1057 lines
31 KiB
C
1057 lines
31 KiB
C
/* SPDX-License-Identifier: MIT */
|
|
#ifndef _INTEL_RINGBUFFER_H_
|
|
#define _INTEL_RINGBUFFER_H_
|
|
|
|
#include <drm/drm_util.h>
|
|
|
|
#include <linux/hashtable.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/random.h>
|
|
#include <linux/seqlock.h>
|
|
|
|
#include "i915_gem_batch_pool.h"
|
|
|
|
#include "i915_reg.h"
|
|
#include "i915_pmu.h"
|
|
#include "i915_request.h"
|
|
#include "i915_selftest.h"
|
|
#include "i915_timeline.h"
|
|
#include "intel_gpu_commands.h"
|
|
#include "intel_workarounds.h"
|
|
|
|
struct drm_printer;
|
|
struct i915_sched_attr;
|
|
|
|
#define I915_CMD_HASH_ORDER 9
|
|
|
|
/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
|
|
* but keeps the logic simple. Indeed, the whole purpose of this macro is just
|
|
* to give some inclination as to some of the magic values used in the various
|
|
* workarounds!
|
|
*/
|
|
#define CACHELINE_BYTES 64
|
|
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(u32))
|
|
|
|
struct intel_hw_status_page {
|
|
struct i915_vma *vma;
|
|
u32 *addr;
|
|
};
|
|
|
|
#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
|
|
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
|
|
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
|
|
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
|
|
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
|
|
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
|
|
|
|
#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
|
|
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
|
|
|
|
/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
|
|
* do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
|
|
*/
|
|
enum intel_engine_hangcheck_action {
|
|
ENGINE_IDLE = 0,
|
|
ENGINE_WAIT,
|
|
ENGINE_ACTIVE_SEQNO,
|
|
ENGINE_ACTIVE_HEAD,
|
|
ENGINE_ACTIVE_SUBUNITS,
|
|
ENGINE_WAIT_KICK,
|
|
ENGINE_DEAD,
|
|
};
|
|
|
|
static inline const char *
|
|
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
|
|
{
|
|
switch (a) {
|
|
case ENGINE_IDLE:
|
|
return "idle";
|
|
case ENGINE_WAIT:
|
|
return "wait";
|
|
case ENGINE_ACTIVE_SEQNO:
|
|
return "active seqno";
|
|
case ENGINE_ACTIVE_HEAD:
|
|
return "active head";
|
|
case ENGINE_ACTIVE_SUBUNITS:
|
|
return "active subunits";
|
|
case ENGINE_WAIT_KICK:
|
|
return "wait kick";
|
|
case ENGINE_DEAD:
|
|
return "dead";
|
|
}
|
|
|
|
return "unknown";
|
|
}
|
|
|
|
#define I915_MAX_SLICES 3
|
|
#define I915_MAX_SUBSLICES 8
|
|
|
|
#define instdone_slice_mask(dev_priv__) \
|
|
(IS_GEN(dev_priv__, 7) ? \
|
|
1 : RUNTIME_INFO(dev_priv__)->sseu.slice_mask)
|
|
|
|
#define instdone_subslice_mask(dev_priv__) \
|
|
(IS_GEN(dev_priv__, 7) ? \
|
|
1 : RUNTIME_INFO(dev_priv__)->sseu.subslice_mask[0])
|
|
|
|
#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
|
|
for ((slice__) = 0, (subslice__) = 0; \
|
|
(slice__) < I915_MAX_SLICES; \
|
|
(subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
|
|
(slice__) += ((subslice__) == 0)) \
|
|
for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
|
|
(BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
|
|
|
|
struct intel_instdone {
|
|
u32 instdone;
|
|
/* The following exist only in the RCS engine */
|
|
u32 slice_common;
|
|
u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
|
|
u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
|
|
};
|
|
|
|
struct intel_engine_hangcheck {
|
|
u64 acthd;
|
|
u32 last_seqno;
|
|
u32 next_seqno;
|
|
unsigned long action_timestamp;
|
|
struct intel_instdone instdone;
|
|
};
|
|
|
|
struct intel_ring {
|
|
struct i915_vma *vma;
|
|
void *vaddr;
|
|
|
|
struct i915_timeline *timeline;
|
|
struct list_head request_list;
|
|
struct list_head active_link;
|
|
|
|
u32 head;
|
|
u32 tail;
|
|
u32 emit;
|
|
|
|
u32 space;
|
|
u32 size;
|
|
u32 effective_size;
|
|
};
|
|
|
|
struct i915_gem_context;
|
|
struct drm_i915_reg_table;
|
|
|
|
/*
|
|
* we use a single page to load ctx workarounds so all of these
|
|
* values are referred in terms of dwords
|
|
*
|
|
* struct i915_wa_ctx_bb:
|
|
* offset: specifies batch starting position, also helpful in case
|
|
* if we want to have multiple batches at different offsets based on
|
|
* some criteria. It is not a requirement at the moment but provides
|
|
* an option for future use.
|
|
* size: size of the batch in DWORDS
|
|
*/
|
|
struct i915_ctx_workarounds {
|
|
struct i915_wa_ctx_bb {
|
|
u32 offset;
|
|
u32 size;
|
|
} indirect_ctx, per_ctx;
|
|
struct i915_vma *vma;
|
|
};
|
|
|
|
struct i915_request;
|
|
|
|
#define I915_MAX_VCS 4
|
|
#define I915_MAX_VECS 2
|
|
|
|
/*
|
|
* Engine IDs definitions.
|
|
* Keep instances of the same type engine together.
|
|
*/
|
|
enum intel_engine_id {
|
|
RCS = 0,
|
|
BCS,
|
|
VCS,
|
|
VCS2,
|
|
VCS3,
|
|
VCS4,
|
|
#define _VCS(n) (VCS + (n))
|
|
VECS,
|
|
VECS2
|
|
#define _VECS(n) (VECS + (n))
|
|
};
|
|
|
|
struct st_preempt_hang {
|
|
struct completion completion;
|
|
unsigned int count;
|
|
bool inject_hang;
|
|
};
|
|
|
|
/**
|
|
* struct intel_engine_execlists - execlist submission queue and port state
|
|
*
|
|
* The struct intel_engine_execlists represents the combined logical state of
|
|
* driver and the hardware state for execlist mode of submission.
|
|
*/
|
|
struct intel_engine_execlists {
|
|
/**
|
|
* @tasklet: softirq tasklet for bottom handler
|
|
*/
|
|
struct tasklet_struct tasklet;
|
|
|
|
/**
|
|
* @default_priolist: priority list for I915_PRIORITY_NORMAL
|
|
*/
|
|
struct i915_priolist default_priolist;
|
|
|
|
/**
|
|
* @no_priolist: priority lists disabled
|
|
*/
|
|
bool no_priolist;
|
|
|
|
/**
|
|
* @submit_reg: gen-specific execlist submission register
|
|
* set to the ExecList Submission Port (elsp) register pre-Gen11 and to
|
|
* the ExecList Submission Queue Contents register array for Gen11+
|
|
*/
|
|
u32 __iomem *submit_reg;
|
|
|
|
/**
|
|
* @ctrl_reg: the enhanced execlists control register, used to load the
|
|
* submit queue on the HW and to request preemptions to idle
|
|
*/
|
|
u32 __iomem *ctrl_reg;
|
|
|
|
/**
|
|
* @port: execlist port states
|
|
*
|
|
* For each hardware ELSP (ExecList Submission Port) we keep
|
|
* track of the last request and the number of times we submitted
|
|
* that port to hw. We then count the number of times the hw reports
|
|
* a context completion or preemption. As only one context can
|
|
* be active on hw, we limit resubmission of context to port[0]. This
|
|
* is called Lite Restore, of the context.
|
|
*/
|
|
struct execlist_port {
|
|
/**
|
|
* @request_count: combined request and submission count
|
|
*/
|
|
struct i915_request *request_count;
|
|
#define EXECLIST_COUNT_BITS 2
|
|
#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
|
|
#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
|
|
#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
|
|
#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
|
|
#define port_set(p, packed) ((p)->request_count = (packed))
|
|
#define port_isset(p) ((p)->request_count)
|
|
#define port_index(p, execlists) ((p) - (execlists)->port)
|
|
|
|
/**
|
|
* @context_id: context ID for port
|
|
*/
|
|
GEM_DEBUG_DECL(u32 context_id);
|
|
|
|
#define EXECLIST_MAX_PORTS 2
|
|
} port[EXECLIST_MAX_PORTS];
|
|
|
|
/**
|
|
* @active: is the HW active? We consider the HW as active after
|
|
* submitting any context for execution and until we have seen the
|
|
* last context completion event. After that, we do not expect any
|
|
* more events until we submit, and so can park the HW.
|
|
*
|
|
* As we have a small number of different sources from which we feed
|
|
* the HW, we track the state of each inside a single bitfield.
|
|
*/
|
|
unsigned int active;
|
|
#define EXECLISTS_ACTIVE_USER 0
|
|
#define EXECLISTS_ACTIVE_PREEMPT 1
|
|
#define EXECLISTS_ACTIVE_HWACK 2
|
|
|
|
/**
|
|
* @port_mask: number of execlist ports - 1
|
|
*/
|
|
unsigned int port_mask;
|
|
|
|
/**
|
|
* @queue_priority_hint: Highest pending priority.
|
|
*
|
|
* When we add requests into the queue, or adjust the priority of
|
|
* executing requests, we compute the maximum priority of those
|
|
* pending requests. We can then use this value to determine if
|
|
* we need to preempt the executing requests to service the queue.
|
|
* However, since the we may have recorded the priority of an inflight
|
|
* request we wanted to preempt but since completed, at the time of
|
|
* dequeuing the priority hint may no longer may match the highest
|
|
* available request priority.
|
|
*/
|
|
int queue_priority_hint;
|
|
|
|
/**
|
|
* @queue: queue of requests, in priority lists
|
|
*/
|
|
struct rb_root_cached queue;
|
|
|
|
/**
|
|
* @csb_write: control register for Context Switch buffer
|
|
*
|
|
* Note this register may be either mmio or HWSP shadow.
|
|
*/
|
|
u32 *csb_write;
|
|
|
|
/**
|
|
* @csb_status: status array for Context Switch buffer
|
|
*
|
|
* Note these register may be either mmio or HWSP shadow.
|
|
*/
|
|
u32 *csb_status;
|
|
|
|
/**
|
|
* @preempt_complete_status: expected CSB upon completing preemption
|
|
*/
|
|
u32 preempt_complete_status;
|
|
|
|
/**
|
|
* @csb_head: context status buffer head
|
|
*/
|
|
u8 csb_head;
|
|
|
|
I915_SELFTEST_DECLARE(struct st_preempt_hang preempt_hang;)
|
|
};
|
|
|
|
#define INTEL_ENGINE_CS_MAX_NAME 8
|
|
|
|
struct intel_engine_cs {
|
|
struct drm_i915_private *i915;
|
|
char name[INTEL_ENGINE_CS_MAX_NAME];
|
|
|
|
enum intel_engine_id id;
|
|
unsigned int hw_id;
|
|
unsigned int guc_id;
|
|
|
|
u8 uabi_id;
|
|
u8 uabi_class;
|
|
|
|
u8 class;
|
|
u8 instance;
|
|
u32 context_size;
|
|
u32 mmio_base;
|
|
|
|
struct intel_ring *buffer;
|
|
|
|
struct i915_timeline timeline;
|
|
|
|
struct drm_i915_gem_object *default_state;
|
|
void *pinned_default_state;
|
|
|
|
/* Rather than have every client wait upon all user interrupts,
|
|
* with the herd waking after every interrupt and each doing the
|
|
* heavyweight seqno dance, we delegate the task (of being the
|
|
* bottom-half of the user interrupt) to the first client. After
|
|
* every interrupt, we wake up one client, who does the heavyweight
|
|
* coherent seqno read and either goes back to sleep (if incomplete),
|
|
* or wakes up all the completed clients in parallel, before then
|
|
* transferring the bottom-half status to the next client in the queue.
|
|
*
|
|
* Compared to walking the entire list of waiters in a single dedicated
|
|
* bottom-half, we reduce the latency of the first waiter by avoiding
|
|
* a context switch, but incur additional coherent seqno reads when
|
|
* following the chain of request breadcrumbs. Since it is most likely
|
|
* that we have a single client waiting on each seqno, then reducing
|
|
* the overhead of waking that client is much preferred.
|
|
*/
|
|
struct intel_breadcrumbs {
|
|
spinlock_t irq_lock;
|
|
struct list_head signalers;
|
|
|
|
struct irq_work irq_work; /* for use from inside irq_lock */
|
|
|
|
unsigned int irq_enabled;
|
|
|
|
bool irq_armed;
|
|
} breadcrumbs;
|
|
|
|
struct intel_engine_pmu {
|
|
/**
|
|
* @enable: Bitmask of enable sample events on this engine.
|
|
*
|
|
* Bits correspond to sample event types, for instance
|
|
* I915_SAMPLE_QUEUED is bit 0 etc.
|
|
*/
|
|
u32 enable;
|
|
/**
|
|
* @enable_count: Reference count for the enabled samplers.
|
|
*
|
|
* Index number corresponds to @enum drm_i915_pmu_engine_sample.
|
|
*/
|
|
unsigned int enable_count[I915_ENGINE_SAMPLE_COUNT];
|
|
/**
|
|
* @sample: Counter values for sampling events.
|
|
*
|
|
* Our internal timer stores the current counters in this field.
|
|
*
|
|
* Index number corresponds to @enum drm_i915_pmu_engine_sample.
|
|
*/
|
|
struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_COUNT];
|
|
} pmu;
|
|
|
|
/*
|
|
* A pool of objects to use as shadow copies of client batch buffers
|
|
* when the command parser is enabled. Prevents the client from
|
|
* modifying the batch contents after software parsing.
|
|
*/
|
|
struct i915_gem_batch_pool batch_pool;
|
|
|
|
struct intel_hw_status_page status_page;
|
|
struct i915_ctx_workarounds wa_ctx;
|
|
struct i915_wa_list ctx_wa_list;
|
|
struct i915_wa_list wa_list;
|
|
struct i915_wa_list whitelist;
|
|
|
|
u32 irq_keep_mask; /* always keep these interrupts */
|
|
u32 irq_enable_mask; /* bitmask to enable ring interrupt */
|
|
void (*irq_enable)(struct intel_engine_cs *engine);
|
|
void (*irq_disable)(struct intel_engine_cs *engine);
|
|
|
|
int (*init_hw)(struct intel_engine_cs *engine);
|
|
|
|
struct {
|
|
void (*prepare)(struct intel_engine_cs *engine);
|
|
void (*reset)(struct intel_engine_cs *engine, bool stalled);
|
|
void (*finish)(struct intel_engine_cs *engine);
|
|
} reset;
|
|
|
|
void (*park)(struct intel_engine_cs *engine);
|
|
void (*unpark)(struct intel_engine_cs *engine);
|
|
|
|
void (*set_default_submission)(struct intel_engine_cs *engine);
|
|
|
|
struct intel_context *(*context_pin)(struct intel_engine_cs *engine,
|
|
struct i915_gem_context *ctx);
|
|
|
|
int (*request_alloc)(struct i915_request *rq);
|
|
int (*init_context)(struct i915_request *rq);
|
|
|
|
int (*emit_flush)(struct i915_request *request, u32 mode);
|
|
#define EMIT_INVALIDATE BIT(0)
|
|
#define EMIT_FLUSH BIT(1)
|
|
#define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
|
|
int (*emit_bb_start)(struct i915_request *rq,
|
|
u64 offset, u32 length,
|
|
unsigned int dispatch_flags);
|
|
#define I915_DISPATCH_SECURE BIT(0)
|
|
#define I915_DISPATCH_PINNED BIT(1)
|
|
int (*emit_init_breadcrumb)(struct i915_request *rq);
|
|
u32 *(*emit_fini_breadcrumb)(struct i915_request *rq,
|
|
u32 *cs);
|
|
unsigned int emit_fini_breadcrumb_dw;
|
|
|
|
/* Pass the request to the hardware queue (e.g. directly into
|
|
* the legacy ringbuffer or to the end of an execlist).
|
|
*
|
|
* This is called from an atomic context with irqs disabled; must
|
|
* be irq safe.
|
|
*/
|
|
void (*submit_request)(struct i915_request *rq);
|
|
|
|
/*
|
|
* Call when the priority on a request has changed and it and its
|
|
* dependencies may need rescheduling. Note the request itself may
|
|
* not be ready to run!
|
|
*/
|
|
void (*schedule)(struct i915_request *request,
|
|
const struct i915_sched_attr *attr);
|
|
|
|
/*
|
|
* Cancel all requests on the hardware, or queued for execution.
|
|
* This should only cancel the ready requests that have been
|
|
* submitted to the engine (via the engine->submit_request callback).
|
|
* This is called when marking the device as wedged.
|
|
*/
|
|
void (*cancel_requests)(struct intel_engine_cs *engine);
|
|
|
|
void (*cleanup)(struct intel_engine_cs *engine);
|
|
|
|
struct intel_engine_execlists execlists;
|
|
|
|
/* Contexts are pinned whilst they are active on the GPU. The last
|
|
* context executed remains active whilst the GPU is idle - the
|
|
* switch away and write to the context object only occurs on the
|
|
* next execution. Contexts are only unpinned on retirement of the
|
|
* following request ensuring that we can always write to the object
|
|
* on the context switch even after idling. Across suspend, we switch
|
|
* to the kernel context and trash it as the save may not happen
|
|
* before the hardware is powered down.
|
|
*/
|
|
struct intel_context *last_retired_context;
|
|
|
|
/* status_notifier: list of callbacks for context-switch changes */
|
|
struct atomic_notifier_head context_status_notifier;
|
|
|
|
struct intel_engine_hangcheck hangcheck;
|
|
|
|
#define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
|
|
#define I915_ENGINE_SUPPORTS_STATS BIT(1)
|
|
#define I915_ENGINE_HAS_PREEMPTION BIT(2)
|
|
#define I915_ENGINE_HAS_SEMAPHORES BIT(3)
|
|
unsigned int flags;
|
|
|
|
/*
|
|
* Table of commands the command parser needs to know about
|
|
* for this engine.
|
|
*/
|
|
DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
|
|
|
|
/*
|
|
* Table of registers allowed in commands that read/write registers.
|
|
*/
|
|
const struct drm_i915_reg_table *reg_tables;
|
|
int reg_table_count;
|
|
|
|
/*
|
|
* Returns the bitmask for the length field of the specified command.
|
|
* Return 0 for an unrecognized/invalid command.
|
|
*
|
|
* If the command parser finds an entry for a command in the engine's
|
|
* cmd_tables, it gets the command's length based on the table entry.
|
|
* If not, it calls this function to determine the per-engine length
|
|
* field encoding for the command (i.e. different opcode ranges use
|
|
* certain bits to encode the command length in the header).
|
|
*/
|
|
u32 (*get_cmd_length_mask)(u32 cmd_header);
|
|
|
|
struct {
|
|
/**
|
|
* @lock: Lock protecting the below fields.
|
|
*/
|
|
seqlock_t lock;
|
|
/**
|
|
* @enabled: Reference count indicating number of listeners.
|
|
*/
|
|
unsigned int enabled;
|
|
/**
|
|
* @active: Number of contexts currently scheduled in.
|
|
*/
|
|
unsigned int active;
|
|
/**
|
|
* @enabled_at: Timestamp when busy stats were enabled.
|
|
*/
|
|
ktime_t enabled_at;
|
|
/**
|
|
* @start: Timestamp of the last idle to active transition.
|
|
*
|
|
* Idle is defined as active == 0, active is active > 0.
|
|
*/
|
|
ktime_t start;
|
|
/**
|
|
* @total: Total time this engine was busy.
|
|
*
|
|
* Accumulated time not counting the most recent block in cases
|
|
* where engine is currently busy (active > 0).
|
|
*/
|
|
ktime_t total;
|
|
} stats;
|
|
};
|
|
|
|
static inline bool
|
|
intel_engine_needs_cmd_parser(const struct intel_engine_cs *engine)
|
|
{
|
|
return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
|
|
}
|
|
|
|
static inline bool
|
|
intel_engine_supports_stats(const struct intel_engine_cs *engine)
|
|
{
|
|
return engine->flags & I915_ENGINE_SUPPORTS_STATS;
|
|
}
|
|
|
|
static inline bool
|
|
intel_engine_has_preemption(const struct intel_engine_cs *engine)
|
|
{
|
|
return engine->flags & I915_ENGINE_HAS_PREEMPTION;
|
|
}
|
|
|
|
static inline bool
|
|
intel_engine_has_semaphores(const struct intel_engine_cs *engine)
|
|
{
|
|
return engine->flags & I915_ENGINE_HAS_SEMAPHORES;
|
|
}
|
|
|
|
void intel_engines_set_scheduler_caps(struct drm_i915_private *i915);
|
|
|
|
static inline bool __execlists_need_preempt(int prio, int last)
|
|
{
|
|
/*
|
|
* Allow preemption of low -> normal -> high, but we do
|
|
* not allow low priority tasks to preempt other low priority
|
|
* tasks under the impression that latency for low priority
|
|
* tasks does not matter (as much as background throughput),
|
|
* so kiss.
|
|
*
|
|
* More naturally we would write
|
|
* prio >= max(0, last);
|
|
* except that we wish to prevent triggering preemption at the same
|
|
* priority level: the task that is running should remain running
|
|
* to preserve FIFO ordering of dependencies.
|
|
*/
|
|
return prio > max(I915_PRIORITY_NORMAL - 1, last);
|
|
}
|
|
|
|
static inline void
|
|
execlists_set_active(struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
__set_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
static inline bool
|
|
execlists_set_active_once(struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
return !__test_and_set_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
static inline void
|
|
execlists_clear_active(struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
__clear_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
static inline void
|
|
execlists_clear_all_active(struct intel_engine_execlists *execlists)
|
|
{
|
|
execlists->active = 0;
|
|
}
|
|
|
|
static inline bool
|
|
execlists_is_active(const struct intel_engine_execlists *execlists,
|
|
unsigned int bit)
|
|
{
|
|
return test_bit(bit, (unsigned long *)&execlists->active);
|
|
}
|
|
|
|
void execlists_user_begin(struct intel_engine_execlists *execlists,
|
|
const struct execlist_port *port);
|
|
void execlists_user_end(struct intel_engine_execlists *execlists);
|
|
|
|
void
|
|
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
|
|
|
|
void
|
|
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
|
|
|
|
static inline unsigned int
|
|
execlists_num_ports(const struct intel_engine_execlists * const execlists)
|
|
{
|
|
return execlists->port_mask + 1;
|
|
}
|
|
|
|
static inline struct execlist_port *
|
|
execlists_port_complete(struct intel_engine_execlists * const execlists,
|
|
struct execlist_port * const port)
|
|
{
|
|
const unsigned int m = execlists->port_mask;
|
|
|
|
GEM_BUG_ON(port_index(port, execlists) != 0);
|
|
GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
|
|
|
|
memmove(port, port + 1, m * sizeof(struct execlist_port));
|
|
memset(port + m, 0, sizeof(struct execlist_port));
|
|
|
|
return port;
|
|
}
|
|
|
|
static inline unsigned int
|
|
intel_engine_flag(const struct intel_engine_cs *engine)
|
|
{
|
|
return BIT(engine->id);
|
|
}
|
|
|
|
static inline u32
|
|
intel_read_status_page(const struct intel_engine_cs *engine, int reg)
|
|
{
|
|
/* Ensure that the compiler doesn't optimize away the load. */
|
|
return READ_ONCE(engine->status_page.addr[reg]);
|
|
}
|
|
|
|
static inline void
|
|
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
|
|
{
|
|
/* Writing into the status page should be done sparingly. Since
|
|
* we do when we are uncertain of the device state, we take a bit
|
|
* of extra paranoia to try and ensure that the HWS takes the value
|
|
* we give and that it doesn't end up trapped inside the CPU!
|
|
*/
|
|
if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
|
|
mb();
|
|
clflush(&engine->status_page.addr[reg]);
|
|
engine->status_page.addr[reg] = value;
|
|
clflush(&engine->status_page.addr[reg]);
|
|
mb();
|
|
} else {
|
|
WRITE_ONCE(engine->status_page.addr[reg], value);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reads a dword out of the status page, which is written to from the command
|
|
* queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
|
|
* MI_STORE_DATA_IMM.
|
|
*
|
|
* The following dwords have a reserved meaning:
|
|
* 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
|
|
* 0x04: ring 0 head pointer
|
|
* 0x05: ring 1 head pointer (915-class)
|
|
* 0x06: ring 2 head pointer (915-class)
|
|
* 0x10-0x1b: Context status DWords (GM45)
|
|
* 0x1f: Last written status offset. (GM45)
|
|
* 0x20-0x2f: Reserved (Gen6+)
|
|
*
|
|
* The area from dword 0x30 to 0x3ff is available for driver usage.
|
|
*/
|
|
#define I915_GEM_HWS_PREEMPT 0x32
|
|
#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT * sizeof(u32))
|
|
#define I915_GEM_HWS_HANGCHECK 0x34
|
|
#define I915_GEM_HWS_HANGCHECK_ADDR (I915_GEM_HWS_HANGCHECK * sizeof(u32))
|
|
#define I915_GEM_HWS_SEQNO 0x40
|
|
#define I915_GEM_HWS_SEQNO_ADDR (I915_GEM_HWS_SEQNO * sizeof(u32))
|
|
#define I915_GEM_HWS_SCRATCH 0x80
|
|
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH * sizeof(u32))
|
|
|
|
#define I915_HWS_CSB_BUF0_INDEX 0x10
|
|
#define I915_HWS_CSB_WRITE_INDEX 0x1f
|
|
#define CNL_HWS_CSB_WRITE_INDEX 0x2f
|
|
|
|
struct intel_ring *
|
|
intel_engine_create_ring(struct intel_engine_cs *engine,
|
|
struct i915_timeline *timeline,
|
|
int size);
|
|
int intel_ring_pin(struct intel_ring *ring);
|
|
void intel_ring_reset(struct intel_ring *ring, u32 tail);
|
|
unsigned int intel_ring_update_space(struct intel_ring *ring);
|
|
void intel_ring_unpin(struct intel_ring *ring);
|
|
void intel_ring_free(struct intel_ring *ring);
|
|
|
|
void intel_engine_stop(struct intel_engine_cs *engine);
|
|
void intel_engine_cleanup(struct intel_engine_cs *engine);
|
|
|
|
void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
|
|
|
|
int __must_check intel_ring_cacheline_align(struct i915_request *rq);
|
|
|
|
u32 __must_check *intel_ring_begin(struct i915_request *rq, unsigned int n);
|
|
|
|
static inline void intel_ring_advance(struct i915_request *rq, u32 *cs)
|
|
{
|
|
/* Dummy function.
|
|
*
|
|
* This serves as a placeholder in the code so that the reader
|
|
* can compare against the preceding intel_ring_begin() and
|
|
* check that the number of dwords emitted matches the space
|
|
* reserved for the command packet (i.e. the value passed to
|
|
* intel_ring_begin()).
|
|
*/
|
|
GEM_BUG_ON((rq->ring->vaddr + rq->ring->emit) != cs);
|
|
}
|
|
|
|
static inline u32 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
|
|
{
|
|
return pos & (ring->size - 1);
|
|
}
|
|
|
|
static inline bool
|
|
intel_ring_offset_valid(const struct intel_ring *ring,
|
|
unsigned int pos)
|
|
{
|
|
if (pos & -ring->size) /* must be strictly within the ring */
|
|
return false;
|
|
|
|
if (!IS_ALIGNED(pos, 8)) /* must be qword aligned */
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline u32 intel_ring_offset(const struct i915_request *rq, void *addr)
|
|
{
|
|
/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
|
|
u32 offset = addr - rq->ring->vaddr;
|
|
GEM_BUG_ON(offset > rq->ring->size);
|
|
return intel_ring_wrap(rq->ring, offset);
|
|
}
|
|
|
|
static inline void
|
|
assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
|
|
{
|
|
GEM_BUG_ON(!intel_ring_offset_valid(ring, tail));
|
|
|
|
/*
|
|
* "Ring Buffer Use"
|
|
* Gen2 BSpec "1. Programming Environment" / 1.4.4.6
|
|
* Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
|
|
* Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
|
|
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the
|
|
* same cacheline, the Head Pointer must not be greater than the Tail
|
|
* Pointer."
|
|
*
|
|
* We use ring->head as the last known location of the actual RING_HEAD,
|
|
* it may have advanced but in the worst case it is equally the same
|
|
* as ring->head and so we should never program RING_TAIL to advance
|
|
* into the same cacheline as ring->head.
|
|
*/
|
|
#define cacheline(a) round_down(a, CACHELINE_BYTES)
|
|
GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
|
|
tail < ring->head);
|
|
#undef cacheline
|
|
}
|
|
|
|
static inline unsigned int
|
|
intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
|
|
{
|
|
/* Whilst writes to the tail are strictly order, there is no
|
|
* serialisation between readers and the writers. The tail may be
|
|
* read by i915_request_retire() just as it is being updated
|
|
* by execlists, as although the breadcrumb is complete, the context
|
|
* switch hasn't been seen.
|
|
*/
|
|
assert_ring_tail_valid(ring, tail);
|
|
ring->tail = tail;
|
|
return tail;
|
|
}
|
|
|
|
static inline unsigned int
|
|
__intel_ring_space(unsigned int head, unsigned int tail, unsigned int size)
|
|
{
|
|
/*
|
|
* "If the Ring Buffer Head Pointer and the Tail Pointer are on the
|
|
* same cacheline, the Head Pointer must not be greater than the Tail
|
|
* Pointer."
|
|
*/
|
|
GEM_BUG_ON(!is_power_of_2(size));
|
|
return (head - tail - CACHELINE_BYTES) & (size - 1);
|
|
}
|
|
|
|
int intel_engine_setup_common(struct intel_engine_cs *engine);
|
|
int intel_engine_init_common(struct intel_engine_cs *engine);
|
|
void intel_engine_cleanup_common(struct intel_engine_cs *engine);
|
|
|
|
int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
|
|
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
|
|
|
|
int intel_engine_stop_cs(struct intel_engine_cs *engine);
|
|
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask);
|
|
|
|
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine);
|
|
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_get_instdone(struct intel_engine_cs *engine,
|
|
struct intel_instdone *instdone);
|
|
|
|
void intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
|
|
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
|
|
void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
|
|
|
|
bool intel_engine_signal_breadcrumbs(struct intel_engine_cs *engine);
|
|
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
|
|
|
|
static inline void
|
|
intel_engine_queue_breadcrumbs(struct intel_engine_cs *engine)
|
|
{
|
|
irq_work_queue(&engine->breadcrumbs.irq_work);
|
|
}
|
|
|
|
bool intel_engine_breadcrumbs_irq(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
|
|
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
|
|
|
|
void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
|
|
struct drm_printer *p);
|
|
|
|
static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
|
|
{
|
|
memset(batch, 0, 6 * sizeof(u32));
|
|
|
|
batch[0] = GFX_OP_PIPE_CONTROL(6);
|
|
batch[1] = flags;
|
|
batch[2] = offset;
|
|
|
|
return batch + 6;
|
|
}
|
|
|
|
static inline u32 *
|
|
gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset, u32 flags)
|
|
{
|
|
/* We're using qword write, offset should be aligned to 8 bytes. */
|
|
GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
|
|
|
|
/* w/a for post sync ops following a GPGPU operation we
|
|
* need a prior CS_STALL, which is emitted by the flush
|
|
* following the batch.
|
|
*/
|
|
*cs++ = GFX_OP_PIPE_CONTROL(6);
|
|
*cs++ = flags | PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_GLOBAL_GTT_IVB;
|
|
*cs++ = gtt_offset;
|
|
*cs++ = 0;
|
|
*cs++ = value;
|
|
/* We're thrashing one dword of HWS. */
|
|
*cs++ = 0;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static inline u32 *
|
|
gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
|
|
{
|
|
/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
|
|
GEM_BUG_ON(gtt_offset & (1 << 5));
|
|
/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
|
|
GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
|
|
|
|
*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
|
|
*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
|
|
*cs++ = 0;
|
|
*cs++ = value;
|
|
|
|
return cs;
|
|
}
|
|
|
|
static inline void intel_engine_reset(struct intel_engine_cs *engine,
|
|
bool stalled)
|
|
{
|
|
if (engine->reset.reset)
|
|
engine->reset.reset(engine, stalled);
|
|
}
|
|
|
|
void intel_engines_sanitize(struct drm_i915_private *i915, bool force);
|
|
|
|
bool intel_engine_is_idle(struct intel_engine_cs *engine);
|
|
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
|
|
|
|
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
|
|
void intel_engine_lost_context(struct intel_engine_cs *engine);
|
|
|
|
void intel_engines_park(struct drm_i915_private *i915);
|
|
void intel_engines_unpark(struct drm_i915_private *i915);
|
|
|
|
void intel_engines_reset_default_submission(struct drm_i915_private *i915);
|
|
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
|
|
|
|
bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
|
|
|
|
__printf(3, 4)
|
|
void intel_engine_dump(struct intel_engine_cs *engine,
|
|
struct drm_printer *m,
|
|
const char *header, ...);
|
|
|
|
struct intel_engine_cs *
|
|
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);
|
|
|
|
static inline void intel_engine_context_in(struct intel_engine_cs *engine)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (READ_ONCE(engine->stats.enabled) == 0)
|
|
return;
|
|
|
|
write_seqlock_irqsave(&engine->stats.lock, flags);
|
|
|
|
if (engine->stats.enabled > 0) {
|
|
if (engine->stats.active++ == 0)
|
|
engine->stats.start = ktime_get();
|
|
GEM_BUG_ON(engine->stats.active == 0);
|
|
}
|
|
|
|
write_sequnlock_irqrestore(&engine->stats.lock, flags);
|
|
}
|
|
|
|
static inline void intel_engine_context_out(struct intel_engine_cs *engine)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (READ_ONCE(engine->stats.enabled) == 0)
|
|
return;
|
|
|
|
write_seqlock_irqsave(&engine->stats.lock, flags);
|
|
|
|
if (engine->stats.enabled > 0) {
|
|
ktime_t last;
|
|
|
|
if (engine->stats.active && --engine->stats.active == 0) {
|
|
/*
|
|
* Decrement the active context count and in case GPU
|
|
* is now idle add up to the running total.
|
|
*/
|
|
last = ktime_sub(ktime_get(), engine->stats.start);
|
|
|
|
engine->stats.total = ktime_add(engine->stats.total,
|
|
last);
|
|
} else if (engine->stats.active == 0) {
|
|
/*
|
|
* After turning on engine stats, context out might be
|
|
* the first event in which case we account from the
|
|
* time stats gathering was turned on.
|
|
*/
|
|
last = ktime_sub(ktime_get(), engine->stats.enabled_at);
|
|
|
|
engine->stats.total = ktime_add(engine->stats.total,
|
|
last);
|
|
}
|
|
}
|
|
|
|
write_sequnlock_irqrestore(&engine->stats.lock, flags);
|
|
}
|
|
|
|
int intel_enable_engine_stats(struct intel_engine_cs *engine);
|
|
void intel_disable_engine_stats(struct intel_engine_cs *engine);
|
|
|
|
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
|
|
static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
|
|
{
|
|
if (!execlists->preempt_hang.inject_hang)
|
|
return false;
|
|
|
|
complete(&execlists->preempt_hang.completion);
|
|
return true;
|
|
}
|
|
|
|
#else
|
|
|
|
static inline bool inject_preempt_hang(struct intel_engine_execlists *execlists)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline u32
|
|
intel_engine_next_hangcheck_seqno(struct intel_engine_cs *engine)
|
|
{
|
|
return engine->hangcheck.next_seqno =
|
|
next_pseudo_random32(engine->hangcheck.next_seqno);
|
|
}
|
|
|
|
static inline u32
|
|
intel_engine_get_hangcheck_seqno(struct intel_engine_cs *engine)
|
|
{
|
|
return intel_read_status_page(engine, I915_GEM_HWS_HANGCHECK);
|
|
}
|
|
|
|
#endif /* _INTEL_RINGBUFFER_H_ */
|