OpenCloudOS-Kernel/drivers/iio/magnetometer/bmc150_magn.c

1084 lines
27 KiB
C

/*
* Bosch BMC150 three-axis magnetic field sensor driver
*
* Copyright (c) 2015, Intel Corporation.
*
* This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
*
* (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/gpio/consumer.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/regmap.h>
#define BMC150_MAGN_DRV_NAME "bmc150_magn"
#define BMC150_MAGN_IRQ_NAME "bmc150_magn_event"
#define BMC150_MAGN_REG_CHIP_ID 0x40
#define BMC150_MAGN_CHIP_ID_VAL 0x32
#define BMC150_MAGN_REG_X_L 0x42
#define BMC150_MAGN_REG_X_M 0x43
#define BMC150_MAGN_REG_Y_L 0x44
#define BMC150_MAGN_REG_Y_M 0x45
#define BMC150_MAGN_SHIFT_XY_L 3
#define BMC150_MAGN_REG_Z_L 0x46
#define BMC150_MAGN_REG_Z_M 0x47
#define BMC150_MAGN_SHIFT_Z_L 1
#define BMC150_MAGN_REG_RHALL_L 0x48
#define BMC150_MAGN_REG_RHALL_M 0x49
#define BMC150_MAGN_SHIFT_RHALL_L 2
#define BMC150_MAGN_REG_INT_STATUS 0x4A
#define BMC150_MAGN_REG_POWER 0x4B
#define BMC150_MAGN_MASK_POWER_CTL BIT(0)
#define BMC150_MAGN_REG_OPMODE_ODR 0x4C
#define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1)
#define BMC150_MAGN_SHIFT_OPMODE 1
#define BMC150_MAGN_MODE_NORMAL 0x00
#define BMC150_MAGN_MODE_FORCED 0x01
#define BMC150_MAGN_MODE_SLEEP 0x03
#define BMC150_MAGN_MASK_ODR GENMASK(5, 3)
#define BMC150_MAGN_SHIFT_ODR 3
#define BMC150_MAGN_REG_INT 0x4D
#define BMC150_MAGN_REG_INT_DRDY 0x4E
#define BMC150_MAGN_MASK_DRDY_EN BIT(7)
#define BMC150_MAGN_SHIFT_DRDY_EN 7
#define BMC150_MAGN_MASK_DRDY_INT3 BIT(6)
#define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5)
#define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4)
#define BMC150_MAGN_MASK_DRDY_X_EN BIT(3)
#define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2)
#define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1)
#define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0)
#define BMC150_MAGN_REG_LOW_THRESH 0x4F
#define BMC150_MAGN_REG_HIGH_THRESH 0x50
#define BMC150_MAGN_REG_REP_XY 0x51
#define BMC150_MAGN_REG_REP_Z 0x52
#define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0)
#define BMC150_MAGN_REG_TRIM_START 0x5D
#define BMC150_MAGN_REG_TRIM_END 0x71
#define BMC150_MAGN_XY_OVERFLOW_VAL -4096
#define BMC150_MAGN_Z_OVERFLOW_VAL -16384
/* Time from SUSPEND to SLEEP */
#define BMC150_MAGN_START_UP_TIME_MS 3
#define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000
#define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
#define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
#define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
#define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
enum bmc150_magn_axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
RHALL,
AXIS_XYZ_MAX = RHALL,
AXIS_XYZR_MAX,
};
enum bmc150_magn_power_modes {
BMC150_MAGN_POWER_MODE_SUSPEND,
BMC150_MAGN_POWER_MODE_SLEEP,
BMC150_MAGN_POWER_MODE_NORMAL,
};
struct bmc150_magn_trim_regs {
s8 x1;
s8 y1;
__le16 reserved1;
u8 reserved2;
__le16 z4;
s8 x2;
s8 y2;
__le16 reserved3;
__le16 z2;
__le16 z1;
__le16 xyz1;
__le16 z3;
s8 xy2;
u8 xy1;
} __packed;
struct bmc150_magn_data {
struct i2c_client *client;
/*
* 1. Protect this structure.
* 2. Serialize sequences that power on/off the device and access HW.
*/
struct mutex mutex;
struct regmap *regmap;
/* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */
s32 buffer[6];
struct iio_trigger *dready_trig;
bool dready_trigger_on;
int max_odr;
};
static const struct {
int freq;
u8 reg_val;
} bmc150_magn_samp_freq_table[] = { {2, 0x01},
{6, 0x02},
{8, 0x03},
{10, 0x00},
{15, 0x04},
{20, 0x05},
{25, 0x06},
{30, 0x07} };
enum bmc150_magn_presets {
LOW_POWER_PRESET,
REGULAR_PRESET,
ENHANCED_REGULAR_PRESET,
HIGH_ACCURACY_PRESET
};
static const struct bmc150_magn_preset {
u8 rep_xy;
u8 rep_z;
u8 odr;
} bmc150_magn_presets_table[] = {
[LOW_POWER_PRESET] = {3, 3, 10},
[REGULAR_PRESET] = {9, 15, 10},
[ENHANCED_REGULAR_PRESET] = {15, 27, 10},
[HIGH_ACCURACY_PRESET] = {47, 83, 20},
};
#define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case BMC150_MAGN_REG_POWER:
case BMC150_MAGN_REG_OPMODE_ODR:
case BMC150_MAGN_REG_INT:
case BMC150_MAGN_REG_INT_DRDY:
case BMC150_MAGN_REG_LOW_THRESH:
case BMC150_MAGN_REG_HIGH_THRESH:
case BMC150_MAGN_REG_REP_XY:
case BMC150_MAGN_REG_REP_Z:
return true;
default:
return false;
};
}
static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case BMC150_MAGN_REG_X_L:
case BMC150_MAGN_REG_X_M:
case BMC150_MAGN_REG_Y_L:
case BMC150_MAGN_REG_Y_M:
case BMC150_MAGN_REG_Z_L:
case BMC150_MAGN_REG_Z_M:
case BMC150_MAGN_REG_RHALL_L:
case BMC150_MAGN_REG_RHALL_M:
case BMC150_MAGN_REG_INT_STATUS:
return true;
default:
return false;
}
}
static const struct regmap_config bmc150_magn_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = BMC150_MAGN_REG_TRIM_END,
.cache_type = REGCACHE_RBTREE,
.writeable_reg = bmc150_magn_is_writeable_reg,
.volatile_reg = bmc150_magn_is_volatile_reg,
};
static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
enum bmc150_magn_power_modes mode,
bool state)
{
int ret;
switch (mode) {
case BMC150_MAGN_POWER_MODE_SUSPEND:
ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
BMC150_MAGN_MASK_POWER_CTL, !state);
if (ret < 0)
return ret;
usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
return 0;
case BMC150_MAGN_POWER_MODE_SLEEP:
return regmap_update_bits(data->regmap,
BMC150_MAGN_REG_OPMODE_ODR,
BMC150_MAGN_MASK_OPMODE,
BMC150_MAGN_MODE_SLEEP <<
BMC150_MAGN_SHIFT_OPMODE);
case BMC150_MAGN_POWER_MODE_NORMAL:
return regmap_update_bits(data->regmap,
BMC150_MAGN_REG_OPMODE_ODR,
BMC150_MAGN_MASK_OPMODE,
BMC150_MAGN_MODE_NORMAL <<
BMC150_MAGN_SHIFT_OPMODE);
}
return -EINVAL;
}
static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
{
#ifdef CONFIG_PM
int ret;
if (on) {
ret = pm_runtime_get_sync(&data->client->dev);
} else {
pm_runtime_mark_last_busy(&data->client->dev);
ret = pm_runtime_put_autosuspend(&data->client->dev);
}
if (ret < 0) {
dev_err(&data->client->dev,
"failed to change power state to %d\n", on);
if (on)
pm_runtime_put_noidle(&data->client->dev);
return ret;
}
#endif
return 0;
}
static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
{
int ret, reg_val;
u8 i, odr_val;
ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
if (ret < 0)
return ret;
odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
*val = bmc150_magn_samp_freq_table[i].freq;
return 0;
}
return -EINVAL;
}
static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
{
int ret;
u8 i;
for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
if (bmc150_magn_samp_freq_table[i].freq == val) {
ret = regmap_update_bits(data->regmap,
BMC150_MAGN_REG_OPMODE_ODR,
BMC150_MAGN_MASK_ODR,
bmc150_magn_samp_freq_table[i].
reg_val <<
BMC150_MAGN_SHIFT_ODR);
if (ret < 0)
return ret;
return 0;
}
}
return -EINVAL;
}
static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
int rep_z, int odr)
{
int ret, reg_val, max_odr;
if (rep_xy <= 0) {
ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
&reg_val);
if (ret < 0)
return ret;
rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
}
if (rep_z <= 0) {
ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
&reg_val);
if (ret < 0)
return ret;
rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
}
if (odr <= 0) {
ret = bmc150_magn_get_odr(data, &odr);
if (ret < 0)
return ret;
}
/* the maximum selectable read-out frequency from datasheet */
max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
if (odr > max_odr) {
dev_err(&data->client->dev,
"Can't set oversampling with sampling freq %d\n",
odr);
return -EINVAL;
}
data->max_odr = max_odr;
return 0;
}
static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
u16 rhall)
{
s16 val;
u16 xyz1 = le16_to_cpu(tregs->xyz1);
if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
return S32_MIN;
if (!rhall)
rhall = xyz1;
val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
((s32)val)) >> 7)) + (((s32)val) *
((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
(((s16)tregs->x1) << 3);
return (s32)val;
}
static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
u16 rhall)
{
s16 val;
u16 xyz1 = le16_to_cpu(tregs->xyz1);
if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
return S32_MIN;
if (!rhall)
rhall = xyz1;
val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
((s32)val)) >> 7)) + (((s32)val) *
((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
(((s16)tregs->y1) << 3);
return (s32)val;
}
static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
u16 rhall)
{
s32 val;
u16 xyz1 = le16_to_cpu(tregs->xyz1);
u16 z1 = le16_to_cpu(tregs->z1);
s16 z2 = le16_to_cpu(tregs->z2);
s16 z3 = le16_to_cpu(tregs->z3);
s16 z4 = le16_to_cpu(tregs->z4);
if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
return S32_MIN;
val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
return val;
}
static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
{
int ret;
__le16 values[AXIS_XYZR_MAX];
s16 raw_x, raw_y, raw_z;
u16 rhall;
struct bmc150_magn_trim_regs tregs;
ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
values, sizeof(values));
if (ret < 0)
return ret;
raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
&tregs, sizeof(tregs));
if (ret < 0)
return ret;
buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
return 0;
}
static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret, tmp;
s32 values[AXIS_XYZ_MAX];
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (iio_buffer_enabled(indio_dev))
return -EBUSY;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_power_state(data, true);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = bmc150_magn_read_xyz(data, values);
if (ret < 0) {
bmc150_magn_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
*val = values[chan->scan_index];
ret = bmc150_magn_set_power_state(data, false);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
mutex_unlock(&data->mutex);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
/*
* The API/driver performs an off-chip temperature
* compensation and outputs x/y/z magnetic field data in
* 16 LSB/uT to the upper application layer.
*/
*val = 0;
*val2 = 625;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = bmc150_magn_get_odr(data, val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
switch (chan->channel2) {
case IIO_MOD_X:
case IIO_MOD_Y:
ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
&tmp);
if (ret < 0)
return ret;
*val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
return IIO_VAL_INT;
case IIO_MOD_Z:
ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
&tmp);
if (ret < 0)
return ret;
*val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
return IIO_VAL_INT;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (val > data->max_odr)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_odr(data, val);
mutex_unlock(&data->mutex);
return ret;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
switch (chan->channel2) {
case IIO_MOD_X:
case IIO_MOD_Y:
if (val < 1 || val > 511)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_max_odr(data, val, 0, 0);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = regmap_update_bits(data->regmap,
BMC150_MAGN_REG_REP_XY,
BMC150_MAGN_REG_REP_DATAMASK,
BMC150_MAGN_REPXY_TO_REGVAL
(val));
mutex_unlock(&data->mutex);
return ret;
case IIO_MOD_Z:
if (val < 1 || val > 256)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_max_odr(data, 0, val, 0);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = regmap_update_bits(data->regmap,
BMC150_MAGN_REG_REP_Z,
BMC150_MAGN_REG_REP_DATAMASK,
BMC150_MAGN_REPZ_TO_REGVAL
(val));
mutex_unlock(&data->mutex);
return ret;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bmc150_magn_data *data = iio_priv(indio_dev);
size_t len = 0;
u8 i;
for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
break;
len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
bmc150_magn_samp_freq_table[i].freq);
}
/* replace last space with a newline */
buf[len - 1] = '\n';
return len;
}
static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
static struct attribute *bmc150_magn_attributes[] = {
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group bmc150_magn_attrs_group = {
.attrs = bmc150_magn_attributes,
};
#define BMC150_MAGN_CHANNEL(_axis) { \
.type = IIO_MAGN, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_SCALE), \
.scan_index = AXIS_##_axis, \
.scan_type = { \
.sign = 's', \
.realbits = 32, \
.storagebits = 32, \
.endianness = IIO_LE \
}, \
}
static const struct iio_chan_spec bmc150_magn_channels[] = {
BMC150_MAGN_CHANNEL(X),
BMC150_MAGN_CHANNEL(Y),
BMC150_MAGN_CHANNEL(Z),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static const struct iio_info bmc150_magn_info = {
.attrs = &bmc150_magn_attrs_group,
.read_raw = bmc150_magn_read_raw,
.write_raw = bmc150_magn_write_raw,
.driver_module = THIS_MODULE,
};
static const unsigned long bmc150_magn_scan_masks[] = {
BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
0};
static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bmc150_magn_read_xyz(data, data->buffer);
if (ret < 0)
goto err;
iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
pf->timestamp);
err:
mutex_unlock(&data->mutex);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int bmc150_magn_init(struct bmc150_magn_data *data)
{
int ret, chip_id;
struct bmc150_magn_preset preset;
ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
false);
if (ret < 0) {
dev_err(&data->client->dev,
"Failed to bring up device from suspend mode\n");
return ret;
}
ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
if (ret < 0) {
dev_err(&data->client->dev, "Failed reading chip id\n");
goto err_poweroff;
}
if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
dev_err(&data->client->dev, "Invalid chip id 0x%x\n", chip_id);
ret = -ENODEV;
goto err_poweroff;
}
dev_dbg(&data->client->dev, "Chip id %x\n", chip_id);
preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
ret = bmc150_magn_set_odr(data, preset.odr);
if (ret < 0) {
dev_err(&data->client->dev, "Failed to set ODR to %d\n",
preset.odr);
goto err_poweroff;
}
ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
if (ret < 0) {
dev_err(&data->client->dev, "Failed to set REP XY to %d\n",
preset.rep_xy);
goto err_poweroff;
}
ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
if (ret < 0) {
dev_err(&data->client->dev, "Failed to set REP Z to %d\n",
preset.rep_z);
goto err_poweroff;
}
ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
preset.odr);
if (ret < 0)
goto err_poweroff;
ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
true);
if (ret < 0) {
dev_err(&data->client->dev, "Failed to power on device\n");
goto err_poweroff;
}
return 0;
err_poweroff:
bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
return ret;
}
static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
{
int tmp;
/*
* Data Ready (DRDY) is always cleared after
* readout of data registers ends.
*/
return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
}
static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
if (!data->dready_trigger_on)
return 0;
mutex_lock(&data->mutex);
ret = bmc150_magn_reset_intr(data);
mutex_unlock(&data->mutex);
return ret;
}
static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret = 0;
mutex_lock(&data->mutex);
if (state == data->dready_trigger_on)
goto err_unlock;
ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
BMC150_MAGN_MASK_DRDY_EN,
state << BMC150_MAGN_SHIFT_DRDY_EN);
if (ret < 0)
goto err_unlock;
data->dready_trigger_on = state;
if (state) {
ret = bmc150_magn_reset_intr(data);
if (ret < 0)
goto err_unlock;
}
mutex_unlock(&data->mutex);
return 0;
err_unlock:
mutex_unlock(&data->mutex);
return ret;
}
static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
.set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
.try_reenable = bmc150_magn_trig_try_reen,
.owner = THIS_MODULE,
};
static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
{
struct bmc150_magn_data *data = iio_priv(indio_dev);
return bmc150_magn_set_power_state(data, true);
}
static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
{
struct bmc150_magn_data *data = iio_priv(indio_dev);
return bmc150_magn_set_power_state(data, false);
}
static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
.preenable = bmc150_magn_buffer_preenable,
.postenable = iio_triggered_buffer_postenable,
.predisable = iio_triggered_buffer_predisable,
.postdisable = bmc150_magn_buffer_postdisable,
};
static const char *bmc150_magn_match_acpi_device(struct device *dev)
{
const struct acpi_device_id *id;
id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!id)
return NULL;
return dev_name(dev);
}
static int bmc150_magn_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct bmc150_magn_data *data;
struct iio_dev *indio_dev;
const char *name = NULL;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
if (id)
name = id->name;
else if (ACPI_HANDLE(&client->dev))
name = bmc150_magn_match_acpi_device(&client->dev);
else
return -ENOSYS;
mutex_init(&data->mutex);
data->regmap = devm_regmap_init_i2c(client, &bmc150_magn_regmap_config);
if (IS_ERR(data->regmap)) {
dev_err(&client->dev, "Failed to allocate register map\n");
return PTR_ERR(data->regmap);
}
ret = bmc150_magn_init(data);
if (ret < 0)
return ret;
indio_dev->dev.parent = &client->dev;
indio_dev->channels = bmc150_magn_channels;
indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
indio_dev->available_scan_masks = bmc150_magn_scan_masks;
indio_dev->name = name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &bmc150_magn_info;
if (client->irq > 0) {
data->dready_trig = devm_iio_trigger_alloc(&client->dev,
"%s-dev%d",
indio_dev->name,
indio_dev->id);
if (!data->dready_trig) {
ret = -ENOMEM;
dev_err(&client->dev, "iio trigger alloc failed\n");
goto err_poweroff;
}
data->dready_trig->dev.parent = &client->dev;
data->dready_trig->ops = &bmc150_magn_trigger_ops;
iio_trigger_set_drvdata(data->dready_trig, indio_dev);
ret = iio_trigger_register(data->dready_trig);
if (ret) {
dev_err(&client->dev, "iio trigger register failed\n");
goto err_poweroff;
}
ret = request_threaded_irq(client->irq,
iio_trigger_generic_data_rdy_poll,
NULL,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
BMC150_MAGN_IRQ_NAME,
data->dready_trig);
if (ret < 0) {
dev_err(&client->dev, "request irq %d failed\n",
client->irq);
goto err_trigger_unregister;
}
}
ret = iio_triggered_buffer_setup(indio_dev,
iio_pollfunc_store_time,
bmc150_magn_trigger_handler,
&bmc150_magn_buffer_setup_ops);
if (ret < 0) {
dev_err(&client->dev,
"iio triggered buffer setup failed\n");
goto err_free_irq;
}
ret = pm_runtime_set_active(&client->dev);
if (ret)
goto err_buffer_cleanup;
pm_runtime_enable(&client->dev);
pm_runtime_set_autosuspend_delay(&client->dev,
BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(&client->dev, "unable to register iio device\n");
goto err_buffer_cleanup;
}
dev_dbg(&indio_dev->dev, "Registered device %s\n", name);
return 0;
err_buffer_cleanup:
iio_triggered_buffer_cleanup(indio_dev);
err_free_irq:
if (client->irq > 0)
free_irq(client->irq, data->dready_trig);
err_trigger_unregister:
if (data->dready_trig)
iio_trigger_unregister(data->dready_trig);
err_poweroff:
bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
return ret;
}
static int bmc150_magn_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct bmc150_magn_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
pm_runtime_put_noidle(&client->dev);
iio_triggered_buffer_cleanup(indio_dev);
if (client->irq > 0)
free_irq(data->client->irq, data->dready_trig);
if (data->dready_trig)
iio_trigger_unregister(data->dready_trig);
mutex_lock(&data->mutex);
bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
mutex_unlock(&data->mutex);
return 0;
}
#ifdef CONFIG_PM
static int bmc150_magn_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
true);
mutex_unlock(&data->mutex);
if (ret < 0) {
dev_err(&data->client->dev, "powering off device failed\n");
return ret;
}
return 0;
}
/*
* Should be called with data->mutex held.
*/
static int bmc150_magn_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct bmc150_magn_data *data = iio_priv(indio_dev);
return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
true);
}
#endif
#ifdef CONFIG_PM_SLEEP
static int bmc150_magn_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
true);
mutex_unlock(&data->mutex);
return ret;
}
static int bmc150_magn_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
true);
mutex_unlock(&data->mutex);
return ret;
}
#endif
static const struct dev_pm_ops bmc150_magn_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
bmc150_magn_runtime_resume, NULL)
};
static const struct acpi_device_id bmc150_magn_acpi_match[] = {
{"BMC150B", 0},
{"BMC156B", 0},
{},
};
MODULE_DEVICE_TABLE(acpi, bmc150_magn_acpi_match);
static const struct i2c_device_id bmc150_magn_id[] = {
{"bmc150_magn", 0},
{"bmc156_magn", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, bmc150_magn_id);
static struct i2c_driver bmc150_magn_driver = {
.driver = {
.name = BMC150_MAGN_DRV_NAME,
.acpi_match_table = ACPI_PTR(bmc150_magn_acpi_match),
.pm = &bmc150_magn_pm_ops,
},
.probe = bmc150_magn_probe,
.remove = bmc150_magn_remove,
.id_table = bmc150_magn_id,
};
module_i2c_driver(bmc150_magn_driver);
MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 magnetometer driver");