OpenCloudOS-Kernel/drivers/net/ethernet/ti/am65-cpts.c

1069 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* TI K3 AM65x Common Platform Time Sync
*
* Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
*
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/err.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/net_tstamp.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/ptp_classify.h>
#include <linux/ptp_clock_kernel.h>
#include "am65-cpts.h"
struct am65_genf_regs {
u32 comp_lo; /* Comparison Low Value 0:31 */
u32 comp_hi; /* Comparison High Value 32:63 */
u32 control; /* control */
u32 length; /* Length */
u32 ppm_low; /* PPM Load Low Value 0:31 */
u32 ppm_hi; /* PPM Load High Value 32:63 */
u32 ts_nudge; /* Nudge value */
} __aligned(32) __packed;
#define AM65_CPTS_GENF_MAX_NUM 9
#define AM65_CPTS_ESTF_MAX_NUM 8
struct am65_cpts_regs {
u32 idver; /* Identification and version */
u32 control; /* Time sync control */
u32 rftclk_sel; /* Reference Clock Select Register */
u32 ts_push; /* Time stamp event push */
u32 ts_load_val_lo; /* Time Stamp Load Low Value 0:31 */
u32 ts_load_en; /* Time stamp load enable */
u32 ts_comp_lo; /* Time Stamp Comparison Low Value 0:31 */
u32 ts_comp_length; /* Time Stamp Comparison Length */
u32 intstat_raw; /* Time sync interrupt status raw */
u32 intstat_masked; /* Time sync interrupt status masked */
u32 int_enable; /* Time sync interrupt enable */
u32 ts_comp_nudge; /* Time Stamp Comparison Nudge Value */
u32 event_pop; /* Event interrupt pop */
u32 event_0; /* Event Time Stamp lo 0:31 */
u32 event_1; /* Event Type Fields */
u32 event_2; /* Event Type Fields domain */
u32 event_3; /* Event Time Stamp hi 32:63 */
u32 ts_load_val_hi; /* Time Stamp Load High Value 32:63 */
u32 ts_comp_hi; /* Time Stamp Comparison High Value 32:63 */
u32 ts_add_val; /* Time Stamp Add value */
u32 ts_ppm_low; /* Time Stamp PPM Load Low Value 0:31 */
u32 ts_ppm_hi; /* Time Stamp PPM Load High Value 32:63 */
u32 ts_nudge; /* Time Stamp Nudge value */
u32 reserv[33];
struct am65_genf_regs genf[AM65_CPTS_GENF_MAX_NUM];
struct am65_genf_regs estf[AM65_CPTS_ESTF_MAX_NUM];
};
/* CONTROL_REG */
#define AM65_CPTS_CONTROL_EN BIT(0)
#define AM65_CPTS_CONTROL_INT_TEST BIT(1)
#define AM65_CPTS_CONTROL_TS_COMP_POLARITY BIT(2)
#define AM65_CPTS_CONTROL_TSTAMP_EN BIT(3)
#define AM65_CPTS_CONTROL_SEQUENCE_EN BIT(4)
#define AM65_CPTS_CONTROL_64MODE BIT(5)
#define AM65_CPTS_CONTROL_TS_COMP_TOG BIT(6)
#define AM65_CPTS_CONTROL_TS_PPM_DIR BIT(7)
#define AM65_CPTS_CONTROL_HW1_TS_PUSH_EN BIT(8)
#define AM65_CPTS_CONTROL_HW2_TS_PUSH_EN BIT(9)
#define AM65_CPTS_CONTROL_HW3_TS_PUSH_EN BIT(10)
#define AM65_CPTS_CONTROL_HW4_TS_PUSH_EN BIT(11)
#define AM65_CPTS_CONTROL_HW5_TS_PUSH_EN BIT(12)
#define AM65_CPTS_CONTROL_HW6_TS_PUSH_EN BIT(13)
#define AM65_CPTS_CONTROL_HW7_TS_PUSH_EN BIT(14)
#define AM65_CPTS_CONTROL_HW8_TS_PUSH_EN BIT(15)
#define AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET (8)
#define AM65_CPTS_CONTROL_TX_GENF_CLR_EN BIT(17)
#define AM65_CPTS_CONTROL_TS_SYNC_SEL_MASK (0xF)
#define AM65_CPTS_CONTROL_TS_SYNC_SEL_SHIFT (28)
/* RFTCLK_SEL_REG */
#define AM65_CPTS_RFTCLK_SEL_MASK (0x1F)
/* TS_PUSH_REG */
#define AM65_CPTS_TS_PUSH BIT(0)
/* TS_LOAD_EN_REG */
#define AM65_CPTS_TS_LOAD_EN BIT(0)
/* INTSTAT_RAW_REG */
#define AM65_CPTS_INTSTAT_RAW_TS_PEND BIT(0)
/* INTSTAT_MASKED_REG */
#define AM65_CPTS_INTSTAT_MASKED_TS_PEND BIT(0)
/* INT_ENABLE_REG */
#define AM65_CPTS_INT_ENABLE_TS_PEND_EN BIT(0)
/* TS_COMP_NUDGE_REG */
#define AM65_CPTS_TS_COMP_NUDGE_MASK (0xFF)
/* EVENT_POP_REG */
#define AM65_CPTS_EVENT_POP BIT(0)
/* EVENT_1_REG */
#define AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK GENMASK(15, 0)
#define AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK GENMASK(19, 16)
#define AM65_CPTS_EVENT_1_MESSAGE_TYPE_SHIFT (16)
#define AM65_CPTS_EVENT_1_EVENT_TYPE_MASK GENMASK(23, 20)
#define AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT (20)
#define AM65_CPTS_EVENT_1_PORT_NUMBER_MASK GENMASK(28, 24)
#define AM65_CPTS_EVENT_1_PORT_NUMBER_SHIFT (24)
/* EVENT_2_REG */
#define AM65_CPTS_EVENT_2_REG_DOMAIN_MASK (0xFF)
#define AM65_CPTS_EVENT_2_REG_DOMAIN_SHIFT (0)
enum {
AM65_CPTS_EV_PUSH, /* Time Stamp Push Event */
AM65_CPTS_EV_ROLL, /* Time Stamp Rollover Event */
AM65_CPTS_EV_HALF, /* Time Stamp Half Rollover Event */
AM65_CPTS_EV_HW, /* Hardware Time Stamp Push Event */
AM65_CPTS_EV_RX, /* Ethernet Receive Event */
AM65_CPTS_EV_TX, /* Ethernet Transmit Event */
AM65_CPTS_EV_TS_COMP, /* Time Stamp Compare Event */
AM65_CPTS_EV_HOST, /* Host Transmit Event */
};
struct am65_cpts_event {
struct list_head list;
unsigned long tmo;
u32 event1;
u32 event2;
u64 timestamp;
};
#define AM65_CPTS_FIFO_DEPTH (16)
#define AM65_CPTS_MAX_EVENTS (32)
#define AM65_CPTS_EVENT_RX_TX_TIMEOUT (20) /* ms */
#define AM65_CPTS_SKB_TX_WORK_TIMEOUT 1 /* jiffies */
#define AM65_CPTS_MIN_PPM 0x400
struct am65_cpts {
struct device *dev;
struct am65_cpts_regs __iomem *reg;
struct ptp_clock_info ptp_info;
struct ptp_clock *ptp_clock;
int phc_index;
struct clk_hw *clk_mux_hw;
struct device_node *clk_mux_np;
struct clk *refclk;
u32 refclk_freq;
struct list_head events;
struct list_head pool;
struct am65_cpts_event pool_data[AM65_CPTS_MAX_EVENTS];
spinlock_t lock; /* protects events lists*/
u32 ext_ts_inputs;
u32 genf_num;
u32 ts_add_val;
int irq;
struct mutex ptp_clk_lock; /* PHC access sync */
u64 timestamp;
u32 genf_enable;
u32 hw_ts_enable;
struct sk_buff_head txq;
};
struct am65_cpts_skb_cb_data {
unsigned long tmo;
u32 skb_mtype_seqid;
};
#define am65_cpts_write32(c, v, r) writel(v, &(c)->reg->r)
#define am65_cpts_read32(c, r) readl(&(c)->reg->r)
static void am65_cpts_settime(struct am65_cpts *cpts, u64 start_tstamp)
{
u32 val;
val = upper_32_bits(start_tstamp);
am65_cpts_write32(cpts, val, ts_load_val_hi);
val = lower_32_bits(start_tstamp);
am65_cpts_write32(cpts, val, ts_load_val_lo);
am65_cpts_write32(cpts, AM65_CPTS_TS_LOAD_EN, ts_load_en);
}
static void am65_cpts_set_add_val(struct am65_cpts *cpts)
{
/* select coefficient according to the rate */
cpts->ts_add_val = (NSEC_PER_SEC / cpts->refclk_freq - 1) & 0x7;
am65_cpts_write32(cpts, cpts->ts_add_val, ts_add_val);
}
static void am65_cpts_disable(struct am65_cpts *cpts)
{
am65_cpts_write32(cpts, 0, control);
am65_cpts_write32(cpts, 0, int_enable);
}
static int am65_cpts_event_get_port(struct am65_cpts_event *event)
{
return (event->event1 & AM65_CPTS_EVENT_1_PORT_NUMBER_MASK) >>
AM65_CPTS_EVENT_1_PORT_NUMBER_SHIFT;
}
static int am65_cpts_event_get_type(struct am65_cpts_event *event)
{
return (event->event1 & AM65_CPTS_EVENT_1_EVENT_TYPE_MASK) >>
AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT;
}
static int am65_cpts_cpts_purge_events(struct am65_cpts *cpts)
{
struct list_head *this, *next;
struct am65_cpts_event *event;
int removed = 0;
list_for_each_safe(this, next, &cpts->events) {
event = list_entry(this, struct am65_cpts_event, list);
if (time_after(jiffies, event->tmo)) {
list_del_init(&event->list);
list_add(&event->list, &cpts->pool);
++removed;
}
}
if (removed)
dev_dbg(cpts->dev, "event pool cleaned up %d\n", removed);
return removed ? 0 : -1;
}
static bool am65_cpts_fifo_pop_event(struct am65_cpts *cpts,
struct am65_cpts_event *event)
{
u32 r = am65_cpts_read32(cpts, intstat_raw);
if (r & AM65_CPTS_INTSTAT_RAW_TS_PEND) {
event->timestamp = am65_cpts_read32(cpts, event_0);
event->event1 = am65_cpts_read32(cpts, event_1);
event->event2 = am65_cpts_read32(cpts, event_2);
event->timestamp |= (u64)am65_cpts_read32(cpts, event_3) << 32;
am65_cpts_write32(cpts, AM65_CPTS_EVENT_POP, event_pop);
return false;
}
return true;
}
static int am65_cpts_fifo_read(struct am65_cpts *cpts)
{
struct ptp_clock_event pevent;
struct am65_cpts_event *event;
bool schedule = false;
int i, type, ret = 0;
unsigned long flags;
spin_lock_irqsave(&cpts->lock, flags);
for (i = 0; i < AM65_CPTS_FIFO_DEPTH; i++) {
event = list_first_entry_or_null(&cpts->pool,
struct am65_cpts_event, list);
if (!event) {
if (am65_cpts_cpts_purge_events(cpts)) {
dev_err(cpts->dev, "cpts: event pool empty\n");
ret = -1;
goto out;
}
continue;
}
if (am65_cpts_fifo_pop_event(cpts, event))
break;
type = am65_cpts_event_get_type(event);
switch (type) {
case AM65_CPTS_EV_PUSH:
cpts->timestamp = event->timestamp;
dev_dbg(cpts->dev, "AM65_CPTS_EV_PUSH t:%llu\n",
cpts->timestamp);
break;
case AM65_CPTS_EV_RX:
case AM65_CPTS_EV_TX:
event->tmo = jiffies +
msecs_to_jiffies(AM65_CPTS_EVENT_RX_TX_TIMEOUT);
list_del_init(&event->list);
list_add_tail(&event->list, &cpts->events);
dev_dbg(cpts->dev,
"AM65_CPTS_EV_TX e1:%08x e2:%08x t:%lld\n",
event->event1, event->event2,
event->timestamp);
schedule = true;
break;
case AM65_CPTS_EV_HW:
pevent.index = am65_cpts_event_get_port(event) - 1;
pevent.timestamp = event->timestamp;
pevent.type = PTP_CLOCK_EXTTS;
dev_dbg(cpts->dev, "AM65_CPTS_EV_HW p:%d t:%llu\n",
pevent.index, event->timestamp);
ptp_clock_event(cpts->ptp_clock, &pevent);
break;
case AM65_CPTS_EV_HOST:
break;
case AM65_CPTS_EV_ROLL:
case AM65_CPTS_EV_HALF:
case AM65_CPTS_EV_TS_COMP:
dev_dbg(cpts->dev,
"AM65_CPTS_EVT: %d e1:%08x e2:%08x t:%lld\n",
type,
event->event1, event->event2,
event->timestamp);
break;
default:
dev_err(cpts->dev, "cpts: unknown event type\n");
ret = -1;
goto out;
}
}
out:
spin_unlock_irqrestore(&cpts->lock, flags);
if (schedule)
ptp_schedule_worker(cpts->ptp_clock, 0);
return ret;
}
static u64 am65_cpts_gettime(struct am65_cpts *cpts,
struct ptp_system_timestamp *sts)
{
unsigned long flags;
u64 val = 0;
/* temporarily disable cpts interrupt to avoid intentional
* doubled read. Interrupt can be in-flight - it's Ok.
*/
am65_cpts_write32(cpts, 0, int_enable);
/* use spin_lock_irqsave() here as it has to run very fast */
spin_lock_irqsave(&cpts->lock, flags);
ptp_read_system_prets(sts);
am65_cpts_write32(cpts, AM65_CPTS_TS_PUSH, ts_push);
am65_cpts_read32(cpts, ts_push);
ptp_read_system_postts(sts);
spin_unlock_irqrestore(&cpts->lock, flags);
am65_cpts_fifo_read(cpts);
am65_cpts_write32(cpts, AM65_CPTS_INT_ENABLE_TS_PEND_EN, int_enable);
val = cpts->timestamp;
return val;
}
static irqreturn_t am65_cpts_interrupt(int irq, void *dev_id)
{
struct am65_cpts *cpts = dev_id;
if (am65_cpts_fifo_read(cpts))
dev_dbg(cpts->dev, "cpts: unable to obtain a time stamp\n");
return IRQ_HANDLED;
}
/* PTP clock operations */
static int am65_cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
int neg_adj = 0;
u64 adj_period;
u32 val;
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
/* base freq = 1GHz = 1 000 000 000
* ppb_norm = ppb * base_freq / clock_freq;
* ppm_norm = ppb_norm / 1000
* adj_period = 1 000 000 / ppm_norm
* adj_period = 1 000 000 000 / ppb_norm
* adj_period = 1 000 000 000 / (ppb * base_freq / clock_freq)
* adj_period = (1 000 000 000 * clock_freq) / (ppb * base_freq)
* adj_period = clock_freq / ppb
*/
adj_period = div_u64(cpts->refclk_freq, ppb);
mutex_lock(&cpts->ptp_clk_lock);
val = am65_cpts_read32(cpts, control);
if (neg_adj)
val |= AM65_CPTS_CONTROL_TS_PPM_DIR;
else
val &= ~AM65_CPTS_CONTROL_TS_PPM_DIR;
am65_cpts_write32(cpts, val, control);
val = upper_32_bits(adj_period) & 0x3FF;
am65_cpts_write32(cpts, val, ts_ppm_hi);
val = lower_32_bits(adj_period);
am65_cpts_write32(cpts, val, ts_ppm_low);
mutex_unlock(&cpts->ptp_clk_lock);
return 0;
}
static int am65_cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
s64 ns;
mutex_lock(&cpts->ptp_clk_lock);
ns = am65_cpts_gettime(cpts, NULL);
ns += delta;
am65_cpts_settime(cpts, ns);
mutex_unlock(&cpts->ptp_clk_lock);
return 0;
}
static int am65_cpts_ptp_gettimex(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
u64 ns;
mutex_lock(&cpts->ptp_clk_lock);
ns = am65_cpts_gettime(cpts, sts);
mutex_unlock(&cpts->ptp_clk_lock);
*ts = ns_to_timespec64(ns);
return 0;
}
u64 am65_cpts_ns_gettime(struct am65_cpts *cpts)
{
u64 ns;
/* reuse ptp_clk_lock as it serialize ts push */
mutex_lock(&cpts->ptp_clk_lock);
ns = am65_cpts_gettime(cpts, NULL);
mutex_unlock(&cpts->ptp_clk_lock);
return ns;
}
EXPORT_SYMBOL_GPL(am65_cpts_ns_gettime);
static int am65_cpts_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
u64 ns;
ns = timespec64_to_ns(ts);
mutex_lock(&cpts->ptp_clk_lock);
am65_cpts_settime(cpts, ns);
mutex_unlock(&cpts->ptp_clk_lock);
return 0;
}
static void am65_cpts_extts_enable_hw(struct am65_cpts *cpts, u32 index, int on)
{
u32 v;
v = am65_cpts_read32(cpts, control);
if (on) {
v |= BIT(AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET + index);
cpts->hw_ts_enable |= BIT(index);
} else {
v &= ~BIT(AM65_CPTS_CONTROL_HW1_TS_PUSH_OFFSET + index);
cpts->hw_ts_enable &= ~BIT(index);
}
am65_cpts_write32(cpts, v, control);
}
static int am65_cpts_extts_enable(struct am65_cpts *cpts, u32 index, int on)
{
if (!!(cpts->hw_ts_enable & BIT(index)) == !!on)
return 0;
mutex_lock(&cpts->ptp_clk_lock);
am65_cpts_extts_enable_hw(cpts, index, on);
mutex_unlock(&cpts->ptp_clk_lock);
dev_dbg(cpts->dev, "%s: ExtTS:%u %s\n",
__func__, index, on ? "enabled" : "disabled");
return 0;
}
int am65_cpts_estf_enable(struct am65_cpts *cpts, int idx,
struct am65_cpts_estf_cfg *cfg)
{
u64 cycles;
u32 val;
cycles = cfg->ns_period * cpts->refclk_freq;
cycles = DIV_ROUND_UP(cycles, NSEC_PER_SEC);
if (cycles > U32_MAX)
return -EINVAL;
/* according to TRM should be zeroed */
am65_cpts_write32(cpts, 0, estf[idx].length);
val = upper_32_bits(cfg->ns_start);
am65_cpts_write32(cpts, val, estf[idx].comp_hi);
val = lower_32_bits(cfg->ns_start);
am65_cpts_write32(cpts, val, estf[idx].comp_lo);
val = lower_32_bits(cycles);
am65_cpts_write32(cpts, val, estf[idx].length);
dev_dbg(cpts->dev, "%s: ESTF:%u enabled\n", __func__, idx);
return 0;
}
EXPORT_SYMBOL_GPL(am65_cpts_estf_enable);
void am65_cpts_estf_disable(struct am65_cpts *cpts, int idx)
{
am65_cpts_write32(cpts, 0, estf[idx].length);
dev_dbg(cpts->dev, "%s: ESTF:%u disabled\n", __func__, idx);
}
EXPORT_SYMBOL_GPL(am65_cpts_estf_disable);
static void am65_cpts_perout_enable_hw(struct am65_cpts *cpts,
struct ptp_perout_request *req, int on)
{
u64 ns_period, ns_start, cycles;
struct timespec64 ts;
u32 val;
if (on) {
ts.tv_sec = req->period.sec;
ts.tv_nsec = req->period.nsec;
ns_period = timespec64_to_ns(&ts);
cycles = (ns_period * cpts->refclk_freq) / NSEC_PER_SEC;
ts.tv_sec = req->start.sec;
ts.tv_nsec = req->start.nsec;
ns_start = timespec64_to_ns(&ts);
val = upper_32_bits(ns_start);
am65_cpts_write32(cpts, val, genf[req->index].comp_hi);
val = lower_32_bits(ns_start);
am65_cpts_write32(cpts, val, genf[req->index].comp_lo);
val = lower_32_bits(cycles);
am65_cpts_write32(cpts, val, genf[req->index].length);
cpts->genf_enable |= BIT(req->index);
} else {
am65_cpts_write32(cpts, 0, genf[req->index].length);
cpts->genf_enable &= ~BIT(req->index);
}
}
static int am65_cpts_perout_enable(struct am65_cpts *cpts,
struct ptp_perout_request *req, int on)
{
if (!!(cpts->genf_enable & BIT(req->index)) == !!on)
return 0;
mutex_lock(&cpts->ptp_clk_lock);
am65_cpts_perout_enable_hw(cpts, req, on);
mutex_unlock(&cpts->ptp_clk_lock);
dev_dbg(cpts->dev, "%s: GenF:%u %s\n",
__func__, req->index, on ? "enabled" : "disabled");
return 0;
}
static int am65_cpts_ptp_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
switch (rq->type) {
case PTP_CLK_REQ_EXTTS:
return am65_cpts_extts_enable(cpts, rq->extts.index, on);
case PTP_CLK_REQ_PEROUT:
return am65_cpts_perout_enable(cpts, &rq->perout, on);
default:
break;
}
return -EOPNOTSUPP;
}
static long am65_cpts_ts_work(struct ptp_clock_info *ptp);
static struct ptp_clock_info am65_ptp_info = {
.owner = THIS_MODULE,
.name = "CTPS timer",
.adjfreq = am65_cpts_ptp_adjfreq,
.adjtime = am65_cpts_ptp_adjtime,
.gettimex64 = am65_cpts_ptp_gettimex,
.settime64 = am65_cpts_ptp_settime,
.enable = am65_cpts_ptp_enable,
.do_aux_work = am65_cpts_ts_work,
};
static bool am65_cpts_match_tx_ts(struct am65_cpts *cpts,
struct am65_cpts_event *event)
{
struct sk_buff_head txq_list;
struct sk_buff *skb, *tmp;
unsigned long flags;
bool found = false;
u32 mtype_seqid;
mtype_seqid = event->event1 &
(AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK |
AM65_CPTS_EVENT_1_EVENT_TYPE_MASK |
AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK);
__skb_queue_head_init(&txq_list);
spin_lock_irqsave(&cpts->txq.lock, flags);
skb_queue_splice_init(&cpts->txq, &txq_list);
spin_unlock_irqrestore(&cpts->txq.lock, flags);
/* no need to grab txq.lock as access is always done under cpts->lock */
skb_queue_walk_safe(&txq_list, skb, tmp) {
struct skb_shared_hwtstamps ssh;
struct am65_cpts_skb_cb_data *skb_cb =
(struct am65_cpts_skb_cb_data *)skb->cb;
if (mtype_seqid == skb_cb->skb_mtype_seqid) {
u64 ns = event->timestamp;
memset(&ssh, 0, sizeof(ssh));
ssh.hwtstamp = ns_to_ktime(ns);
skb_tstamp_tx(skb, &ssh);
found = true;
__skb_unlink(skb, &txq_list);
dev_consume_skb_any(skb);
dev_dbg(cpts->dev,
"match tx timestamp mtype_seqid %08x\n",
mtype_seqid);
break;
}
if (time_after(jiffies, skb_cb->tmo)) {
/* timeout any expired skbs over 100 ms */
dev_dbg(cpts->dev,
"expiring tx timestamp mtype_seqid %08x\n",
mtype_seqid);
__skb_unlink(skb, &txq_list);
dev_consume_skb_any(skb);
}
}
spin_lock_irqsave(&cpts->txq.lock, flags);
skb_queue_splice(&txq_list, &cpts->txq);
spin_unlock_irqrestore(&cpts->txq.lock, flags);
return found;
}
static void am65_cpts_find_ts(struct am65_cpts *cpts)
{
struct am65_cpts_event *event;
struct list_head *this, *next;
LIST_HEAD(events_free);
unsigned long flags;
LIST_HEAD(events);
spin_lock_irqsave(&cpts->lock, flags);
list_splice_init(&cpts->events, &events);
spin_unlock_irqrestore(&cpts->lock, flags);
list_for_each_safe(this, next, &events) {
event = list_entry(this, struct am65_cpts_event, list);
if (am65_cpts_match_tx_ts(cpts, event) ||
time_after(jiffies, event->tmo)) {
list_del_init(&event->list);
list_add(&event->list, &events_free);
}
}
spin_lock_irqsave(&cpts->lock, flags);
list_splice_tail(&events, &cpts->events);
list_splice_tail(&events_free, &cpts->pool);
spin_unlock_irqrestore(&cpts->lock, flags);
}
static long am65_cpts_ts_work(struct ptp_clock_info *ptp)
{
struct am65_cpts *cpts = container_of(ptp, struct am65_cpts, ptp_info);
unsigned long flags;
long delay = -1;
am65_cpts_find_ts(cpts);
spin_lock_irqsave(&cpts->txq.lock, flags);
if (!skb_queue_empty(&cpts->txq))
delay = AM65_CPTS_SKB_TX_WORK_TIMEOUT;
spin_unlock_irqrestore(&cpts->txq.lock, flags);
return delay;
}
/**
* am65_cpts_rx_enable - enable rx timestamping
* @cpts: cpts handle
* @en: enable
*
* This functions enables rx packets timestamping. The CPTS can timestamp all
* rx packets.
*/
void am65_cpts_rx_enable(struct am65_cpts *cpts, bool en)
{
u32 val;
mutex_lock(&cpts->ptp_clk_lock);
val = am65_cpts_read32(cpts, control);
if (en)
val |= AM65_CPTS_CONTROL_TSTAMP_EN;
else
val &= ~AM65_CPTS_CONTROL_TSTAMP_EN;
am65_cpts_write32(cpts, val, control);
mutex_unlock(&cpts->ptp_clk_lock);
}
EXPORT_SYMBOL_GPL(am65_cpts_rx_enable);
static int am65_skb_get_mtype_seqid(struct sk_buff *skb, u32 *mtype_seqid)
{
unsigned int ptp_class = ptp_classify_raw(skb);
struct ptp_header *hdr;
u8 msgtype;
u16 seqid;
if (ptp_class == PTP_CLASS_NONE)
return 0;
hdr = ptp_parse_header(skb, ptp_class);
if (!hdr)
return 0;
msgtype = ptp_get_msgtype(hdr, ptp_class);
seqid = ntohs(hdr->sequence_id);
*mtype_seqid = (msgtype << AM65_CPTS_EVENT_1_MESSAGE_TYPE_SHIFT) &
AM65_CPTS_EVENT_1_MESSAGE_TYPE_MASK;
*mtype_seqid |= (seqid & AM65_CPTS_EVENT_1_SEQUENCE_ID_MASK);
return 1;
}
/**
* am65_cpts_tx_timestamp - save tx packet for timestamping
* @cpts: cpts handle
* @skb: packet
*
* This functions saves tx packet for timestamping if packet can be timestamped.
* The future processing is done in from PTP auxiliary worker.
*/
void am65_cpts_tx_timestamp(struct am65_cpts *cpts, struct sk_buff *skb)
{
struct am65_cpts_skb_cb_data *skb_cb = (void *)skb->cb;
if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
return;
/* add frame to queue for processing later.
* The periodic FIFO check will handle this.
*/
skb_get(skb);
/* get the timestamp for timeouts */
skb_cb->tmo = jiffies + msecs_to_jiffies(100);
skb_queue_tail(&cpts->txq, skb);
ptp_schedule_worker(cpts->ptp_clock, 0);
}
EXPORT_SYMBOL_GPL(am65_cpts_tx_timestamp);
/**
* am65_cpts_prep_tx_timestamp - check and prepare tx packet for timestamping
* @cpts: cpts handle
* @skb: packet
*
* This functions should be called from .xmit().
* It checks if packet can be timestamped, fills internal cpts data
* in skb-cb and marks packet as SKBTX_IN_PROGRESS.
*/
void am65_cpts_prep_tx_timestamp(struct am65_cpts *cpts, struct sk_buff *skb)
{
struct am65_cpts_skb_cb_data *skb_cb = (void *)skb->cb;
int ret;
if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
return;
ret = am65_skb_get_mtype_seqid(skb, &skb_cb->skb_mtype_seqid);
if (!ret)
return;
skb_cb->skb_mtype_seqid |= (AM65_CPTS_EV_TX <<
AM65_CPTS_EVENT_1_EVENT_TYPE_SHIFT);
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
}
EXPORT_SYMBOL_GPL(am65_cpts_prep_tx_timestamp);
int am65_cpts_phc_index(struct am65_cpts *cpts)
{
return cpts->phc_index;
}
EXPORT_SYMBOL_GPL(am65_cpts_phc_index);
static void cpts_free_clk_mux(void *data)
{
struct am65_cpts *cpts = data;
of_clk_del_provider(cpts->clk_mux_np);
clk_hw_unregister_mux(cpts->clk_mux_hw);
of_node_put(cpts->clk_mux_np);
}
static int cpts_of_mux_clk_setup(struct am65_cpts *cpts,
struct device_node *node)
{
unsigned int num_parents;
const char **parent_names;
char *clk_mux_name;
void __iomem *reg;
int ret = -EINVAL;
cpts->clk_mux_np = of_get_child_by_name(node, "refclk-mux");
if (!cpts->clk_mux_np)
return 0;
num_parents = of_clk_get_parent_count(cpts->clk_mux_np);
if (num_parents < 1) {
dev_err(cpts->dev, "mux-clock %pOF must have parents\n",
cpts->clk_mux_np);
goto mux_fail;
}
parent_names = devm_kcalloc(cpts->dev, sizeof(char *), num_parents,
GFP_KERNEL);
if (!parent_names) {
ret = -ENOMEM;
goto mux_fail;
}
of_clk_parent_fill(cpts->clk_mux_np, parent_names, num_parents);
clk_mux_name = devm_kasprintf(cpts->dev, GFP_KERNEL, "%s.%pOFn",
dev_name(cpts->dev), cpts->clk_mux_np);
if (!clk_mux_name) {
ret = -ENOMEM;
goto mux_fail;
}
reg = &cpts->reg->rftclk_sel;
/* dev must be NULL to avoid recursive incrementing
* of module refcnt
*/
cpts->clk_mux_hw = clk_hw_register_mux(NULL, clk_mux_name,
parent_names, num_parents,
0, reg, 0, 5, 0, NULL);
if (IS_ERR(cpts->clk_mux_hw)) {
ret = PTR_ERR(cpts->clk_mux_hw);
goto mux_fail;
}
ret = of_clk_add_hw_provider(cpts->clk_mux_np, of_clk_hw_simple_get,
cpts->clk_mux_hw);
if (ret)
goto clk_hw_register;
ret = devm_add_action_or_reset(cpts->dev, cpts_free_clk_mux, cpts);
if (ret)
dev_err(cpts->dev, "failed to add clkmux reset action %d", ret);
return ret;
clk_hw_register:
clk_hw_unregister_mux(cpts->clk_mux_hw);
mux_fail:
of_node_put(cpts->clk_mux_np);
return ret;
}
static int am65_cpts_of_parse(struct am65_cpts *cpts, struct device_node *node)
{
u32 prop[2];
if (!of_property_read_u32(node, "ti,cpts-ext-ts-inputs", &prop[0]))
cpts->ext_ts_inputs = prop[0];
if (!of_property_read_u32(node, "ti,cpts-periodic-outputs", &prop[0]))
cpts->genf_num = prop[0];
return cpts_of_mux_clk_setup(cpts, node);
}
static void am65_cpts_release(void *data)
{
struct am65_cpts *cpts = data;
ptp_clock_unregister(cpts->ptp_clock);
am65_cpts_disable(cpts);
clk_disable_unprepare(cpts->refclk);
}
struct am65_cpts *am65_cpts_create(struct device *dev, void __iomem *regs,
struct device_node *node)
{
struct am65_cpts *cpts;
int ret, i;
cpts = devm_kzalloc(dev, sizeof(*cpts), GFP_KERNEL);
if (!cpts)
return ERR_PTR(-ENOMEM);
cpts->dev = dev;
cpts->reg = (struct am65_cpts_regs __iomem *)regs;
cpts->irq = of_irq_get_byname(node, "cpts");
if (cpts->irq <= 0) {
ret = cpts->irq ?: -ENXIO;
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get IRQ number (err = %d)\n",
ret);
return ERR_PTR(ret);
}
ret = am65_cpts_of_parse(cpts, node);
if (ret)
return ERR_PTR(ret);
mutex_init(&cpts->ptp_clk_lock);
INIT_LIST_HEAD(&cpts->events);
INIT_LIST_HEAD(&cpts->pool);
spin_lock_init(&cpts->lock);
skb_queue_head_init(&cpts->txq);
for (i = 0; i < AM65_CPTS_MAX_EVENTS; i++)
list_add(&cpts->pool_data[i].list, &cpts->pool);
cpts->refclk = devm_get_clk_from_child(dev, node, "cpts");
if (IS_ERR(cpts->refclk)) {
ret = PTR_ERR(cpts->refclk);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get refclk %d\n", ret);
return ERR_PTR(ret);
}
ret = clk_prepare_enable(cpts->refclk);
if (ret) {
dev_err(dev, "Failed to enable refclk %d\n", ret);
return ERR_PTR(ret);
}
cpts->refclk_freq = clk_get_rate(cpts->refclk);
am65_ptp_info.max_adj = cpts->refclk_freq / AM65_CPTS_MIN_PPM;
cpts->ptp_info = am65_ptp_info;
if (cpts->ext_ts_inputs)
cpts->ptp_info.n_ext_ts = cpts->ext_ts_inputs;
if (cpts->genf_num)
cpts->ptp_info.n_per_out = cpts->genf_num;
am65_cpts_set_add_val(cpts);
am65_cpts_write32(cpts, AM65_CPTS_CONTROL_EN |
AM65_CPTS_CONTROL_64MODE |
AM65_CPTS_CONTROL_TX_GENF_CLR_EN,
control);
am65_cpts_write32(cpts, AM65_CPTS_INT_ENABLE_TS_PEND_EN, int_enable);
/* set time to the current system time */
am65_cpts_settime(cpts, ktime_to_ns(ktime_get_real()));
cpts->ptp_clock = ptp_clock_register(&cpts->ptp_info, cpts->dev);
if (IS_ERR_OR_NULL(cpts->ptp_clock)) {
dev_err(dev, "Failed to register ptp clk %ld\n",
PTR_ERR(cpts->ptp_clock));
ret = cpts->ptp_clock ? PTR_ERR(cpts->ptp_clock) : -ENODEV;
goto refclk_disable;
}
cpts->phc_index = ptp_clock_index(cpts->ptp_clock);
ret = devm_add_action_or_reset(dev, am65_cpts_release, cpts);
if (ret) {
dev_err(dev, "failed to add ptpclk reset action %d", ret);
return ERR_PTR(ret);
}
ret = devm_request_threaded_irq(dev, cpts->irq, NULL,
am65_cpts_interrupt,
IRQF_ONESHOT, dev_name(dev), cpts);
if (ret < 0) {
dev_err(cpts->dev, "error attaching irq %d\n", ret);
return ERR_PTR(ret);
}
dev_info(dev, "CPTS ver 0x%08x, freq:%u, add_val:%u\n",
am65_cpts_read32(cpts, idver),
cpts->refclk_freq, cpts->ts_add_val);
return cpts;
refclk_disable:
clk_disable_unprepare(cpts->refclk);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(am65_cpts_create);
static int am65_cpts_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct am65_cpts *cpts;
void __iomem *base;
base = devm_platform_ioremap_resource_byname(pdev, "cpts");
if (IS_ERR(base))
return PTR_ERR(base);
cpts = am65_cpts_create(dev, base, node);
return PTR_ERR_OR_ZERO(cpts);
}
static const struct of_device_id am65_cpts_of_match[] = {
{ .compatible = "ti,am65-cpts", },
{ .compatible = "ti,j721e-cpts", },
{},
};
MODULE_DEVICE_TABLE(of, am65_cpts_of_match);
static struct platform_driver am65_cpts_driver = {
.probe = am65_cpts_probe,
.driver = {
.name = "am65-cpts",
.of_match_table = am65_cpts_of_match,
},
};
module_platform_driver(am65_cpts_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Grygorii Strashko <grygorii.strashko@ti.com>");
MODULE_DESCRIPTION("TI K3 AM65 CPTS driver");