OpenCloudOS-Kernel/drivers/parisc/dino.c

1049 lines
30 KiB
C

/*
** DINO manager
**
** (c) Copyright 1999 Red Hat Software
** (c) Copyright 1999 SuSE GmbH
** (c) Copyright 1999,2000 Hewlett-Packard Company
** (c) Copyright 2000 Grant Grundler
** (c) Copyright 2006 Helge Deller
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This module provides access to Dino PCI bus (config/IOport spaces)
** and helps manage Dino IRQ lines.
**
** Dino interrupt handling is a bit complicated.
** Dino always writes to the broadcast EIR via irr0 for now.
** (BIG WARNING: using broadcast EIR is a really bad thing for SMP!)
** Only one processor interrupt is used for the 11 IRQ line
** inputs to dino.
**
** The different between Built-in Dino and Card-Mode
** dino is in chip initialization and pci device initialization.
**
** Linux drivers can only use Card-Mode Dino if pci devices I/O port
** BARs are configured and used by the driver. Programming MMIO address
** requires substantial knowledge of available Host I/O address ranges
** is currently not supported. Port/Config accessor functions are the
** same. "BIOS" differences are handled within the existing routines.
*/
/* Changes :
** 2001-06-14 : Clement Moyroud (moyroudc@esiee.fr)
** - added support for the integrated RS232.
*/
/*
** TODO: create a virtual address for each Dino HPA.
** GSC code might be able to do this since IODC data tells us
** how many pages are used. PCI subsystem could (must?) do this
** for PCI drivers devices which implement/use MMIO registers.
*/
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h> /* for struct irqaction */
#include <linux/spinlock.h> /* for spinlock_t and prototypes */
#include <asm/pdc.h>
#include <asm/page.h>
#include <asm/io.h>
#include <asm/hardware.h>
#include "gsc.h"
#undef DINO_DEBUG
#ifdef DINO_DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
/*
** Config accessor functions only pass in the 8-bit bus number
** and not the 8-bit "PCI Segment" number. Each Dino will be
** assigned a PCI bus number based on "when" it's discovered.
**
** The "secondary" bus number is set to this before calling
** pci_scan_bus(). If any PPB's are present, the scan will
** discover them and update the "secondary" and "subordinate"
** fields in Dino's pci_bus structure.
**
** Changes in the configuration *will* result in a different
** bus number for each dino.
*/
#define is_card_dino(id) ((id)->hw_type == HPHW_A_DMA)
#define is_cujo(id) ((id)->hversion == 0x682)
#define DINO_IAR0 0x004
#define DINO_IODC_ADDR 0x008
#define DINO_IODC_DATA_0 0x008
#define DINO_IODC_DATA_1 0x008
#define DINO_IRR0 0x00C
#define DINO_IAR1 0x010
#define DINO_IRR1 0x014
#define DINO_IMR 0x018
#define DINO_IPR 0x01C
#define DINO_TOC_ADDR 0x020
#define DINO_ICR 0x024
#define DINO_ILR 0x028
#define DINO_IO_COMMAND 0x030
#define DINO_IO_STATUS 0x034
#define DINO_IO_CONTROL 0x038
#define DINO_IO_GSC_ERR_RESP 0x040
#define DINO_IO_ERR_INFO 0x044
#define DINO_IO_PCI_ERR_RESP 0x048
#define DINO_IO_FBB_EN 0x05c
#define DINO_IO_ADDR_EN 0x060
#define DINO_PCI_ADDR 0x064
#define DINO_CONFIG_DATA 0x068
#define DINO_IO_DATA 0x06c
#define DINO_MEM_DATA 0x070 /* Dino 3.x only */
#define DINO_GSC2X_CONFIG 0x7b4
#define DINO_GMASK 0x800
#define DINO_PAMR 0x804
#define DINO_PAPR 0x808
#define DINO_DAMODE 0x80c
#define DINO_PCICMD 0x810
#define DINO_PCISTS 0x814
#define DINO_MLTIM 0x81c
#define DINO_BRDG_FEAT 0x820
#define DINO_PCIROR 0x824
#define DINO_PCIWOR 0x828
#define DINO_TLTIM 0x830
#define DINO_IRQS 11 /* bits 0-10 are architected */
#define DINO_IRR_MASK 0x5ff /* only 10 bits are implemented */
#define DINO_LOCAL_IRQS (DINO_IRQS+1)
#define DINO_MASK_IRQ(x) (1<<(x))
#define PCIINTA 0x001
#define PCIINTB 0x002
#define PCIINTC 0x004
#define PCIINTD 0x008
#define PCIINTE 0x010
#define PCIINTF 0x020
#define GSCEXTINT 0x040
/* #define xxx 0x080 - bit 7 is "default" */
/* #define xxx 0x100 - bit 8 not used */
/* #define xxx 0x200 - bit 9 not used */
#define RS232INT 0x400
struct dino_device
{
struct pci_hba_data hba; /* 'C' inheritance - must be first */
spinlock_t dinosaur_pen;
unsigned long txn_addr; /* EIR addr to generate interrupt */
u32 txn_data; /* EIR data assign to each dino */
u32 imr; /* IRQ's which are enabled */
int global_irq[DINO_LOCAL_IRQS]; /* map IMR bit to global irq */
#ifdef DINO_DEBUG
unsigned int dino_irr0; /* save most recent IRQ line stat */
#endif
};
/* Looks nice and keeps the compiler happy */
#define DINO_DEV(d) ((struct dino_device *) d)
/*
* Dino Configuration Space Accessor Functions
*/
#define DINO_CFG_TOK(bus,dfn,pos) ((u32) ((bus)<<16 | (dfn)<<8 | (pos)))
/*
* keep the current highest bus count to assist in allocating busses. This
* tries to keep a global bus count total so that when we discover an
* entirely new bus, it can be given a unique bus number.
*/
static int dino_current_bus = 0;
static int dino_cfg_read(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 *val)
{
struct dino_device *d = DINO_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 v = DINO_CFG_TOK(local_bus, devfn, where & ~3);
void __iomem *base_addr = d->hba.base_addr;
unsigned long flags;
DBG("%s: %p, %d, %d, %d\n", __func__, base_addr, devfn, where,
size);
spin_lock_irqsave(&d->dinosaur_pen, flags);
/* tell HW which CFG address */
__raw_writel(v, base_addr + DINO_PCI_ADDR);
/* generate cfg read cycle */
if (size == 1) {
*val = readb(base_addr + DINO_CONFIG_DATA + (where & 3));
} else if (size == 2) {
*val = readw(base_addr + DINO_CONFIG_DATA + (where & 2));
} else if (size == 4) {
*val = readl(base_addr + DINO_CONFIG_DATA);
}
spin_unlock_irqrestore(&d->dinosaur_pen, flags);
return 0;
}
/*
* Dino address stepping "feature":
* When address stepping, Dino attempts to drive the bus one cycle too soon
* even though the type of cycle (config vs. MMIO) might be different.
* The read of Ven/Prod ID is harmless and avoids Dino's address stepping.
*/
static int dino_cfg_write(struct pci_bus *bus, unsigned int devfn, int where,
int size, u32 val)
{
struct dino_device *d = DINO_DEV(parisc_walk_tree(bus->bridge));
u32 local_bus = (bus->parent == NULL) ? 0 : bus->busn_res.start;
u32 v = DINO_CFG_TOK(local_bus, devfn, where & ~3);
void __iomem *base_addr = d->hba.base_addr;
unsigned long flags;
DBG("%s: %p, %d, %d, %d\n", __func__, base_addr, devfn, where,
size);
spin_lock_irqsave(&d->dinosaur_pen, flags);
/* avoid address stepping feature */
__raw_writel(v & 0xffffff00, base_addr + DINO_PCI_ADDR);
__raw_readl(base_addr + DINO_CONFIG_DATA);
/* tell HW which CFG address */
__raw_writel(v, base_addr + DINO_PCI_ADDR);
/* generate cfg read cycle */
if (size == 1) {
writeb(val, base_addr + DINO_CONFIG_DATA + (where & 3));
} else if (size == 2) {
writew(val, base_addr + DINO_CONFIG_DATA + (where & 2));
} else if (size == 4) {
writel(val, base_addr + DINO_CONFIG_DATA);
}
spin_unlock_irqrestore(&d->dinosaur_pen, flags);
return 0;
}
static struct pci_ops dino_cfg_ops = {
.read = dino_cfg_read,
.write = dino_cfg_write,
};
/*
* Dino "I/O Port" Space Accessor Functions
*
* Many PCI devices don't require use of I/O port space (eg Tulip,
* NCR720) since they export the same registers to both MMIO and
* I/O port space. Performance is going to stink if drivers use
* I/O port instead of MMIO.
*/
#define DINO_PORT_IN(type, size, mask) \
static u##size dino_in##size (struct pci_hba_data *d, u16 addr) \
{ \
u##size v; \
unsigned long flags; \
spin_lock_irqsave(&(DINO_DEV(d)->dinosaur_pen), flags); \
/* tell HW which IO Port address */ \
__raw_writel((u32) addr, d->base_addr + DINO_PCI_ADDR); \
/* generate I/O PORT read cycle */ \
v = read##type(d->base_addr+DINO_IO_DATA+(addr&mask)); \
spin_unlock_irqrestore(&(DINO_DEV(d)->dinosaur_pen), flags); \
return v; \
}
DINO_PORT_IN(b, 8, 3)
DINO_PORT_IN(w, 16, 2)
DINO_PORT_IN(l, 32, 0)
#define DINO_PORT_OUT(type, size, mask) \
static void dino_out##size (struct pci_hba_data *d, u16 addr, u##size val) \
{ \
unsigned long flags; \
spin_lock_irqsave(&(DINO_DEV(d)->dinosaur_pen), flags); \
/* tell HW which IO port address */ \
__raw_writel((u32) addr, d->base_addr + DINO_PCI_ADDR); \
/* generate cfg write cycle */ \
write##type(val, d->base_addr+DINO_IO_DATA+(addr&mask)); \
spin_unlock_irqrestore(&(DINO_DEV(d)->dinosaur_pen), flags); \
}
DINO_PORT_OUT(b, 8, 3)
DINO_PORT_OUT(w, 16, 2)
DINO_PORT_OUT(l, 32, 0)
static struct pci_port_ops dino_port_ops = {
.inb = dino_in8,
.inw = dino_in16,
.inl = dino_in32,
.outb = dino_out8,
.outw = dino_out16,
.outl = dino_out32
};
static void dino_mask_irq(struct irq_data *d)
{
struct dino_device *dino_dev = irq_data_get_irq_chip_data(d);
int local_irq = gsc_find_local_irq(d->irq, dino_dev->global_irq, DINO_LOCAL_IRQS);
DBG(KERN_WARNING "%s(0x%p, %d)\n", __func__, dino_dev, d->irq);
/* Clear the matching bit in the IMR register */
dino_dev->imr &= ~(DINO_MASK_IRQ(local_irq));
__raw_writel(dino_dev->imr, dino_dev->hba.base_addr+DINO_IMR);
}
static void dino_unmask_irq(struct irq_data *d)
{
struct dino_device *dino_dev = irq_data_get_irq_chip_data(d);
int local_irq = gsc_find_local_irq(d->irq, dino_dev->global_irq, DINO_LOCAL_IRQS);
u32 tmp;
DBG(KERN_WARNING "%s(0x%p, %d)\n", __func__, dino_dev, d->irq);
/*
** clear pending IRQ bits
**
** This does NOT change ILR state!
** See comment below for ILR usage.
*/
__raw_readl(dino_dev->hba.base_addr+DINO_IPR);
/* set the matching bit in the IMR register */
dino_dev->imr |= DINO_MASK_IRQ(local_irq); /* used in dino_isr() */
__raw_writel( dino_dev->imr, dino_dev->hba.base_addr+DINO_IMR);
/* Emulate "Level Triggered" Interrupt
** Basically, a driver is blowing it if the IRQ line is asserted
** while the IRQ is disabled. But tulip.c seems to do that....
** Give 'em a kluge award and a nice round of applause!
**
** The gsc_write will generate an interrupt which invokes dino_isr().
** dino_isr() will read IPR and find nothing. But then catch this
** when it also checks ILR.
*/
tmp = __raw_readl(dino_dev->hba.base_addr+DINO_ILR);
if (tmp & DINO_MASK_IRQ(local_irq)) {
DBG(KERN_WARNING "%s(): IRQ asserted! (ILR 0x%x)\n",
__func__, tmp);
gsc_writel(dino_dev->txn_data, dino_dev->txn_addr);
}
}
static struct irq_chip dino_interrupt_type = {
.name = "GSC-PCI",
.irq_unmask = dino_unmask_irq,
.irq_mask = dino_mask_irq,
};
/*
* Handle a Processor interrupt generated by Dino.
*
* ilr_loop counter is a kluge to prevent a "stuck" IRQ line from
* wedging the CPU. Could be removed or made optional at some point.
*/
static irqreturn_t dino_isr(int irq, void *intr_dev)
{
struct dino_device *dino_dev = intr_dev;
u32 mask;
int ilr_loop = 100;
/* read and acknowledge pending interrupts */
#ifdef DINO_DEBUG
dino_dev->dino_irr0 =
#endif
mask = __raw_readl(dino_dev->hba.base_addr+DINO_IRR0) & DINO_IRR_MASK;
if (mask == 0)
return IRQ_NONE;
ilr_again:
do {
int local_irq = __ffs(mask);
int irq = dino_dev->global_irq[local_irq];
DBG(KERN_DEBUG "%s(%d, %p) mask 0x%x\n",
__func__, irq, intr_dev, mask);
generic_handle_irq(irq);
mask &= ~(1 << local_irq);
} while (mask);
/* Support for level triggered IRQ lines.
**
** Dropping this support would make this routine *much* faster.
** But since PCI requires level triggered IRQ line to share lines...
** device drivers may assume lines are level triggered (and not
** edge triggered like EISA/ISA can be).
*/
mask = __raw_readl(dino_dev->hba.base_addr+DINO_ILR) & dino_dev->imr;
if (mask) {
if (--ilr_loop > 0)
goto ilr_again;
printk(KERN_ERR "Dino 0x%p: stuck interrupt %d\n",
dino_dev->hba.base_addr, mask);
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static void dino_assign_irq(struct dino_device *dino, int local_irq, int *irqp)
{
int irq = gsc_assign_irq(&dino_interrupt_type, dino);
if (irq == NO_IRQ)
return;
*irqp = irq;
dino->global_irq[local_irq] = irq;
}
static void dino_choose_irq(struct parisc_device *dev, void *ctrl)
{
int irq;
struct dino_device *dino = ctrl;
switch (dev->id.sversion) {
case 0x00084: irq = 8; break; /* PS/2 */
case 0x0008c: irq = 10; break; /* RS232 */
case 0x00096: irq = 8; break; /* PS/2 */
default: return; /* Unknown */
}
dino_assign_irq(dino, irq, &dev->irq);
}
/*
* Cirrus 6832 Cardbus reports wrong irq on RDI Tadpole PARISC Laptop (deller@gmx.de)
* (the irqs are off-by-one, not sure yet if this is a cirrus, dino-hardware or dino-driver problem...)
*/
static void quirk_cirrus_cardbus(struct pci_dev *dev)
{
u8 new_irq = dev->irq - 1;
printk(KERN_INFO "PCI: Cirrus Cardbus IRQ fixup for %s, from %d to %d\n",
pci_name(dev), dev->irq, new_irq);
dev->irq = new_irq;
}
DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_CIRRUS, PCI_DEVICE_ID_CIRRUS_6832, quirk_cirrus_cardbus );
static void __init
dino_bios_init(void)
{
DBG("dino_bios_init\n");
}
/*
* dino_card_setup - Set up the memory space for a Dino in card mode.
* @bus: the bus under this dino
*
* Claim an 8MB chunk of unused IO space and call the generic PCI routines
* to set up the addresses of the devices on this bus.
*/
#define _8MB 0x00800000UL
static void __init
dino_card_setup(struct pci_bus *bus, void __iomem *base_addr)
{
int i;
struct dino_device *dino_dev = DINO_DEV(parisc_walk_tree(bus->bridge));
struct resource *res;
char name[128];
int size;
res = &dino_dev->hba.lmmio_space;
res->flags = IORESOURCE_MEM;
size = scnprintf(name, sizeof(name), "Dino LMMIO (%s)",
dev_name(bus->bridge));
res->name = kmalloc(size+1, GFP_KERNEL);
if(res->name)
strcpy((char *)res->name, name);
else
res->name = dino_dev->hba.lmmio_space.name;
if (ccio_allocate_resource(dino_dev->hba.dev, res, _8MB,
F_EXTEND(0xf0000000UL) | _8MB,
F_EXTEND(0xffffffffUL) &~ _8MB, _8MB) < 0) {
struct pci_dev *dev, *tmp;
printk(KERN_ERR "Dino: cannot attach bus %s\n",
dev_name(bus->bridge));
/* kill the bus, we can't do anything with it */
list_for_each_entry_safe(dev, tmp, &bus->devices, bus_list) {
list_del(&dev->bus_list);
}
return;
}
bus->resource[1] = res;
bus->resource[0] = &(dino_dev->hba.io_space);
/* Now tell dino what range it has */
for (i = 1; i < 31; i++) {
if (res->start == F_EXTEND(0xf0000000UL | (i * _8MB)))
break;
}
DBG("DINO GSC WRITE i=%d, start=%lx, dino addr = %p\n",
i, res->start, base_addr + DINO_IO_ADDR_EN);
__raw_writel(1 << i, base_addr + DINO_IO_ADDR_EN);
}
static void __init
dino_card_fixup(struct pci_dev *dev)
{
u32 irq_pin;
/*
** REVISIT: card-mode PCI-PCI expansion chassis do exist.
** Not sure they were ever productized.
** Die here since we'll die later in dino_inb() anyway.
*/
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
panic("Card-Mode Dino: PCI-PCI Bridge not supported\n");
}
/*
** Set Latency Timer to 0xff (not a shared bus)
** Set CACHELINE_SIZE.
*/
dino_cfg_write(dev->bus, dev->devfn,
PCI_CACHE_LINE_SIZE, 2, 0xff00 | L1_CACHE_BYTES/4);
/*
** Program INT_LINE for card-mode devices.
** The cards are hardwired according to this algorithm.
** And it doesn't matter if PPB's are present or not since
** the IRQ lines bypass the PPB.
**
** "-1" converts INTA-D (1-4) to PCIINTA-D (0-3) range.
** The additional "-1" adjusts for skewing the IRQ<->slot.
*/
dino_cfg_read(dev->bus, dev->devfn, PCI_INTERRUPT_PIN, 1, &irq_pin);
dev->irq = pci_swizzle_interrupt_pin(dev, irq_pin) - 1;
/* Shouldn't really need to do this but it's in case someone tries
** to bypass PCI services and look at the card themselves.
*/
dino_cfg_write(dev->bus, dev->devfn, PCI_INTERRUPT_LINE, 1, dev->irq);
}
/* The alignment contraints for PCI bridges under dino */
#define DINO_BRIDGE_ALIGN 0x100000
static void __init
dino_fixup_bus(struct pci_bus *bus)
{
struct pci_dev *dev;
struct dino_device *dino_dev = DINO_DEV(parisc_walk_tree(bus->bridge));
DBG(KERN_WARNING "%s(0x%p) bus %d platform_data 0x%p\n",
__func__, bus, bus->busn_res.start,
bus->bridge->platform_data);
/* Firmware doesn't set up card-mode dino, so we have to */
if (is_card_dino(&dino_dev->hba.dev->id)) {
dino_card_setup(bus, dino_dev->hba.base_addr);
} else if (bus->parent) {
int i;
pci_read_bridge_bases(bus);
for(i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
if((bus->self->resource[i].flags &
(IORESOURCE_IO | IORESOURCE_MEM)) == 0)
continue;
if(bus->self->resource[i].flags & IORESOURCE_MEM) {
/* There's a quirk to alignment of
* bridge memory resources: the start
* is the alignment and start-end is
* the size. However, firmware will
* have assigned start and end, so we
* need to take this into account */
bus->self->resource[i].end = bus->self->resource[i].end - bus->self->resource[i].start + DINO_BRIDGE_ALIGN;
bus->self->resource[i].start = DINO_BRIDGE_ALIGN;
}
DBG("DEBUG %s assigning %d [0x%lx,0x%lx]\n",
dev_name(&bus->self->dev), i,
bus->self->resource[i].start,
bus->self->resource[i].end);
WARN_ON(pci_assign_resource(bus->self, i));
DBG("DEBUG %s after assign %d [0x%lx,0x%lx]\n",
dev_name(&bus->self->dev), i,
bus->self->resource[i].start,
bus->self->resource[i].end);
}
}
list_for_each_entry(dev, &bus->devices, bus_list) {
if (is_card_dino(&dino_dev->hba.dev->id))
dino_card_fixup(dev);
/*
** P2PB's only have 2 BARs, no IRQs.
** I'd like to just ignore them for now.
*/
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI)
continue;
/* null out the ROM resource if there is one (we don't
* care about an expansion rom on parisc, since it
* usually contains (x86) bios code) */
dev->resource[PCI_ROM_RESOURCE].flags = 0;
if(dev->irq == 255) {
#define DINO_FIX_UNASSIGNED_INTERRUPTS
#ifdef DINO_FIX_UNASSIGNED_INTERRUPTS
/* This code tries to assign an unassigned
* interrupt. Leave it disabled unless you
* *really* know what you're doing since the
* pin<->interrupt line mapping varies by bus
* and machine */
u32 irq_pin;
dino_cfg_read(dev->bus, dev->devfn,
PCI_INTERRUPT_PIN, 1, &irq_pin);
irq_pin = pci_swizzle_interrupt_pin(dev, irq_pin) - 1;
printk(KERN_WARNING "Device %s has undefined IRQ, "
"setting to %d\n", pci_name(dev), irq_pin);
dino_cfg_write(dev->bus, dev->devfn,
PCI_INTERRUPT_LINE, 1, irq_pin);
dino_assign_irq(dino_dev, irq_pin, &dev->irq);
#else
dev->irq = 65535;
printk(KERN_WARNING "Device %s has unassigned IRQ\n", pci_name(dev));
#endif
} else {
/* Adjust INT_LINE for that busses region */
dino_assign_irq(dino_dev, dev->irq, &dev->irq);
}
}
}
static struct pci_bios_ops dino_bios_ops = {
.init = dino_bios_init,
.fixup_bus = dino_fixup_bus
};
/*
* Initialise a DINO controller chip
*/
static void __init
dino_card_init(struct dino_device *dino_dev)
{
u32 brdg_feat = 0x00784e05;
unsigned long status;
status = __raw_readl(dino_dev->hba.base_addr+DINO_IO_STATUS);
if (status & 0x0000ff80) {
__raw_writel(0x00000005,
dino_dev->hba.base_addr+DINO_IO_COMMAND);
udelay(1);
}
__raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_GMASK);
__raw_writel(0x00000001, dino_dev->hba.base_addr+DINO_IO_FBB_EN);
__raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_ICR);
#if 1
/* REVISIT - should be a runtime check (eg if (CPU_IS_PCX_L) ...) */
/*
** PCX-L processors don't support XQL like Dino wants it.
** PCX-L2 ignore XQL signal and it doesn't matter.
*/
brdg_feat &= ~0x4; /* UXQL */
#endif
__raw_writel( brdg_feat, dino_dev->hba.base_addr+DINO_BRDG_FEAT);
/*
** Don't enable address decoding until we know which I/O range
** currently is available from the host. Only affects MMIO
** and not I/O port space.
*/
__raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_IO_ADDR_EN);
__raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_DAMODE);
__raw_writel(0x00222222, dino_dev->hba.base_addr+DINO_PCIROR);
__raw_writel(0x00222222, dino_dev->hba.base_addr+DINO_PCIWOR);
__raw_writel(0x00000040, dino_dev->hba.base_addr+DINO_MLTIM);
__raw_writel(0x00000080, dino_dev->hba.base_addr+DINO_IO_CONTROL);
__raw_writel(0x0000008c, dino_dev->hba.base_addr+DINO_TLTIM);
/* Disable PAMR before writing PAPR */
__raw_writel(0x0000007e, dino_dev->hba.base_addr+DINO_PAMR);
__raw_writel(0x0000007f, dino_dev->hba.base_addr+DINO_PAPR);
__raw_writel(0x00000000, dino_dev->hba.base_addr+DINO_PAMR);
/*
** Dino ERS encourages enabling FBB (0x6f).
** We can't until we know *all* devices below us can support it.
** (Something in device configuration header tells us).
*/
__raw_writel(0x0000004f, dino_dev->hba.base_addr+DINO_PCICMD);
/* Somewhere, the PCI spec says give devices 1 second
** to recover from the #RESET being de-asserted.
** Experience shows most devices only need 10ms.
** This short-cut speeds up booting significantly.
*/
mdelay(pci_post_reset_delay);
}
static int __init
dino_bridge_init(struct dino_device *dino_dev, const char *name)
{
unsigned long io_addr;
int result, i, count=0;
struct resource *res, *prevres = NULL;
/*
* Decoding IO_ADDR_EN only works for Built-in Dino
* since PDC has already initialized this.
*/
io_addr = __raw_readl(dino_dev->hba.base_addr + DINO_IO_ADDR_EN);
if (io_addr == 0) {
printk(KERN_WARNING "%s: No PCI devices enabled.\n", name);
return -ENODEV;
}
res = &dino_dev->hba.lmmio_space;
for (i = 0; i < 32; i++) {
unsigned long start, end;
if((io_addr & (1 << i)) == 0)
continue;
start = F_EXTEND(0xf0000000UL) | (i << 23);
end = start + 8 * 1024 * 1024 - 1;
DBG("DINO RANGE %d is at 0x%lx-0x%lx\n", count,
start, end);
if(prevres && prevres->end + 1 == start) {
prevres->end = end;
} else {
if(count >= DINO_MAX_LMMIO_RESOURCES) {
printk(KERN_ERR "%s is out of resource windows for range %d (0x%lx-0x%lx)\n", name, count, start, end);
break;
}
prevres = res;
res->start = start;
res->end = end;
res->flags = IORESOURCE_MEM;
res->name = kmalloc(64, GFP_KERNEL);
if(res->name)
snprintf((char *)res->name, 64, "%s LMMIO %d",
name, count);
res++;
count++;
}
}
res = &dino_dev->hba.lmmio_space;
for(i = 0; i < DINO_MAX_LMMIO_RESOURCES; i++) {
if(res[i].flags == 0)
break;
result = ccio_request_resource(dino_dev->hba.dev, &res[i]);
if (result < 0) {
printk(KERN_ERR "%s: failed to claim PCI Bus address "
"space %d (0x%lx-0x%lx)!\n", name, i,
(unsigned long)res[i].start, (unsigned long)res[i].end);
return result;
}
}
return 0;
}
static int __init dino_common_init(struct parisc_device *dev,
struct dino_device *dino_dev, const char *name)
{
int status;
u32 eim;
struct gsc_irq gsc_irq;
struct resource *res;
pcibios_register_hba(&dino_dev->hba);
pci_bios = &dino_bios_ops; /* used by pci_scan_bus() */
pci_port = &dino_port_ops;
/*
** Note: SMP systems can make use of IRR1/IAR1 registers
** But it won't buy much performance except in very
** specific applications/configurations. Note Dino
** still only has 11 IRQ input lines - just map some of them
** to a different processor.
*/
dev->irq = gsc_alloc_irq(&gsc_irq);
dino_dev->txn_addr = gsc_irq.txn_addr;
dino_dev->txn_data = gsc_irq.txn_data;
eim = ((u32) gsc_irq.txn_addr) | gsc_irq.txn_data;
/*
** Dino needs a PA "IRQ" to get a processor's attention.
** arch/parisc/kernel/irq.c returns an EIRR bit.
*/
if (dev->irq < 0) {
printk(KERN_WARNING "%s: gsc_alloc_irq() failed\n", name);
return 1;
}
status = request_irq(dev->irq, dino_isr, 0, name, dino_dev);
if (status) {
printk(KERN_WARNING "%s: request_irq() failed with %d\n",
name, status);
return 1;
}
/* Support the serial port which is sometimes attached on built-in
* Dino / Cujo chips.
*/
gsc_fixup_irqs(dev, dino_dev, dino_choose_irq);
/*
** This enables DINO to generate interrupts when it sees
** any of its inputs *change*. Just asserting an IRQ
** before it's enabled (ie unmasked) isn't good enough.
*/
__raw_writel(eim, dino_dev->hba.base_addr+DINO_IAR0);
/*
** Some platforms don't clear Dino's IRR0 register at boot time.
** Reading will clear it now.
*/
__raw_readl(dino_dev->hba.base_addr+DINO_IRR0);
/* allocate I/O Port resource region */
res = &dino_dev->hba.io_space;
if (!is_cujo(&dev->id)) {
res->name = "Dino I/O Port";
} else {
res->name = "Cujo I/O Port";
}
res->start = HBA_PORT_BASE(dino_dev->hba.hba_num);
res->end = res->start + (HBA_PORT_SPACE_SIZE - 1);
res->flags = IORESOURCE_IO; /* do not mark it busy ! */
if (request_resource(&ioport_resource, res) < 0) {
printk(KERN_ERR "%s: request I/O Port region failed "
"0x%lx/%lx (hpa 0x%p)\n",
name, (unsigned long)res->start, (unsigned long)res->end,
dino_dev->hba.base_addr);
return 1;
}
return 0;
}
#define CUJO_RAVEN_ADDR F_EXTEND(0xf1000000UL)
#define CUJO_FIREHAWK_ADDR F_EXTEND(0xf1604000UL)
#define CUJO_RAVEN_BADPAGE 0x01003000UL
#define CUJO_FIREHAWK_BADPAGE 0x01607000UL
static const char *dino_vers[] = {
"2.0",
"2.1",
"3.0",
"3.1"
};
static const char *cujo_vers[] = {
"1.0",
"2.0"
};
void ccio_cujo20_fixup(struct parisc_device *dev, u32 iovp);
/*
** Determine if dino should claim this chip (return 0) or not (return 1).
** If so, initialize the chip appropriately (card-mode vs bridge mode).
** Much of the initialization is common though.
*/
static int __init dino_probe(struct parisc_device *dev)
{
struct dino_device *dino_dev; // Dino specific control struct
const char *version = "unknown";
char *name;
int is_cujo = 0;
LIST_HEAD(resources);
struct pci_bus *bus;
unsigned long hpa = dev->hpa.start;
int max;
name = "Dino";
if (is_card_dino(&dev->id)) {
version = "3.x (card mode)";
} else {
if (!is_cujo(&dev->id)) {
if (dev->id.hversion_rev < 4) {
version = dino_vers[dev->id.hversion_rev];
}
} else {
name = "Cujo";
is_cujo = 1;
if (dev->id.hversion_rev < 2) {
version = cujo_vers[dev->id.hversion_rev];
}
}
}
printk("%s version %s found at 0x%lx\n", name, version, hpa);
if (!request_mem_region(hpa, PAGE_SIZE, name)) {
printk(KERN_ERR "DINO: Hey! Someone took my MMIO space (0x%ld)!\n",
hpa);
return 1;
}
/* Check for bugs */
if (is_cujo && dev->id.hversion_rev == 1) {
#ifdef CONFIG_IOMMU_CCIO
printk(KERN_WARNING "Enabling Cujo 2.0 bug workaround\n");
if (hpa == (unsigned long)CUJO_RAVEN_ADDR) {
ccio_cujo20_fixup(dev, CUJO_RAVEN_BADPAGE);
} else if (hpa == (unsigned long)CUJO_FIREHAWK_ADDR) {
ccio_cujo20_fixup(dev, CUJO_FIREHAWK_BADPAGE);
} else {
printk("Don't recognise Cujo at address 0x%lx, not enabling workaround\n", hpa);
}
#endif
} else if (!is_cujo && !is_card_dino(&dev->id) &&
dev->id.hversion_rev < 3) {
printk(KERN_WARNING
"The GSCtoPCI (Dino hrev %d) bus converter found may exhibit\n"
"data corruption. See Service Note Numbers: A4190A-01, A4191A-01.\n"
"Systems shipped after Aug 20, 1997 will not exhibit this problem.\n"
"Models affected: C180, C160, C160L, B160L, and B132L workstations.\n\n",
dev->id.hversion_rev);
/* REVISIT: why are C200/C240 listed in the README table but not
** "Models affected"? Could be an omission in the original literature.
*/
}
dino_dev = kzalloc(sizeof(struct dino_device), GFP_KERNEL);
if (!dino_dev) {
printk("dino_init_chip - couldn't alloc dino_device\n");
return 1;
}
dino_dev->hba.dev = dev;
dino_dev->hba.base_addr = ioremap_nocache(hpa, 4096);
dino_dev->hba.lmmio_space_offset = 0; /* CPU addrs == bus addrs */
spin_lock_init(&dino_dev->dinosaur_pen);
dino_dev->hba.iommu = ccio_get_iommu(dev);
if (is_card_dino(&dev->id)) {
dino_card_init(dino_dev);
} else {
dino_bridge_init(dino_dev, name);
}
if (dino_common_init(dev, dino_dev, name))
return 1;
dev->dev.platform_data = dino_dev;
pci_add_resource_offset(&resources, &dino_dev->hba.io_space,
HBA_PORT_BASE(dino_dev->hba.hba_num));
if (dino_dev->hba.lmmio_space.flags)
pci_add_resource_offset(&resources, &dino_dev->hba.lmmio_space,
dino_dev->hba.lmmio_space_offset);
if (dino_dev->hba.elmmio_space.flags)
pci_add_resource_offset(&resources, &dino_dev->hba.elmmio_space,
dino_dev->hba.lmmio_space_offset);
if (dino_dev->hba.gmmio_space.flags)
pci_add_resource(&resources, &dino_dev->hba.gmmio_space);
dino_dev->hba.bus_num.start = dino_current_bus;
dino_dev->hba.bus_num.end = 255;
dino_dev->hba.bus_num.flags = IORESOURCE_BUS;
pci_add_resource(&resources, &dino_dev->hba.bus_num);
/*
** It's not used to avoid chicken/egg problems
** with configuration accessor functions.
*/
dino_dev->hba.hba_bus = bus = pci_create_root_bus(&dev->dev,
dino_current_bus, &dino_cfg_ops, NULL, &resources);
if (!bus) {
printk(KERN_ERR "ERROR: failed to scan PCI bus on %s (duplicate bus number %d?)\n",
dev_name(&dev->dev), dino_current_bus);
pci_free_resource_list(&resources);
/* increment the bus number in case of duplicates */
dino_current_bus++;
return 0;
}
max = pci_scan_child_bus(bus);
pci_bus_update_busn_res_end(bus, max);
/* This code *depends* on scanning being single threaded
* if it isn't, this global bus number count will fail
*/
dino_current_bus = max + 1;
pci_bus_assign_resources(bus);
pci_bus_add_devices(bus);
return 0;
}
/*
* Normally, we would just test sversion. But the Elroy PCI adapter has
* the same sversion as Dino, so we have to check hversion as well.
* Unfortunately, the J2240 PDC reports the wrong hversion for the first
* Dino, so we have to test for Dino, Cujo and Dino-in-a-J2240.
* For card-mode Dino, most machines report an sversion of 9D. But 715
* and 725 firmware misreport it as 0x08080 for no adequately explained
* reason.
*/
static struct parisc_device_id dino_tbl[] = {
{ HPHW_A_DMA, HVERSION_REV_ANY_ID, 0x004, 0x0009D },/* Card-mode Dino */
{ HPHW_A_DMA, HVERSION_REV_ANY_ID, HVERSION_ANY_ID, 0x08080 }, /* XXX */
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, 0x680, 0xa }, /* Bridge-mode Dino */
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, 0x682, 0xa }, /* Bridge-mode Cujo */
{ HPHW_BRIDGE, HVERSION_REV_ANY_ID, 0x05d, 0xa }, /* Dino in a J2240 */
{ 0, }
};
static struct parisc_driver dino_driver = {
.name = "dino",
.id_table = dino_tbl,
.probe = dino_probe,
};
/*
* One time initialization to let the world know Dino is here.
* This is the only routine which is NOT static.
* Must be called exactly once before pci_init().
*/
int __init dino_init(void)
{
register_parisc_driver(&dino_driver);
return 0;
}