OpenCloudOS-Kernel/drivers/net/wireless/realtek/rtlwifi/rtl8192de/rf.c

619 lines
18 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2012 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
#include "hw.h"
void rtl92d_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw, u8 bandwidth)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
u8 rfpath;
switch (bandwidth) {
case HT_CHANNEL_WIDTH_20:
for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) {
rtlphy->rfreg_chnlval[rfpath] = ((rtlphy->rfreg_chnlval
[rfpath] & 0xfffff3ff) | 0x0400);
rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(10) |
BIT(11), 0x01);
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD,
"20M RF 0x18 = 0x%x\n",
rtlphy->rfreg_chnlval[rfpath]);
}
break;
case HT_CHANNEL_WIDTH_20_40:
for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) {
rtlphy->rfreg_chnlval[rfpath] =
((rtlphy->rfreg_chnlval[rfpath] & 0xfffff3ff));
rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(10) | BIT(11),
0x00);
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD,
"40M RF 0x18 = 0x%x\n",
rtlphy->rfreg_chnlval[rfpath]);
}
break;
default:
pr_err("unknown bandwidth: %#X\n", bandwidth);
break;
}
}
void rtl92d_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw,
u8 *ppowerlevel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u32 tx_agc[2] = {0, 0}, tmpval;
bool turbo_scanoff = false;
u8 idx1, idx2;
u8 *ptr;
if (rtlefuse->eeprom_regulatory != 0)
turbo_scanoff = true;
if (mac->act_scanning) {
tx_agc[RF90_PATH_A] = 0x3f3f3f3f;
tx_agc[RF90_PATH_B] = 0x3f3f3f3f;
if (turbo_scanoff) {
for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
tx_agc[idx1] = ppowerlevel[idx1] |
(ppowerlevel[idx1] << 8) |
(ppowerlevel[idx1] << 16) |
(ppowerlevel[idx1] << 24);
}
}
} else {
for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
tx_agc[idx1] = ppowerlevel[idx1] |
(ppowerlevel[idx1] << 8) |
(ppowerlevel[idx1] << 16) |
(ppowerlevel[idx1] << 24);
}
if (rtlefuse->eeprom_regulatory == 0) {
tmpval = (rtlphy->mcs_offset[0][6]) +
(rtlphy->mcs_offset[0][7] << 8);
tx_agc[RF90_PATH_A] += tmpval;
tmpval = (rtlphy->mcs_offset[0][14]) +
(rtlphy->mcs_offset[0][15] << 24);
tx_agc[RF90_PATH_B] += tmpval;
}
}
for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
ptr = (u8 *) (&(tx_agc[idx1]));
for (idx2 = 0; idx2 < 4; idx2++) {
if (*ptr > RF6052_MAX_TX_PWR)
*ptr = RF6052_MAX_TX_PWR;
ptr++;
}
}
tmpval = tx_agc[RF90_PATH_A] & 0xff;
rtl_set_bbreg(hw, RTXAGC_A_CCK1_MCS32, MASKBYTE1, tmpval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"CCK PWR 1M (rf-A) = 0x%x (reg 0x%x)\n",
tmpval, RTXAGC_A_CCK1_MCS32);
tmpval = tx_agc[RF90_PATH_A] >> 8;
rtl_set_bbreg(hw, RTXAGC_B_CCK11_A_CCK2_11, 0xffffff00, tmpval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"CCK PWR 2~11M (rf-A) = 0x%x (reg 0x%x)\n",
tmpval, RTXAGC_B_CCK11_A_CCK2_11);
tmpval = tx_agc[RF90_PATH_B] >> 24;
rtl_set_bbreg(hw, RTXAGC_B_CCK11_A_CCK2_11, MASKBYTE0, tmpval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"CCK PWR 11M (rf-B) = 0x%x (reg 0x%x)\n",
tmpval, RTXAGC_B_CCK11_A_CCK2_11);
tmpval = tx_agc[RF90_PATH_B] & 0x00ffffff;
rtl_set_bbreg(hw, RTXAGC_B_CCK1_55_MCS32, 0xffffff00, tmpval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"CCK PWR 1~5.5M (rf-B) = 0x%x (reg 0x%x)\n",
tmpval, RTXAGC_B_CCK1_55_MCS32);
}
static void _rtl92d_phy_get_power_base(struct ieee80211_hw *hw,
u8 *ppowerlevel, u8 channel,
u32 *ofdmbase, u32 *mcsbase)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u32 powerbase0, powerbase1;
u8 legacy_pwrdiff, ht20_pwrdiff;
u8 i, powerlevel[2];
for (i = 0; i < 2; i++) {
powerlevel[i] = ppowerlevel[i];
legacy_pwrdiff = rtlefuse->txpwr_legacyhtdiff[i][channel - 1];
powerbase0 = powerlevel[i] + legacy_pwrdiff;
powerbase0 = (powerbase0 << 24) | (powerbase0 << 16) |
(powerbase0 << 8) | powerbase0;
*(ofdmbase + i) = powerbase0;
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
" [OFDM power base index rf(%c) = 0x%x]\n",
i == 0 ? 'A' : 'B', *(ofdmbase + i));
}
for (i = 0; i < 2; i++) {
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20) {
ht20_pwrdiff = rtlefuse->txpwr_ht20diff[i][channel - 1];
powerlevel[i] += ht20_pwrdiff;
}
powerbase1 = powerlevel[i];
powerbase1 = (powerbase1 << 24) | (powerbase1 << 16) |
(powerbase1 << 8) | powerbase1;
*(mcsbase + i) = powerbase1;
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
" [MCS power base index rf(%c) = 0x%x]\n",
i == 0 ? 'A' : 'B', *(mcsbase + i));
}
}
static u8 _rtl92d_phy_get_chnlgroup_bypg(u8 chnlindex)
{
u8 group;
u8 channel_info[59] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
114, 116, 118, 120, 122, 124, 126, 128, 130, 132,
134, 136, 138, 140, 149, 151, 153, 155, 157, 159,
161, 163, 165
};
if (channel_info[chnlindex] <= 3) /* Chanel 1-3 */
group = 0;
else if (channel_info[chnlindex] <= 9) /* Channel 4-9 */
group = 1;
else if (channel_info[chnlindex] <= 14) /* Channel 10-14 */
group = 2;
else if (channel_info[chnlindex] <= 64)
group = 6;
else if (channel_info[chnlindex] <= 140)
group = 7;
else
group = 8;
return group;
}
static void _rtl92d_get_txpower_writeval_by_regulatory(struct ieee80211_hw *hw,
u8 channel, u8 index,
u32 *powerbase0,
u32 *powerbase1,
u32 *p_outwriteval)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 i, chnlgroup = 0, pwr_diff_limit[4];
u32 writeval = 0, customer_limit, rf;
for (rf = 0; rf < 2; rf++) {
switch (rtlefuse->eeprom_regulatory) {
case 0:
chnlgroup = 0;
writeval = rtlphy->mcs_offset
[chnlgroup][index +
(rf ? 8 : 0)] + ((index < 2) ?
powerbase0[rf] :
powerbase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"RTK better performance, writeval(%c) = 0x%x\n",
rf == 0 ? 'A' : 'B', writeval);
break;
case 1:
if (rtlphy->pwrgroup_cnt == 1)
chnlgroup = 0;
if (rtlphy->pwrgroup_cnt >= MAX_PG_GROUP) {
chnlgroup = _rtl92d_phy_get_chnlgroup_bypg(
channel - 1);
if (rtlphy->current_chan_bw ==
HT_CHANNEL_WIDTH_20)
chnlgroup++;
else
chnlgroup += 4;
writeval = rtlphy->mcs_offset
[chnlgroup][index +
(rf ? 8 : 0)] + ((index < 2) ?
powerbase0[rf] :
powerbase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"Realtek regulatory, 20MHz, writeval(%c) = 0x%x\n",
rf == 0 ? 'A' : 'B', writeval);
}
break;
case 2:
writeval = ((index < 2) ? powerbase0[rf] :
powerbase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"Better regulatory, writeval(%c) = 0x%x\n",
rf == 0 ? 'A' : 'B', writeval);
break;
case 3:
chnlgroup = 0;
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20_40) {
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"customer's limit, 40MHz rf(%c) = 0x%x\n",
rf == 0 ? 'A' : 'B',
rtlefuse->pwrgroup_ht40[rf]
[channel - 1]);
} else {
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"customer's limit, 20MHz rf(%c) = 0x%x\n",
rf == 0 ? 'A' : 'B',
rtlefuse->pwrgroup_ht20[rf]
[channel - 1]);
}
for (i = 0; i < 4; i++) {
pwr_diff_limit[i] = (u8)((rtlphy->mcs_offset
[chnlgroup][index + (rf ? 8 : 0)] &
(0x7f << (i * 8))) >> (i * 8));
if (rtlphy->current_chan_bw ==
HT_CHANNEL_WIDTH_20_40) {
if (pwr_diff_limit[i] >
rtlefuse->pwrgroup_ht40[rf]
[channel - 1])
pwr_diff_limit[i] =
rtlefuse->pwrgroup_ht40
[rf][channel - 1];
} else {
if (pwr_diff_limit[i] >
rtlefuse->pwrgroup_ht20[rf][
channel - 1])
pwr_diff_limit[i] =
rtlefuse->pwrgroup_ht20[rf]
[channel - 1];
}
}
customer_limit = (pwr_diff_limit[3] << 24) |
(pwr_diff_limit[2] << 16) |
(pwr_diff_limit[1] << 8) |
(pwr_diff_limit[0]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"Customer's limit rf(%c) = 0x%x\n",
rf == 0 ? 'A' : 'B', customer_limit);
writeval = customer_limit + ((index < 2) ?
powerbase0[rf] : powerbase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"Customer, writeval rf(%c)= 0x%x\n",
rf == 0 ? 'A' : 'B', writeval);
break;
default:
chnlgroup = 0;
writeval = rtlphy->mcs_offset[chnlgroup][index +
(rf ? 8 : 0)] + ((index < 2) ?
powerbase0[rf] : powerbase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"RTK better performance, writeval rf(%c) = 0x%x\n",
rf == 0 ? 'A' : 'B', writeval);
break;
}
*(p_outwriteval + rf) = writeval;
}
}
static void _rtl92d_write_ofdm_power_reg(struct ieee80211_hw *hw,
u8 index, u32 *pvalue)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
static u16 regoffset_a[6] = {
RTXAGC_A_RATE18_06, RTXAGC_A_RATE54_24,
RTXAGC_A_MCS03_MCS00, RTXAGC_A_MCS07_MCS04,
RTXAGC_A_MCS11_MCS08, RTXAGC_A_MCS15_MCS12
};
static u16 regoffset_b[6] = {
RTXAGC_B_RATE18_06, RTXAGC_B_RATE54_24,
RTXAGC_B_MCS03_MCS00, RTXAGC_B_MCS07_MCS04,
RTXAGC_B_MCS11_MCS08, RTXAGC_B_MCS15_MCS12
};
u8 i, rf, pwr_val[4];
u32 writeval;
u16 regoffset;
for (rf = 0; rf < 2; rf++) {
writeval = pvalue[rf];
for (i = 0; i < 4; i++) {
pwr_val[i] = (u8) ((writeval & (0x7f <<
(i * 8))) >> (i * 8));
if (pwr_val[i] > RF6052_MAX_TX_PWR)
pwr_val[i] = RF6052_MAX_TX_PWR;
}
writeval = (pwr_val[3] << 24) | (pwr_val[2] << 16) |
(pwr_val[1] << 8) | pwr_val[0];
if (rf == 0)
regoffset = regoffset_a[index];
else
regoffset = regoffset_b[index];
rtl_set_bbreg(hw, regoffset, MASKDWORD, writeval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"Set 0x%x = %08x\n", regoffset, writeval);
if (((get_rf_type(rtlphy) == RF_2T2R) &&
(regoffset == RTXAGC_A_MCS15_MCS12 ||
regoffset == RTXAGC_B_MCS15_MCS12)) ||
((get_rf_type(rtlphy) != RF_2T2R) &&
(regoffset == RTXAGC_A_MCS07_MCS04 ||
regoffset == RTXAGC_B_MCS07_MCS04))) {
writeval = pwr_val[3];
if (regoffset == RTXAGC_A_MCS15_MCS12 ||
regoffset == RTXAGC_A_MCS07_MCS04)
regoffset = 0xc90;
if (regoffset == RTXAGC_B_MCS15_MCS12 ||
regoffset == RTXAGC_B_MCS07_MCS04)
regoffset = 0xc98;
for (i = 0; i < 3; i++) {
if (i != 2)
writeval = (writeval > 8) ?
(writeval - 8) : 0;
else
writeval = (writeval > 6) ?
(writeval - 6) : 0;
rtl_write_byte(rtlpriv, (u32) (regoffset + i),
(u8) writeval);
}
}
}
}
void rtl92d_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw,
u8 *ppowerlevel, u8 channel)
{
u32 writeval[2], powerbase0[2], powerbase1[2];
u8 index;
_rtl92d_phy_get_power_base(hw, ppowerlevel, channel,
&powerbase0[0], &powerbase1[0]);
for (index = 0; index < 6; index++) {
_rtl92d_get_txpower_writeval_by_regulatory(hw,
channel, index, &powerbase0[0],
&powerbase1[0], &writeval[0]);
_rtl92d_write_ofdm_power_reg(hw, index, &writeval[0]);
}
}
bool rtl92d_phy_enable_anotherphy(struct ieee80211_hw *hw, bool bmac0)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
u8 u1btmp;
u8 direct = bmac0 ? BIT(3) | BIT(2) : BIT(3);
u8 mac_reg = bmac0 ? REG_MAC1 : REG_MAC0;
u8 mac_on_bit = bmac0 ? MAC1_ON : MAC0_ON;
bool bresult = true; /* true: need to enable BB/RF power */
rtlhal->during_mac0init_radiob = false;
rtlhal->during_mac1init_radioa = false;
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "===>\n");
/* MAC0 Need PHY1 load radio_b.txt . Driver use DBI to write. */
u1btmp = rtl_read_byte(rtlpriv, mac_reg);
if (!(u1btmp & mac_on_bit)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "enable BB & RF\n");
/* Enable BB and RF power */
rtl92de_write_dword_dbi(hw, REG_SYS_ISO_CTRL,
rtl92de_read_dword_dbi(hw, REG_SYS_ISO_CTRL, direct) |
BIT(29) | BIT(16) | BIT(17), direct);
} else {
/* We think if MAC1 is ON,then radio_a.txt
* and radio_b.txt has been load. */
bresult = false;
}
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<===\n");
return bresult;
}
void rtl92d_phy_powerdown_anotherphy(struct ieee80211_hw *hw, bool bmac0)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
u8 u1btmp;
u8 direct = bmac0 ? BIT(3) | BIT(2) : BIT(3);
u8 mac_reg = bmac0 ? REG_MAC1 : REG_MAC0;
u8 mac_on_bit = bmac0 ? MAC1_ON : MAC0_ON;
rtlhal->during_mac0init_radiob = false;
rtlhal->during_mac1init_radioa = false;
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "====>\n");
/* check MAC0 enable or not again now, if
* enabled, not power down radio A. */
u1btmp = rtl_read_byte(rtlpriv, mac_reg);
if (!(u1btmp & mac_on_bit)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "power down\n");
/* power down RF radio A according to YuNan's advice. */
rtl92de_write_dword_dbi(hw, RFPGA0_XA_LSSIPARAMETER,
0x00000000, direct);
}
RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<====\n");
}
bool rtl92d_phy_rf6052_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
bool rtstatus = true;
struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
u32 u4_regvalue = 0;
u8 rfpath;
struct bb_reg_def *pphyreg;
bool mac1_initradioa_first = false, mac0_initradiob_first = false;
bool need_pwrdown_radioa = false, need_pwrdown_radiob = false;
bool true_bpath = false;
if (rtlphy->rf_type == RF_1T1R)
rtlphy->num_total_rfpath = 1;
else
rtlphy->num_total_rfpath = 2;
/* Single phy mode: use radio_a radio_b config path_A path_B */
/* seperately by MAC0, and MAC1 needn't configure RF; */
/* Dual PHY mode:MAC0 use radio_a config 1st phy path_A, */
/* MAC1 use radio_b config 2nd PHY path_A. */
/* DMDP,MAC0 on G band,MAC1 on A band. */
if (rtlhal->macphymode == DUALMAC_DUALPHY) {
if (rtlhal->current_bandtype == BAND_ON_2_4G &&
rtlhal->interfaceindex == 0) {
/* MAC0 needs PHY1 load radio_b.txt.
* Driver use DBI to write. */
if (rtl92d_phy_enable_anotherphy(hw, true)) {
rtlphy->num_total_rfpath = 2;
mac0_initradiob_first = true;
} else {
/* We think if MAC1 is ON,then radio_a.txt and
* radio_b.txt has been load. */
return rtstatus;
}
} else if (rtlhal->current_bandtype == BAND_ON_5G &&
rtlhal->interfaceindex == 1) {
/* MAC1 needs PHY0 load radio_a.txt.
* Driver use DBI to write. */
if (rtl92d_phy_enable_anotherphy(hw, false)) {
rtlphy->num_total_rfpath = 2;
mac1_initradioa_first = true;
} else {
/* We think if MAC0 is ON,then radio_a.txt and
* radio_b.txt has been load. */
return rtstatus;
}
} else if (rtlhal->interfaceindex == 1) {
/* MAC0 enabled, only init radia B. */
true_bpath = true;
}
}
for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) {
/* Mac1 use PHY0 write */
if (mac1_initradioa_first) {
if (rfpath == RF90_PATH_A) {
rtlhal->during_mac1init_radioa = true;
need_pwrdown_radioa = true;
} else if (rfpath == RF90_PATH_B) {
rtlhal->during_mac1init_radioa = false;
mac1_initradioa_first = false;
rfpath = RF90_PATH_A;
true_bpath = true;
rtlphy->num_total_rfpath = 1;
}
} else if (mac0_initradiob_first) {
/* Mac0 use PHY1 write */
if (rfpath == RF90_PATH_A)
rtlhal->during_mac0init_radiob = false;
if (rfpath == RF90_PATH_B) {
rtlhal->during_mac0init_radiob = true;
mac0_initradiob_first = false;
need_pwrdown_radiob = true;
rfpath = RF90_PATH_A;
true_bpath = true;
rtlphy->num_total_rfpath = 1;
}
}
pphyreg = &rtlphy->phyreg_def[rfpath];
switch (rfpath) {
case RF90_PATH_A:
case RF90_PATH_C:
u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs,
BRFSI_RFENV);
break;
case RF90_PATH_B:
case RF90_PATH_D:
u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs,
BRFSI_RFENV << 16);
break;
}
rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1);
udelay(1);
rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1);
udelay(1);
/* Set bit number of Address and Data for RF register */
/* Set 1 to 4 bits for 8255 */
rtl_set_bbreg(hw, pphyreg->rfhssi_para2,
B3WIREADDRESSLENGTH, 0x0);
udelay(1);
/* Set 0 to 12 bits for 8255 */
rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0);
udelay(1);
switch (rfpath) {
case RF90_PATH_A:
if (true_bpath)
rtstatus = rtl92d_phy_config_rf_with_headerfile(
hw, radiob_txt,
(enum radio_path)rfpath);
else
rtstatus = rtl92d_phy_config_rf_with_headerfile(
hw, radioa_txt,
(enum radio_path)rfpath);
break;
case RF90_PATH_B:
rtstatus =
rtl92d_phy_config_rf_with_headerfile(hw, radiob_txt,
(enum radio_path) rfpath);
break;
case RF90_PATH_C:
break;
case RF90_PATH_D:
break;
}
switch (rfpath) {
case RF90_PATH_A:
case RF90_PATH_C:
rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV,
u4_regvalue);
break;
case RF90_PATH_B:
case RF90_PATH_D:
rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16,
u4_regvalue);
break;
}
if (!rtstatus) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Radio[%d] Fail!!\n", rfpath);
goto phy_rf_cfg_fail;
}
}
/* check MAC0 enable or not again, if enabled,
* not power down radio A. */
/* check MAC1 enable or not again, if enabled,
* not power down radio B. */
if (need_pwrdown_radioa)
rtl92d_phy_powerdown_anotherphy(hw, false);
else if (need_pwrdown_radiob)
rtl92d_phy_powerdown_anotherphy(hw, true);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "<---\n");
return rtstatus;
phy_rf_cfg_fail:
return rtstatus;
}