ageing_time,
|
|
.port_bridge_join = mv88e6xxx_port_bridge_join,
|
|
.port_bridge_leave = mv88e6xxx_port_bridge_leave,
|
|
.port_stp_state_set = mv88e6xxx_port_stp_state_set,
|
|
.port_vlan_filtering = mv88e6xxx_port_vlan_filtering,
|
|
.port_vlan_prepare = mv88e6xxx_port_vlan_prepare,
|
|
.port_vlan_add = mv88e6xxx_port_vlan_add,
|
|
.port_vlan_del = mv88e6xxx_port_vlan_del,
|
|
.port_vlan_dump = mv88e6xxx_port_vlan_dump,
|
|
.port_fdb_prepare = mv88e6xxx_port_fdb_prepare,
|
|
.port_fdb_add = mv88e6xxx_port_fdb_add,
|
|
.port_fdb_del = mv88e6xxx_port_fdb_del,
|
|
.port_fdb_dump = mv88e6xxx_port_fdb_dump,
|
|
};
|
|
|
|
static int mv88e6xxx_register_switch(struct mv88e6xxx_chip *chip,
|
|
struct device_node *np)
|
|
{
|
|
struct device *dev = chip->dev;
|
|
struct dsa_switch *ds;
|
|
|
|
ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
|
|
if (!ds)
|
|
return -ENOMEM;
|
|
|
|
ds->dev = dev;
|
|
ds->priv = chip;
|
|
ds->drv = &mv88e6xxx_switch_driver;
|
|
|
|
dev_set_drvdata(dev, ds);
|
|
|
|
return dsa_register_switch(ds, np);
|
|
}
|
|
|
|
static void mv88e6xxx_unregister_switch(struct mv88e6xxx_chip *chip)
|
|
{
|
|
dsa_unregister_switch(chip->ds);
|
|
}
|
|
|
|
static int mv88e6xxx_probe(struct mdio_device *mdiodev)
|
|
{
|
|
struct device *dev = &mdiodev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
const struct mv88e6xxx_info *compat_info;
|
|
struct mv88e6xxx_chip *chip;
|
|
u32 eeprom_len;
|
|
int err;
|
|
|
|
compat_info = of_device_get_match_data(dev);
|
|
if (!compat_info)
|
|
return -EINVAL;
|
|
|
|
chip = mv88e6xxx_alloc_chip(dev);
|
|
if (!chip)
|
|
return -ENOMEM;
|
|
|
|
chip->info = compat_info;
|
|
|
|
err = mv88e6xxx_smi_init(chip, mdiodev->bus, mdiodev->addr);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_detect(chip);
|
|
if (err)
|
|
return err;
|
|
|
|
chip->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_ASIS);
|
|
if (IS_ERR(chip->reset))
|
|
return PTR_ERR(chip->reset);
|
|
|
|
if (mv88e6xxx_has(chip, MV88E6XXX_FLAGS_EEPROM16) &&
|
|
!of_property_read_u32(np, "eeprom-length", &eeprom_len))
|
|
chip->eeprom_len = eeprom_len;
|
|
|
|
err = mv88e6xxx_mdio_register(chip, np);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mv88e6xxx_register_switch(chip, np);
|
|
if (err) {
|
|
mv88e6xxx_mdio_unregister(chip);
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mv88e6xxx_remove(struct mdio_device *mdiodev)
|
|
{
|
|
struct dsa_switch *ds = dev_get_drvdata(&mdiodev->dev);
|
|
struct mv88e6xxx_chip *chip = ds_to_priv(ds);
|
|
|
|
mv88e6xxx_unregister_switch(chip);
|
|
mv88e6xxx_mdio_unregister(chip);
|
|
}
|
|
|
|
static const struct of_device_id mv88e6xxx_of_match[] = {
|
|
{
|
|
.compatible = "marvell,mv88e6085",
|
|
.data = &mv88e6xxx_table[MV88E6085],
|
|
},
|
|
{ /* sentinel */ },
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, mv88e6xxx_of_match);
|
|
|
|
static struct mdio_driver mv88e6xxx_driver = {
|
|
.probe = mv88e6xxx_probe,
|
|
.remove = mv88e6xxx_remove,
|
|
.mdiodrv.driver = {
|
|
.name = "mv88e6085",
|
|
.of_match_table = mv88e6xxx_of_match,
|
|
},
|
|
};
|
|
|
|
static int __init mv88e6xxx_init(void)
|
|
{
|
|
register_switch_driver(&mv88e6xxx_switch_driver);
|
|
return mdio_driver_register(&mv88e6xxx_driver);
|
|
}
|
|
module_init(mv88e6xxx_init);
|
|
|
|
static void __exit mv88e6xxx_cleanup(void)
|
|
{
|
|
mdio_driver_unregister(&mv88e6xxx_driver);
|
|
unregister_switch_driver(&mv88e6xxx_switch_driver);
|
|
}
|
|
module_exit(mv88e6xxx_cleanup);
|
|
|
|
MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
|
|
MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
|
|
MODULE_LICENSE("GPL");
|