OpenCloudOS-Kernel/net/mac80211/key.c

1098 lines
30 KiB
C

/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/list.h>
#include <linux/rcupdate.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <net/mac80211.h>
#include <asm/unaligned.h>
#include "ieee80211_i.h"
#include "driver-ops.h"
#include "debugfs_key.h"
#include "aes_ccm.h"
#include "aes_cmac.h"
#include "aes_gmac.h"
#include "aes_gcm.h"
/**
* DOC: Key handling basics
*
* Key handling in mac80211 is done based on per-interface (sub_if_data)
* keys and per-station keys. Since each station belongs to an interface,
* each station key also belongs to that interface.
*
* Hardware acceleration is done on a best-effort basis for algorithms
* that are implemented in software, for each key the hardware is asked
* to enable that key for offloading but if it cannot do that the key is
* simply kept for software encryption (unless it is for an algorithm
* that isn't implemented in software).
* There is currently no way of knowing whether a key is handled in SW
* or HW except by looking into debugfs.
*
* All key management is internally protected by a mutex. Within all
* other parts of mac80211, key references are, just as STA structure
* references, protected by RCU. Note, however, that some things are
* unprotected, namely the key->sta dereferences within the hardware
* acceleration functions. This means that sta_info_destroy() must
* remove the key which waits for an RCU grace period.
*/
static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
static void assert_key_lock(struct ieee80211_local *local)
{
lockdep_assert_held(&local->key_mtx);
}
static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
{
/*
* When this count is zero, SKB resizing for allocating tailroom
* for IV or MMIC is skipped. But, this check has created two race
* cases in xmit path while transiting from zero count to one:
*
* 1. SKB resize was skipped because no key was added but just before
* the xmit key is added and SW encryption kicks off.
*
* 2. SKB resize was skipped because all the keys were hw planted but
* just before xmit one of the key is deleted and SW encryption kicks
* off.
*
* In both the above case SW encryption will find not enough space for
* tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
*
* Solution has been explained at
* http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
*/
if (!sdata->crypto_tx_tailroom_needed_cnt++) {
/*
* Flush all XMIT packets currently using HW encryption or no
* encryption at all if the count transition is from 0 -> 1.
*/
synchronize_net();
}
}
static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
{
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
int ret = -EOPNOTSUPP;
might_sleep();
if (key->flags & KEY_FLAG_TAINTED) {
/* If we get here, it's during resume and the key is
* tainted so shouldn't be used/programmed any more.
* However, its flags may still indicate that it was
* programmed into the device (since we're in resume)
* so clear that flag now to avoid trying to remove
* it again later.
*/
key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
return -EINVAL;
}
if (!key->local->ops->set_key)
goto out_unsupported;
assert_key_lock(key->local);
sta = key->sta;
/*
* If this is a per-STA GTK, check if it
* is supported; if not, return.
*/
if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
!(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
goto out_unsupported;
if (sta && !sta->uploaded)
goto out_unsupported;
sdata = key->sdata;
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
/*
* The driver doesn't know anything about VLAN interfaces.
* Hence, don't send GTKs for VLAN interfaces to the driver.
*/
if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
goto out_unsupported;
}
ret = drv_set_key(key->local, SET_KEY, sdata,
sta ? &sta->sta : NULL, &key->conf);
if (!ret) {
key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
(key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
sdata->crypto_tx_tailroom_needed_cnt--;
WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
return 0;
}
if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
sdata_err(sdata,
"failed to set key (%d, %pM) to hardware (%d)\n",
key->conf.keyidx,
sta ? sta->sta.addr : bcast_addr, ret);
out_unsupported:
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
case WLAN_CIPHER_SUITE_TKIP:
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
/* all of these we can do in software - if driver can */
if (ret == 1)
return 0;
if (key->local->hw.flags & IEEE80211_HW_SW_CRYPTO_CONTROL)
return -EINVAL;
return 0;
default:
return -EINVAL;
}
}
static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
{
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
int ret;
might_sleep();
if (!key || !key->local->ops->set_key)
return;
assert_key_lock(key->local);
if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
return;
sta = key->sta;
sdata = key->sdata;
if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
(key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
increment_tailroom_need_count(sdata);
ret = drv_set_key(key->local, DISABLE_KEY, sdata,
sta ? &sta->sta : NULL, &key->conf);
if (ret)
sdata_err(sdata,
"failed to remove key (%d, %pM) from hardware (%d)\n",
key->conf.keyidx,
sta ? sta->sta.addr : bcast_addr, ret);
key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
}
static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
int idx, bool uni, bool multi)
{
struct ieee80211_key *key = NULL;
assert_key_lock(sdata->local);
if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
if (uni) {
rcu_assign_pointer(sdata->default_unicast_key, key);
drv_set_default_unicast_key(sdata->local, sdata, idx);
}
if (multi)
rcu_assign_pointer(sdata->default_multicast_key, key);
ieee80211_debugfs_key_update_default(sdata);
}
void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
bool uni, bool multi)
{
mutex_lock(&sdata->local->key_mtx);
__ieee80211_set_default_key(sdata, idx, uni, multi);
mutex_unlock(&sdata->local->key_mtx);
}
static void
__ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
{
struct ieee80211_key *key = NULL;
assert_key_lock(sdata->local);
if (idx >= NUM_DEFAULT_KEYS &&
idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
rcu_assign_pointer(sdata->default_mgmt_key, key);
ieee80211_debugfs_key_update_default(sdata);
}
void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
int idx)
{
mutex_lock(&sdata->local->key_mtx);
__ieee80211_set_default_mgmt_key(sdata, idx);
mutex_unlock(&sdata->local->key_mtx);
}
static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
struct sta_info *sta,
bool pairwise,
struct ieee80211_key *old,
struct ieee80211_key *new)
{
int idx;
bool defunikey, defmultikey, defmgmtkey;
/* caller must provide at least one old/new */
if (WARN_ON(!new && !old))
return;
if (new)
list_add_tail(&new->list, &sdata->key_list);
WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
if (old)
idx = old->conf.keyidx;
else
idx = new->conf.keyidx;
if (sta) {
if (pairwise) {
rcu_assign_pointer(sta->ptk[idx], new);
sta->ptk_idx = idx;
} else {
rcu_assign_pointer(sta->gtk[idx], new);
sta->gtk_idx = idx;
}
} else {
defunikey = old &&
old == key_mtx_dereference(sdata->local,
sdata->default_unicast_key);
defmultikey = old &&
old == key_mtx_dereference(sdata->local,
sdata->default_multicast_key);
defmgmtkey = old &&
old == key_mtx_dereference(sdata->local,
sdata->default_mgmt_key);
if (defunikey && !new)
__ieee80211_set_default_key(sdata, -1, true, false);
if (defmultikey && !new)
__ieee80211_set_default_key(sdata, -1, false, true);
if (defmgmtkey && !new)
__ieee80211_set_default_mgmt_key(sdata, -1);
rcu_assign_pointer(sdata->keys[idx], new);
if (defunikey && new)
__ieee80211_set_default_key(sdata, new->conf.keyidx,
true, false);
if (defmultikey && new)
__ieee80211_set_default_key(sdata, new->conf.keyidx,
false, true);
if (defmgmtkey && new)
__ieee80211_set_default_mgmt_key(sdata,
new->conf.keyidx);
}
if (old)
list_del(&old->list);
}
struct ieee80211_key *
ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
const u8 *key_data,
size_t seq_len, const u8 *seq,
const struct ieee80211_cipher_scheme *cs)
{
struct ieee80211_key *key;
int i, j, err;
if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
return ERR_PTR(-EINVAL);
key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
if (!key)
return ERR_PTR(-ENOMEM);
/*
* Default to software encryption; we'll later upload the
* key to the hardware if possible.
*/
key->conf.flags = 0;
key->flags = 0;
key->conf.cipher = cipher;
key->conf.keyidx = idx;
key->conf.keylen = key_len;
switch (cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
key->conf.iv_len = IEEE80211_WEP_IV_LEN;
key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
break;
case WLAN_CIPHER_SUITE_TKIP:
key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
if (seq) {
for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
key->u.tkip.rx[i].iv32 =
get_unaligned_le32(&seq[2]);
key->u.tkip.rx[i].iv16 =
get_unaligned_le16(seq);
}
}
spin_lock_init(&key->u.tkip.txlock);
break;
case WLAN_CIPHER_SUITE_CCMP:
key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
if (seq) {
for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
key->u.ccmp.rx_pn[i][j] =
seq[IEEE80211_CCMP_PN_LEN - j - 1];
}
/*
* Initialize AES key state here as an optimization so that
* it does not need to be initialized for every packet.
*/
key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
key_data, key_len, IEEE80211_CCMP_MIC_LEN);
if (IS_ERR(key->u.ccmp.tfm)) {
err = PTR_ERR(key->u.ccmp.tfm);
kfree(key);
return ERR_PTR(err);
}
break;
case WLAN_CIPHER_SUITE_CCMP_256:
key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
key->u.ccmp.rx_pn[i][j] =
seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
/* Initialize AES key state here as an optimization so that
* it does not need to be initialized for every packet.
*/
key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
if (IS_ERR(key->u.ccmp.tfm)) {
err = PTR_ERR(key->u.ccmp.tfm);
kfree(key);
return ERR_PTR(err);
}
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
key->conf.iv_len = 0;
if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
key->conf.icv_len = sizeof(struct ieee80211_mmie);
else
key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
if (seq)
for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
key->u.aes_cmac.rx_pn[j] =
seq[IEEE80211_CMAC_PN_LEN - j - 1];
/*
* Initialize AES key state here as an optimization so that
* it does not need to be initialized for every packet.
*/
key->u.aes_cmac.tfm =
ieee80211_aes_cmac_key_setup(key_data, key_len);
if (IS_ERR(key->u.aes_cmac.tfm)) {
err = PTR_ERR(key->u.aes_cmac.tfm);
kfree(key);
return ERR_PTR(err);
}
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
key->conf.iv_len = 0;
key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
if (seq)
for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
key->u.aes_gmac.rx_pn[j] =
seq[IEEE80211_GMAC_PN_LEN - j - 1];
/* Initialize AES key state here as an optimization so that
* it does not need to be initialized for every packet.
*/
key->u.aes_gmac.tfm =
ieee80211_aes_gmac_key_setup(key_data, key_len);
if (IS_ERR(key->u.aes_gmac.tfm)) {
err = PTR_ERR(key->u.aes_gmac.tfm);
kfree(key);
return ERR_PTR(err);
}
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
key->u.gcmp.rx_pn[i][j] =
seq[IEEE80211_GCMP_PN_LEN - j - 1];
/* Initialize AES key state here as an optimization so that
* it does not need to be initialized for every packet.
*/
key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
key_len);
if (IS_ERR(key->u.gcmp.tfm)) {
err = PTR_ERR(key->u.gcmp.tfm);
kfree(key);
return ERR_PTR(err);
}
break;
default:
if (cs) {
size_t len = (seq_len > MAX_PN_LEN) ?
MAX_PN_LEN : seq_len;
key->conf.iv_len = cs->hdr_len;
key->conf.icv_len = cs->mic_len;
for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
for (j = 0; j < len; j++)
key->u.gen.rx_pn[i][j] =
seq[len - j - 1];
}
}
memcpy(key->conf.key, key_data, key_len);
INIT_LIST_HEAD(&key->list);
return key;
}
static void ieee80211_key_free_common(struct ieee80211_key *key)
{
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
ieee80211_aes_key_free(key->u.ccmp.tfm);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
break;
}
kzfree(key);
}
static void __ieee80211_key_destroy(struct ieee80211_key *key,
bool delay_tailroom)
{
if (key->local)
ieee80211_key_disable_hw_accel(key);
if (key->local) {
struct ieee80211_sub_if_data *sdata = key->sdata;
ieee80211_debugfs_key_remove(key);
if (delay_tailroom) {
/* see ieee80211_delayed_tailroom_dec */
sdata->crypto_tx_tailroom_pending_dec++;
schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
HZ/2);
} else {
sdata->crypto_tx_tailroom_needed_cnt--;
}
}
ieee80211_key_free_common(key);
}
static void ieee80211_key_destroy(struct ieee80211_key *key,
bool delay_tailroom)
{
if (!key)
return;
/*
* Synchronize so the TX path can no longer be using
* this key before we free/remove it.
*/
synchronize_net();
__ieee80211_key_destroy(key, delay_tailroom);
}
void ieee80211_key_free_unused(struct ieee80211_key *key)
{
WARN_ON(key->sdata || key->local);
ieee80211_key_free_common(key);
}
int ieee80211_key_link(struct ieee80211_key *key,
struct ieee80211_sub_if_data *sdata,
struct sta_info *sta)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_key *old_key;
int idx, ret;
bool pairwise;
pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
idx = key->conf.keyidx;
key->local = sdata->local;
key->sdata = sdata;
key->sta = sta;
mutex_lock(&sdata->local->key_mtx);
if (sta && pairwise)
old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
else if (sta)
old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
else
old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
increment_tailroom_need_count(sdata);
ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
ieee80211_key_destroy(old_key, true);
ieee80211_debugfs_key_add(key);
if (!local->wowlan) {
ret = ieee80211_key_enable_hw_accel(key);
if (ret)
ieee80211_key_free(key, true);
} else {
ret = 0;
}
mutex_unlock(&sdata->local->key_mtx);
return ret;
}
void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
{
if (!key)
return;
/*
* Replace key with nothingness if it was ever used.
*/
if (key->sdata)
ieee80211_key_replace(key->sdata, key->sta,
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
key, NULL);
ieee80211_key_destroy(key, delay_tailroom);
}
void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
{
struct ieee80211_key *key;
ASSERT_RTNL();
if (WARN_ON(!ieee80211_sdata_running(sdata)))
return;
mutex_lock(&sdata->local->key_mtx);
sdata->crypto_tx_tailroom_needed_cnt = 0;
list_for_each_entry(key, &sdata->key_list, list) {
increment_tailroom_need_count(sdata);
ieee80211_key_enable_hw_accel(key);
}
mutex_unlock(&sdata->local->key_mtx);
}
void ieee80211_iter_keys(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
void (*iter)(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
struct ieee80211_key_conf *key,
void *data),
void *iter_data)
{
struct ieee80211_local *local = hw_to_local(hw);
struct ieee80211_key *key, *tmp;
struct ieee80211_sub_if_data *sdata;
ASSERT_RTNL();
mutex_lock(&local->key_mtx);
if (vif) {
sdata = vif_to_sdata(vif);
list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
iter(hw, &sdata->vif,
key->sta ? &key->sta->sta : NULL,
&key->conf, iter_data);
} else {
list_for_each_entry(sdata, &local->interfaces, list)
list_for_each_entry_safe(key, tmp,
&sdata->key_list, list)
iter(hw, &sdata->vif,
key->sta ? &key->sta->sta : NULL,
&key->conf, iter_data);
}
mutex_unlock(&local->key_mtx);
}
EXPORT_SYMBOL(ieee80211_iter_keys);
static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
struct list_head *keys)
{
struct ieee80211_key *key, *tmp;
sdata->crypto_tx_tailroom_needed_cnt -=
sdata->crypto_tx_tailroom_pending_dec;
sdata->crypto_tx_tailroom_pending_dec = 0;
ieee80211_debugfs_key_remove_mgmt_default(sdata);
list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
ieee80211_key_replace(key->sdata, key->sta,
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
key, NULL);
list_add_tail(&key->list, keys);
}
ieee80211_debugfs_key_update_default(sdata);
}
void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
bool force_synchronize)
{
struct ieee80211_local *local = sdata->local;
struct ieee80211_sub_if_data *vlan;
struct ieee80211_key *key, *tmp;
LIST_HEAD(keys);
cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
mutex_lock(&local->key_mtx);
ieee80211_free_keys_iface(sdata, &keys);
if (sdata->vif.type == NL80211_IFTYPE_AP) {
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
ieee80211_free_keys_iface(vlan, &keys);
}
if (!list_empty(&keys) || force_synchronize)
synchronize_net();
list_for_each_entry_safe(key, tmp, &keys, list)
__ieee80211_key_destroy(key, false);
WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
sdata->crypto_tx_tailroom_pending_dec);
if (sdata->vif.type == NL80211_IFTYPE_AP) {
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
vlan->crypto_tx_tailroom_pending_dec);
}
mutex_unlock(&local->key_mtx);
}
void ieee80211_free_sta_keys(struct ieee80211_local *local,
struct sta_info *sta)
{
struct ieee80211_key *key;
int i;
mutex_lock(&local->key_mtx);
for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
key = key_mtx_dereference(local, sta->gtk[i]);
if (!key)
continue;
ieee80211_key_replace(key->sdata, key->sta,
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
key, NULL);
__ieee80211_key_destroy(key, true);
}
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
key = key_mtx_dereference(local, sta->ptk[i]);
if (!key)
continue;
ieee80211_key_replace(key->sdata, key->sta,
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
key, NULL);
__ieee80211_key_destroy(key, true);
}
mutex_unlock(&local->key_mtx);
}
void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
{
struct ieee80211_sub_if_data *sdata;
sdata = container_of(wk, struct ieee80211_sub_if_data,
dec_tailroom_needed_wk.work);
/*
* The reason for the delayed tailroom needed decrementing is to
* make roaming faster: during roaming, all keys are first deleted
* and then new keys are installed. The first new key causes the
* crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
* the cost of synchronize_net() (which can be slow). Avoid this
* by deferring the crypto_tx_tailroom_needed_cnt decrementing on
* key removal for a while, so if we roam the value is larger than
* zero and no 0->1 transition happens.
*
* The cost is that if the AP switching was from an AP with keys
* to one without, we still allocate tailroom while it would no
* longer be needed. However, in the typical (fast) roaming case
* within an ESS this usually won't happen.
*/
mutex_lock(&sdata->local->key_mtx);
sdata->crypto_tx_tailroom_needed_cnt -=
sdata->crypto_tx_tailroom_pending_dec;
sdata->crypto_tx_tailroom_pending_dec = 0;
mutex_unlock(&sdata->local->key_mtx);
}
void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
const u8 *replay_ctr, gfp_t gfp)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
}
EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
struct ieee80211_key_seq *seq)
{
struct ieee80211_key *key;
u64 pn64;
if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
return;
key = container_of(keyconf, struct ieee80211_key, conf);
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_TKIP:
seq->tkip.iv32 = key->u.tkip.tx.iv32;
seq->tkip.iv16 = key->u.tkip.tx.iv16;
break;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
pn64 = atomic64_read(&key->u.ccmp.tx_pn);
seq->ccmp.pn[5] = pn64;
seq->ccmp.pn[4] = pn64 >> 8;
seq->ccmp.pn[3] = pn64 >> 16;
seq->ccmp.pn[2] = pn64 >> 24;
seq->ccmp.pn[1] = pn64 >> 32;
seq->ccmp.pn[0] = pn64 >> 40;
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
seq->ccmp.pn[5] = pn64;
seq->ccmp.pn[4] = pn64 >> 8;
seq->ccmp.pn[3] = pn64 >> 16;
seq->ccmp.pn[2] = pn64 >> 24;
seq->ccmp.pn[1] = pn64 >> 32;
seq->ccmp.pn[0] = pn64 >> 40;
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
pn64 = atomic64_read(&key->u.aes_gmac.tx_pn);
seq->ccmp.pn[5] = pn64;
seq->ccmp.pn[4] = pn64 >> 8;
seq->ccmp.pn[3] = pn64 >> 16;
seq->ccmp.pn[2] = pn64 >> 24;
seq->ccmp.pn[1] = pn64 >> 32;
seq->ccmp.pn[0] = pn64 >> 40;
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
pn64 = atomic64_read(&key->u.gcmp.tx_pn);
seq->gcmp.pn[5] = pn64;
seq->gcmp.pn[4] = pn64 >> 8;
seq->gcmp.pn[3] = pn64 >> 16;
seq->gcmp.pn[2] = pn64 >> 24;
seq->gcmp.pn[1] = pn64 >> 32;
seq->gcmp.pn[0] = pn64 >> 40;
break;
default:
WARN_ON(1);
}
}
EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
int tid, struct ieee80211_key_seq *seq)
{
struct ieee80211_key *key;
const u8 *pn;
key = container_of(keyconf, struct ieee80211_key, conf);
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_TKIP:
if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
return;
seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
break;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
return;
if (tid < 0)
pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
else
pn = key->u.ccmp.rx_pn[tid];
memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
if (WARN_ON(tid != 0))
return;
pn = key->u.aes_cmac.rx_pn;
memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
if (WARN_ON(tid != 0))
return;
pn = key->u.aes_gmac.rx_pn;
memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
return;
if (tid < 0)
pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
else
pn = key->u.gcmp.rx_pn[tid];
memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
break;
}
}
EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
struct ieee80211_key_seq *seq)
{
struct ieee80211_key *key;
u64 pn64;
key = container_of(keyconf, struct ieee80211_key, conf);
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_TKIP:
key->u.tkip.tx.iv32 = seq->tkip.iv32;
key->u.tkip.tx.iv16 = seq->tkip.iv16;
break;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
pn64 = (u64)seq->ccmp.pn[5] |
((u64)seq->ccmp.pn[4] << 8) |
((u64)seq->ccmp.pn[3] << 16) |
((u64)seq->ccmp.pn[2] << 24) |
((u64)seq->ccmp.pn[1] << 32) |
((u64)seq->ccmp.pn[0] << 40);
atomic64_set(&key->u.ccmp.tx_pn, pn64);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
pn64 = (u64)seq->aes_cmac.pn[5] |
((u64)seq->aes_cmac.pn[4] << 8) |
((u64)seq->aes_cmac.pn[3] << 16) |
((u64)seq->aes_cmac.pn[2] << 24) |
((u64)seq->aes_cmac.pn[1] << 32) |
((u64)seq->aes_cmac.pn[0] << 40);
atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
pn64 = (u64)seq->aes_gmac.pn[5] |
((u64)seq->aes_gmac.pn[4] << 8) |
((u64)seq->aes_gmac.pn[3] << 16) |
((u64)seq->aes_gmac.pn[2] << 24) |
((u64)seq->aes_gmac.pn[1] << 32) |
((u64)seq->aes_gmac.pn[0] << 40);
atomic64_set(&key->u.aes_gmac.tx_pn, pn64);
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
pn64 = (u64)seq->gcmp.pn[5] |
((u64)seq->gcmp.pn[4] << 8) |
((u64)seq->gcmp.pn[3] << 16) |
((u64)seq->gcmp.pn[2] << 24) |
((u64)seq->gcmp.pn[1] << 32) |
((u64)seq->gcmp.pn[0] << 40);
atomic64_set(&key->u.gcmp.tx_pn, pn64);
break;
default:
WARN_ON(1);
break;
}
}
EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
int tid, struct ieee80211_key_seq *seq)
{
struct ieee80211_key *key;
u8 *pn;
key = container_of(keyconf, struct ieee80211_key, conf);
switch (key->conf.cipher) {
case WLAN_CIPHER_SUITE_TKIP:
if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
return;
key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
break;
case WLAN_CIPHER_SUITE_CCMP:
case WLAN_CIPHER_SUITE_CCMP_256:
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
return;
if (tid < 0)
pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
else
pn = key->u.ccmp.rx_pn[tid];
memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
break;
case WLAN_CIPHER_SUITE_AES_CMAC:
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
if (WARN_ON(tid != 0))
return;
pn = key->u.aes_cmac.rx_pn;
memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
break;
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
if (WARN_ON(tid != 0))
return;
pn = key->u.aes_gmac.rx_pn;
memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
break;
case WLAN_CIPHER_SUITE_GCMP:
case WLAN_CIPHER_SUITE_GCMP_256:
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
return;
if (tid < 0)
pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
else
pn = key->u.gcmp.rx_pn[tid];
memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
break;
default:
WARN_ON(1);
break;
}
}
EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
{
struct ieee80211_key *key;
key = container_of(keyconf, struct ieee80211_key, conf);
assert_key_lock(key->local);
/*
* if key was uploaded, we assume the driver will/has remove(d)
* it, so adjust bookkeeping accordingly
*/
if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
(key->conf.flags & IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
increment_tailroom_need_count(key->sdata);
}
ieee80211_key_free(key, false);
}
EXPORT_SYMBOL_GPL(ieee80211_remove_key);
struct ieee80211_key_conf *
ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
struct ieee80211_key_conf *keyconf)
{
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
struct ieee80211_local *local = sdata->local;
struct ieee80211_key *key;
int err;
if (WARN_ON(!local->wowlan))
return ERR_PTR(-EINVAL);
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
return ERR_PTR(-EINVAL);
key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
keyconf->keylen, keyconf->key,
0, NULL, NULL);
if (IS_ERR(key))
return ERR_CAST(key);
if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
err = ieee80211_key_link(key, sdata, NULL);
if (err)
return ERR_PTR(err);
return &key->conf;
}
EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);