OpenCloudOS-Kernel/drivers/net/wireless/rsi/rsi_91x_sdio.c

1584 lines
40 KiB
C

/**
* Copyright (c) 2014 Redpine Signals Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <linux/module.h>
#include "rsi_sdio.h"
#include "rsi_common.h"
#include "rsi_coex.h"
#include "rsi_hal.h"
/* Default operating mode is wlan STA + BT */
static u16 dev_oper_mode = DEV_OPMODE_STA_BT_DUAL;
module_param(dev_oper_mode, ushort, 0444);
MODULE_PARM_DESC(dev_oper_mode,
"1[Wi-Fi], 4[BT], 8[BT LE], 5[Wi-Fi STA + BT classic]\n"
"9[Wi-Fi STA + BT LE], 13[Wi-Fi STA + BT classic + BT LE]\n"
"6[AP + BT classic], 14[AP + BT classic + BT LE]");
/**
* rsi_sdio_set_cmd52_arg() - This function prepares cmd 52 read/write arg.
* @rw: Read/write
* @func: function number
* @raw: indicates whether to perform read after write
* @address: address to which to read/write
* @writedata: data to write
*
* Return: argument
*/
static u32 rsi_sdio_set_cmd52_arg(bool rw,
u8 func,
u8 raw,
u32 address,
u8 writedata)
{
return ((rw & 1) << 31) | ((func & 0x7) << 28) |
((raw & 1) << 27) | (1 << 26) |
((address & 0x1FFFF) << 9) | (1 << 8) |
(writedata & 0xFF);
}
/**
* rsi_cmd52writebyte() - This function issues cmd52 byte write onto the card.
* @card: Pointer to the mmc_card.
* @address: Address to write.
* @byte: Data to write.
*
* Return: Write status.
*/
static int rsi_cmd52writebyte(struct mmc_card *card,
u32 address,
u8 byte)
{
struct mmc_command io_cmd;
u32 arg;
memset(&io_cmd, 0, sizeof(io_cmd));
arg = rsi_sdio_set_cmd52_arg(1, 0, 0, address, byte);
io_cmd.opcode = SD_IO_RW_DIRECT;
io_cmd.arg = arg;
io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
return mmc_wait_for_cmd(card->host, &io_cmd, 0);
}
/**
* rsi_cmd52readbyte() - This function issues cmd52 byte read onto the card.
* @card: Pointer to the mmc_card.
* @address: Address to read from.
* @byte: Variable to store read value.
*
* Return: Read status.
*/
static int rsi_cmd52readbyte(struct mmc_card *card,
u32 address,
u8 *byte)
{
struct mmc_command io_cmd;
u32 arg;
int err;
memset(&io_cmd, 0, sizeof(io_cmd));
arg = rsi_sdio_set_cmd52_arg(0, 0, 0, address, 0);
io_cmd.opcode = SD_IO_RW_DIRECT;
io_cmd.arg = arg;
io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
err = mmc_wait_for_cmd(card->host, &io_cmd, 0);
if ((!err) && (byte))
*byte = io_cmd.resp[0] & 0xFF;
return err;
}
/**
* rsi_issue_sdiocommand() - This function issues sdio commands.
* @func: Pointer to the sdio_func structure.
* @opcode: Opcode value.
* @arg: Arguments to pass.
* @flags: Flags which are set.
* @resp: Pointer to store response.
*
* Return: err: command status as 0 or -1.
*/
static int rsi_issue_sdiocommand(struct sdio_func *func,
u32 opcode,
u32 arg,
u32 flags,
u32 *resp)
{
struct mmc_command cmd;
struct mmc_host *host;
int err;
host = func->card->host;
memset(&cmd, 0, sizeof(struct mmc_command));
cmd.opcode = opcode;
cmd.arg = arg;
cmd.flags = flags;
err = mmc_wait_for_cmd(host, &cmd, 3);
if ((!err) && (resp))
*resp = cmd.resp[0];
return err;
}
/**
* rsi_handle_interrupt() - This function is called upon the occurrence
* of an interrupt.
* @function: Pointer to the sdio_func structure.
*
* Return: None.
*/
static void rsi_handle_interrupt(struct sdio_func *function)
{
struct rsi_hw *adapter = sdio_get_drvdata(function);
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
if (adapter->priv->fsm_state == FSM_FW_NOT_LOADED)
return;
dev->sdio_irq_task = current;
rsi_interrupt_handler(adapter);
dev->sdio_irq_task = NULL;
}
/**
* rsi_reset_card() - This function resets and re-initializes the card.
* @pfunction: Pointer to the sdio_func structure.
*
* Return: None.
*/
static void rsi_reset_card(struct sdio_func *pfunction)
{
int ret = 0;
int err;
struct mmc_card *card = pfunction->card;
struct mmc_host *host = card->host;
u8 cmd52_resp;
u32 clock, resp, i;
u16 rca;
/* Reset 9110 chip */
ret = rsi_cmd52writebyte(pfunction->card,
SDIO_CCCR_ABORT,
(1 << 3));
/* Card will not send any response as it is getting reset immediately
* Hence expect a timeout status from host controller
*/
if (ret != -ETIMEDOUT)
rsi_dbg(ERR_ZONE, "%s: Reset failed : %d\n", __func__, ret);
/* Wait for few milli seconds to get rid of residue charges if any */
msleep(20);
/* Initialize the SDIO card */
host->ios.chip_select = MMC_CS_DONTCARE;
host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
host->ios.power_mode = MMC_POWER_UP;
host->ios.bus_width = MMC_BUS_WIDTH_1;
host->ios.timing = MMC_TIMING_LEGACY;
host->ops->set_ios(host, &host->ios);
/*
* This delay should be sufficient to allow the power supply
* to reach the minimum voltage.
*/
msleep(20);
host->ios.clock = host->f_min;
host->ios.power_mode = MMC_POWER_ON;
host->ops->set_ios(host, &host->ios);
/*
* This delay must be at least 74 clock sizes, or 1 ms, or the
* time required to reach a stable voltage.
*/
msleep(20);
/* Issue CMD0. Goto idle state */
host->ios.chip_select = MMC_CS_HIGH;
host->ops->set_ios(host, &host->ios);
msleep(20);
err = rsi_issue_sdiocommand(pfunction,
MMC_GO_IDLE_STATE,
0,
(MMC_RSP_NONE | MMC_CMD_BC),
NULL);
host->ios.chip_select = MMC_CS_DONTCARE;
host->ops->set_ios(host, &host->ios);
msleep(20);
host->use_spi_crc = 0;
if (err)
rsi_dbg(ERR_ZONE, "%s: CMD0 failed : %d\n", __func__, err);
/* Issue CMD5, arg = 0 */
err = rsi_issue_sdiocommand(pfunction, SD_IO_SEND_OP_COND, 0,
(MMC_RSP_R4 | MMC_CMD_BCR), &resp);
if (err)
rsi_dbg(ERR_ZONE, "%s: CMD5 failed : %d\n",
__func__, err);
card->ocr = resp;
/* Issue CMD5, arg = ocr. Wait till card is ready */
for (i = 0; i < 100; i++) {
err = rsi_issue_sdiocommand(pfunction, SD_IO_SEND_OP_COND,
card->ocr,
(MMC_RSP_R4 | MMC_CMD_BCR), &resp);
if (err) {
rsi_dbg(ERR_ZONE, "%s: CMD5 failed : %d\n",
__func__, err);
break;
}
if (resp & MMC_CARD_BUSY)
break;
msleep(20);
}
if ((i == 100) || (err)) {
rsi_dbg(ERR_ZONE, "%s: card in not ready : %d %d\n",
__func__, i, err);
return;
}
/* Issue CMD3, get RCA */
err = rsi_issue_sdiocommand(pfunction,
SD_SEND_RELATIVE_ADDR,
0,
(MMC_RSP_R6 | MMC_CMD_BCR),
&resp);
if (err) {
rsi_dbg(ERR_ZONE, "%s: CMD3 failed : %d\n", __func__, err);
return;
}
rca = resp >> 16;
host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
host->ops->set_ios(host, &host->ios);
/* Issue CMD7, select card */
err = rsi_issue_sdiocommand(pfunction,
MMC_SELECT_CARD,
(rca << 16),
(MMC_RSP_R1 | MMC_CMD_AC),
NULL);
if (err) {
rsi_dbg(ERR_ZONE, "%s: CMD7 failed : %d\n", __func__, err);
return;
}
/* Enable high speed */
if (card->host->caps & MMC_CAP_SD_HIGHSPEED) {
rsi_dbg(ERR_ZONE, "%s: Set high speed mode\n", __func__);
err = rsi_cmd52readbyte(card, SDIO_CCCR_SPEED, &cmd52_resp);
if (err) {
rsi_dbg(ERR_ZONE, "%s: CCCR speed reg read failed: %d\n",
__func__, err);
} else {
err = rsi_cmd52writebyte(card,
SDIO_CCCR_SPEED,
(cmd52_resp | SDIO_SPEED_EHS));
if (err) {
rsi_dbg(ERR_ZONE,
"%s: CCR speed regwrite failed %d\n",
__func__, err);
return;
}
host->ios.timing = MMC_TIMING_SD_HS;
host->ops->set_ios(host, &host->ios);
}
}
/* Set clock */
if (mmc_card_hs(card))
clock = 50000000;
else
clock = card->cis.max_dtr;
if (clock > host->f_max)
clock = host->f_max;
host->ios.clock = clock;
host->ops->set_ios(host, &host->ios);
if (card->host->caps & MMC_CAP_4_BIT_DATA) {
/* CMD52: Set bus width & disable card detect resistor */
err = rsi_cmd52writebyte(card,
SDIO_CCCR_IF,
(SDIO_BUS_CD_DISABLE |
SDIO_BUS_WIDTH_4BIT));
if (err) {
rsi_dbg(ERR_ZONE, "%s: Set bus mode failed : %d\n",
__func__, err);
return;
}
host->ios.bus_width = MMC_BUS_WIDTH_4;
host->ops->set_ios(host, &host->ios);
}
}
/**
* rsi_setclock() - This function sets the clock frequency.
* @adapter: Pointer to the adapter structure.
* @freq: Clock frequency.
*
* Return: None.
*/
static void rsi_setclock(struct rsi_hw *adapter, u32 freq)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
struct mmc_host *host = dev->pfunction->card->host;
u32 clock;
clock = freq * 1000;
if (clock > host->f_max)
clock = host->f_max;
host->ios.clock = clock;
host->ops->set_ios(host, &host->ios);
}
/**
* rsi_setblocklength() - This function sets the host block length.
* @adapter: Pointer to the adapter structure.
* @length: Block length to be set.
*
* Return: status: 0 on success, -1 on failure.
*/
static int rsi_setblocklength(struct rsi_hw *adapter, u32 length)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
int status;
rsi_dbg(INIT_ZONE, "%s: Setting the block length\n", __func__);
status = sdio_set_block_size(dev->pfunction, length);
dev->pfunction->max_blksize = 256;
adapter->block_size = dev->pfunction->max_blksize;
rsi_dbg(INFO_ZONE,
"%s: Operational blk length is %d\n", __func__, length);
return status;
}
/**
* rsi_setupcard() - This function queries and sets the card's features.
* @adapter: Pointer to the adapter structure.
*
* Return: status: 0 on success, -1 on failure.
*/
static int rsi_setupcard(struct rsi_hw *adapter)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
int status = 0;
rsi_setclock(adapter, 50000);
dev->tx_blk_size = 256;
status = rsi_setblocklength(adapter, dev->tx_blk_size);
if (status)
rsi_dbg(ERR_ZONE,
"%s: Unable to set block length\n", __func__);
return status;
}
/**
* rsi_sdio_read_register() - This function reads one byte of information
* from a register.
* @adapter: Pointer to the adapter structure.
* @addr: Address of the register.
* @data: Pointer to the data that stores the data read.
*
* Return: 0 on success, -1 on failure.
*/
int rsi_sdio_read_register(struct rsi_hw *adapter,
u32 addr,
u8 *data)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
u8 fun_num = 0;
int status;
if (likely(dev->sdio_irq_task != current))
sdio_claim_host(dev->pfunction);
if (fun_num == 0)
*data = sdio_f0_readb(dev->pfunction, addr, &status);
else
*data = sdio_readb(dev->pfunction, addr, &status);
if (likely(dev->sdio_irq_task != current))
sdio_release_host(dev->pfunction);
return status;
}
/**
* rsi_sdio_write_register() - This function writes one byte of information
* into a register.
* @adapter: Pointer to the adapter structure.
* @function: Function Number.
* @addr: Address of the register.
* @data: Pointer to the data tha has to be written.
*
* Return: 0 on success, -1 on failure.
*/
int rsi_sdio_write_register(struct rsi_hw *adapter,
u8 function,
u32 addr,
u8 *data)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
int status = 0;
if (likely(dev->sdio_irq_task != current))
sdio_claim_host(dev->pfunction);
if (function == 0)
sdio_f0_writeb(dev->pfunction, *data, addr, &status);
else
sdio_writeb(dev->pfunction, *data, addr, &status);
if (likely(dev->sdio_irq_task != current))
sdio_release_host(dev->pfunction);
return status;
}
/**
* rsi_sdio_ack_intr() - This function acks the interrupt received.
* @adapter: Pointer to the adapter structure.
* @int_bit: Interrupt bit to write into register.
*
* Return: None.
*/
void rsi_sdio_ack_intr(struct rsi_hw *adapter, u8 int_bit)
{
int status;
status = rsi_sdio_write_register(adapter,
1,
(SDIO_FUN1_INTR_CLR_REG |
RSI_SD_REQUEST_MASTER),
&int_bit);
if (status)
rsi_dbg(ERR_ZONE, "%s: unable to send ack\n", __func__);
}
/**
* rsi_sdio_read_register_multiple() - This function read multiple bytes of
* information from the SD card.
* @adapter: Pointer to the adapter structure.
* @addr: Address of the register.
* @count: Number of multiple bytes to be read.
* @data: Pointer to the read data.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_sdio_read_register_multiple(struct rsi_hw *adapter,
u32 addr,
u8 *data,
u16 count)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
u32 status;
if (likely(dev->sdio_irq_task != current))
sdio_claim_host(dev->pfunction);
status = sdio_readsb(dev->pfunction, data, addr, count);
if (likely(dev->sdio_irq_task != current))
sdio_release_host(dev->pfunction);
if (status != 0)
rsi_dbg(ERR_ZONE, "%s: Synch Cmd53 read failed\n", __func__);
return status;
}
/**
* rsi_sdio_write_register_multiple() - This function writes multiple bytes of
* information to the SD card.
* @adapter: Pointer to the adapter structure.
* @addr: Address of the register.
* @data: Pointer to the data that has to be written.
* @count: Number of multiple bytes to be written.
*
* Return: 0 on success, -1 on failure.
*/
int rsi_sdio_write_register_multiple(struct rsi_hw *adapter,
u32 addr,
u8 *data,
u16 count)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
int status;
if (dev->write_fail > 1) {
rsi_dbg(ERR_ZONE, "%s: Stopping card writes\n", __func__);
return 0;
} else if (dev->write_fail == 1) {
/**
* Assuming it is a CRC failure, we want to allow another
* card write
*/
rsi_dbg(ERR_ZONE, "%s: Continue card writes\n", __func__);
dev->write_fail++;
}
if (likely(dev->sdio_irq_task != current))
sdio_claim_host(dev->pfunction);
status = sdio_writesb(dev->pfunction, addr, data, count);
if (likely(dev->sdio_irq_task != current))
sdio_release_host(dev->pfunction);
if (status) {
rsi_dbg(ERR_ZONE, "%s: Synch Cmd53 write failed %d\n",
__func__, status);
dev->write_fail = 2;
} else {
memcpy(dev->prev_desc, data, FRAME_DESC_SZ);
}
return status;
}
static int rsi_sdio_load_data_master_write(struct rsi_hw *adapter,
u32 base_address,
u32 instructions_sz,
u16 block_size,
u8 *ta_firmware)
{
u32 num_blocks, offset, i;
u16 msb_address, lsb_address;
u8 *temp_buf;
int status;
num_blocks = instructions_sz / block_size;
msb_address = base_address >> 16;
rsi_dbg(INFO_ZONE, "ins_size: %d, num_blocks: %d\n",
instructions_sz, num_blocks);
temp_buf = kmalloc(block_size, GFP_KERNEL);
if (!temp_buf)
return -ENOMEM;
/* Loading DM ms word in the sdio slave */
status = rsi_sdio_master_access_msword(adapter, msb_address);
if (status < 0) {
rsi_dbg(ERR_ZONE, "%s: Unable to set ms word reg\n", __func__);
goto out_free;
}
for (offset = 0, i = 0; i < num_blocks; i++, offset += block_size) {
memcpy(temp_buf, ta_firmware + offset, block_size);
lsb_address = (u16)base_address;
status = rsi_sdio_write_register_multiple
(adapter,
lsb_address | RSI_SD_REQUEST_MASTER,
temp_buf, block_size);
if (status < 0) {
rsi_dbg(ERR_ZONE, "%s: failed to write\n", __func__);
goto out_free;
}
rsi_dbg(INFO_ZONE, "%s: loading block: %d\n", __func__, i);
base_address += block_size;
if ((base_address >> 16) != msb_address) {
msb_address += 1;
/* Loading DM ms word in the sdio slave */
status = rsi_sdio_master_access_msword(adapter,
msb_address);
if (status < 0) {
rsi_dbg(ERR_ZONE,
"%s: Unable to set ms word reg\n",
__func__);
goto out_free;
}
}
}
if (instructions_sz % block_size) {
memset(temp_buf, 0, block_size);
memcpy(temp_buf, ta_firmware + offset,
instructions_sz % block_size);
lsb_address = (u16)base_address;
status = rsi_sdio_write_register_multiple
(adapter,
lsb_address | RSI_SD_REQUEST_MASTER,
temp_buf,
instructions_sz % block_size);
if (status < 0)
goto out_free;
rsi_dbg(INFO_ZONE,
"Written Last Block in Address 0x%x Successfully\n",
offset | RSI_SD_REQUEST_MASTER);
}
status = 0;
out_free:
kfree(temp_buf);
return status;
}
#define FLASH_SIZE_ADDR 0x04000016
static int rsi_sdio_master_reg_read(struct rsi_hw *adapter, u32 addr,
u32 *read_buf, u16 size)
{
u32 addr_on_bus, *data;
u16 ms_addr;
int status;
data = kzalloc(RSI_MASTER_REG_BUF_SIZE, GFP_KERNEL);
if (!data)
return -ENOMEM;
ms_addr = (addr >> 16);
status = rsi_sdio_master_access_msword(adapter, ms_addr);
if (status < 0) {
rsi_dbg(ERR_ZONE,
"%s: Unable to set ms word to common reg\n",
__func__);
goto err;
}
addr &= 0xFFFF;
addr_on_bus = (addr & 0xFF000000);
if ((addr_on_bus == (FLASH_SIZE_ADDR & 0xFF000000)) ||
(addr_on_bus == 0x0))
addr_on_bus = (addr & ~(0x3));
else
addr_on_bus = addr;
/* Bring TA out of reset */
status = rsi_sdio_read_register_multiple
(adapter,
(addr_on_bus | RSI_SD_REQUEST_MASTER),
(u8 *)data, 4);
if (status < 0) {
rsi_dbg(ERR_ZONE, "%s: AHB register read failed\n", __func__);
goto err;
}
if (size == 2) {
if ((addr & 0x3) == 0)
*read_buf = *data;
else
*read_buf = (*data >> 16);
*read_buf = (*read_buf & 0xFFFF);
} else if (size == 1) {
if ((addr & 0x3) == 0)
*read_buf = *data;
else if ((addr & 0x3) == 1)
*read_buf = (*data >> 8);
else if ((addr & 0x3) == 2)
*read_buf = (*data >> 16);
else
*read_buf = (*data >> 24);
*read_buf = (*read_buf & 0xFF);
} else {
*read_buf = *data;
}
err:
kfree(data);
return status;
}
static int rsi_sdio_master_reg_write(struct rsi_hw *adapter,
unsigned long addr,
unsigned long data, u16 size)
{
unsigned long *data_aligned;
int status;
data_aligned = kzalloc(RSI_MASTER_REG_BUF_SIZE, GFP_KERNEL);
if (!data_aligned)
return -ENOMEM;
if (size == 2) {
*data_aligned = ((data << 16) | (data & 0xFFFF));
} else if (size == 1) {
u32 temp_data = data & 0xFF;
*data_aligned = ((temp_data << 24) | (temp_data << 16) |
(temp_data << 8) | temp_data);
} else {
*data_aligned = data;
}
size = 4;
status = rsi_sdio_master_access_msword(adapter, (addr >> 16));
if (status < 0) {
rsi_dbg(ERR_ZONE,
"%s: Unable to set ms word to common reg\n",
__func__);
kfree(data_aligned);
return -EIO;
}
addr = addr & 0xFFFF;
/* Bring TA out of reset */
status = rsi_sdio_write_register_multiple
(adapter,
(addr | RSI_SD_REQUEST_MASTER),
(u8 *)data_aligned, size);
if (status < 0)
rsi_dbg(ERR_ZONE,
"%s: Unable to do AHB reg write\n", __func__);
kfree(data_aligned);
return status;
}
/**
* rsi_sdio_host_intf_write_pkt() - This function writes the packet to device.
* @adapter: Pointer to the adapter structure.
* @pkt: Pointer to the data to be written on to the device.
* @len: length of the data to be written on to the device.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_sdio_host_intf_write_pkt(struct rsi_hw *adapter,
u8 *pkt,
u32 len)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
u32 block_size = dev->tx_blk_size;
u32 num_blocks, address, length;
u32 queueno;
int status;
queueno = ((pkt[1] >> 4) & 0xf);
if (queueno == RSI_BT_MGMT_Q || queueno == RSI_BT_DATA_Q)
queueno = RSI_BT_Q;
num_blocks = len / block_size;
if (len % block_size)
num_blocks++;
address = (num_blocks * block_size | (queueno << 12));
length = num_blocks * block_size;
status = rsi_sdio_write_register_multiple(adapter,
address,
(u8 *)pkt,
length);
if (status)
rsi_dbg(ERR_ZONE, "%s: Unable to write onto the card: %d\n",
__func__, status);
rsi_dbg(DATA_TX_ZONE, "%s: Successfully written onto card\n", __func__);
return status;
}
/**
* rsi_sdio_host_intf_read_pkt() - This function reads the packet
from the device.
* @adapter: Pointer to the adapter data structure.
* @pkt: Pointer to the packet data to be read from the the device.
* @length: Length of the data to be read from the device.
*
* Return: 0 on success, -1 on failure.
*/
int rsi_sdio_host_intf_read_pkt(struct rsi_hw *adapter,
u8 *pkt,
u32 length)
{
int status = -EINVAL;
if (!length) {
rsi_dbg(ERR_ZONE, "%s: Pkt size is zero\n", __func__);
return status;
}
status = rsi_sdio_read_register_multiple(adapter,
length,
(u8 *)pkt,
length); /*num of bytes*/
if (status)
rsi_dbg(ERR_ZONE, "%s: Failed to read frame: %d\n", __func__,
status);
return status;
}
/**
* rsi_init_sdio_interface() - This function does init specific to SDIO.
*
* @adapter: Pointer to the adapter data structure.
* @pkt: Pointer to the packet data to be read from the the device.
*
* Return: 0 on success, -1 on failure.
*/
static int rsi_init_sdio_interface(struct rsi_hw *adapter,
struct sdio_func *pfunction)
{
struct rsi_91x_sdiodev *rsi_91x_dev;
int status;
rsi_91x_dev = kzalloc(sizeof(*rsi_91x_dev), GFP_KERNEL);
if (!rsi_91x_dev)
return -ENOMEM;
adapter->rsi_dev = rsi_91x_dev;
sdio_claim_host(pfunction);
pfunction->enable_timeout = 100;
status = sdio_enable_func(pfunction);
if (status) {
rsi_dbg(ERR_ZONE, "%s: Failed to enable interface\n", __func__);
sdio_release_host(pfunction);
return status;
}
rsi_dbg(INIT_ZONE, "%s: Enabled the interface\n", __func__);
rsi_91x_dev->pfunction = pfunction;
adapter->device = &pfunction->dev;
sdio_set_drvdata(pfunction, adapter);
status = rsi_setupcard(adapter);
if (status) {
rsi_dbg(ERR_ZONE, "%s: Failed to setup card\n", __func__);
goto fail;
}
rsi_dbg(INIT_ZONE, "%s: Setup card successfully\n", __func__);
status = rsi_init_sdio_slave_regs(adapter);
if (status) {
rsi_dbg(ERR_ZONE, "%s: Failed to init slave regs\n", __func__);
goto fail;
}
sdio_release_host(pfunction);
adapter->determine_event_timeout = rsi_sdio_determine_event_timeout;
adapter->check_hw_queue_status = rsi_sdio_check_buffer_status;
#ifdef CONFIG_RSI_DEBUGFS
adapter->num_debugfs_entries = MAX_DEBUGFS_ENTRIES;
#endif
return 0;
fail:
sdio_disable_func(pfunction);
sdio_release_host(pfunction);
return status;
}
static int rsi_sdio_reinit_device(struct rsi_hw *adapter)
{
struct rsi_91x_sdiodev *sdev = adapter->rsi_dev;
struct sdio_func *pfunction = sdev->pfunction;
int ii;
for (ii = 0; ii < NUM_SOFT_QUEUES; ii++)
skb_queue_purge(&adapter->priv->tx_queue[ii]);
/* Initialize device again */
sdio_claim_host(pfunction);
sdio_release_irq(pfunction);
rsi_reset_card(pfunction);
sdio_enable_func(pfunction);
rsi_setupcard(adapter);
rsi_init_sdio_slave_regs(adapter);
sdio_claim_irq(pfunction, rsi_handle_interrupt);
rsi_hal_device_init(adapter);
sdio_release_host(pfunction);
return 0;
}
static int rsi_sdio_ta_reset(struct rsi_hw *adapter)
{
int status;
u32 addr;
u8 *data;
data = kzalloc(RSI_9116_REG_SIZE, GFP_KERNEL);
if (!data)
return -ENOMEM;
status = rsi_sdio_master_access_msword(adapter, TA_BASE_ADDR);
if (status < 0) {
rsi_dbg(ERR_ZONE,
"Unable to set ms word to common reg\n");
goto err;
}
rsi_dbg(INIT_ZONE, "%s: Bring TA out of reset\n", __func__);
put_unaligned_le32(TA_HOLD_THREAD_VALUE, data);
addr = TA_HOLD_THREAD_REG | RSI_SD_REQUEST_MASTER;
status = rsi_sdio_write_register_multiple(adapter, addr,
(u8 *)data,
RSI_9116_REG_SIZE);
if (status < 0) {
rsi_dbg(ERR_ZONE, "Unable to hold TA threads\n");
goto err;
}
put_unaligned_le32(TA_SOFT_RST_CLR, data);
addr = TA_SOFT_RESET_REG | RSI_SD_REQUEST_MASTER;
status = rsi_sdio_write_register_multiple(adapter, addr,
(u8 *)data,
RSI_9116_REG_SIZE);
if (status < 0) {
rsi_dbg(ERR_ZONE, "Unable to get TA out of reset\n");
goto err;
}
put_unaligned_le32(TA_PC_ZERO, data);
addr = TA_TH0_PC_REG | RSI_SD_REQUEST_MASTER;
status = rsi_sdio_write_register_multiple(adapter, addr,
(u8 *)data,
RSI_9116_REG_SIZE);
if (status < 0) {
rsi_dbg(ERR_ZONE, "Unable to Reset TA PC value\n");
status = -EINVAL;
goto err;
}
put_unaligned_le32(TA_RELEASE_THREAD_VALUE, data);
addr = TA_RELEASE_THREAD_REG | RSI_SD_REQUEST_MASTER;
status = rsi_sdio_write_register_multiple(adapter, addr,
(u8 *)data,
RSI_9116_REG_SIZE);
if (status < 0) {
rsi_dbg(ERR_ZONE, "Unable to release TA threads\n");
goto err;
}
status = rsi_sdio_master_access_msword(adapter, MISC_CFG_BASE_ADDR);
if (status < 0) {
rsi_dbg(ERR_ZONE, "Unable to set ms word to common reg\n");
goto err;
}
rsi_dbg(INIT_ZONE, "***** TA Reset done *****\n");
err:
kfree(data);
return status;
}
static struct rsi_host_intf_ops sdio_host_intf_ops = {
.write_pkt = rsi_sdio_host_intf_write_pkt,
.read_pkt = rsi_sdio_host_intf_read_pkt,
.master_access_msword = rsi_sdio_master_access_msword,
.read_reg_multiple = rsi_sdio_read_register_multiple,
.write_reg_multiple = rsi_sdio_write_register_multiple,
.master_reg_read = rsi_sdio_master_reg_read,
.master_reg_write = rsi_sdio_master_reg_write,
.load_data_master_write = rsi_sdio_load_data_master_write,
.reinit_device = rsi_sdio_reinit_device,
.ta_reset = rsi_sdio_ta_reset,
};
/**
* rsi_probe() - This function is called by kernel when the driver provided
* Vendor and device IDs are matched. All the initialization
* work is done here.
* @pfunction: Pointer to the sdio_func structure.
* @id: Pointer to sdio_device_id structure.
*
* Return: 0 on success, 1 on failure.
*/
static int rsi_probe(struct sdio_func *pfunction,
const struct sdio_device_id *id)
{
struct rsi_hw *adapter;
struct rsi_91x_sdiodev *sdev;
int status = -EINVAL;
rsi_dbg(INIT_ZONE, "%s: Init function called\n", __func__);
adapter = rsi_91x_init(dev_oper_mode);
if (!adapter) {
rsi_dbg(ERR_ZONE, "%s: Failed to init os intf ops\n",
__func__);
return -EINVAL;
}
adapter->rsi_host_intf = RSI_HOST_INTF_SDIO;
adapter->host_intf_ops = &sdio_host_intf_ops;
if (rsi_init_sdio_interface(adapter, pfunction)) {
rsi_dbg(ERR_ZONE, "%s: Failed to init sdio interface\n",
__func__);
status = -EIO;
goto fail_free_adapter;
}
if (pfunction->device == RSI_SDIO_PID_9113) {
rsi_dbg(ERR_ZONE, "%s: 9113 module detected\n", __func__);
adapter->device_model = RSI_DEV_9113;
} else if (pfunction->device == RSI_SDIO_PID_9116) {
rsi_dbg(ERR_ZONE, "%s: 9116 module detected\n", __func__);
adapter->device_model = RSI_DEV_9116;
} else {
rsi_dbg(ERR_ZONE,
"%s: Unsupported RSI device id 0x%x\n", __func__,
pfunction->device);
goto fail_free_adapter;
}
sdev = (struct rsi_91x_sdiodev *)adapter->rsi_dev;
rsi_init_event(&sdev->rx_thread.event);
status = rsi_create_kthread(adapter->priv, &sdev->rx_thread,
rsi_sdio_rx_thread, "SDIO-RX-Thread");
if (status) {
rsi_dbg(ERR_ZONE, "%s: Unable to init rx thrd\n", __func__);
goto fail_kill_thread;
}
skb_queue_head_init(&sdev->rx_q.head);
sdev->rx_q.num_rx_pkts = 0;
sdio_claim_host(pfunction);
if (sdio_claim_irq(pfunction, rsi_handle_interrupt)) {
rsi_dbg(ERR_ZONE, "%s: Failed to request IRQ\n", __func__);
sdio_release_host(pfunction);
status = -EIO;
goto fail_claim_irq;
}
sdio_release_host(pfunction);
rsi_dbg(INIT_ZONE, "%s: Registered Interrupt handler\n", __func__);
if (rsi_hal_device_init(adapter)) {
rsi_dbg(ERR_ZONE, "%s: Failed in device init\n", __func__);
status = -EINVAL;
goto fail_dev_init;
}
rsi_dbg(INFO_ZONE, "===> RSI Device Init Done <===\n");
if (rsi_sdio_master_access_msword(adapter, MISC_CFG_BASE_ADDR)) {
rsi_dbg(ERR_ZONE, "%s: Unable to set ms word reg\n", __func__);
status = -EIO;
goto fail_dev_init;
}
adapter->priv->hibernate_resume = false;
adapter->priv->reinit_hw = false;
return 0;
fail_dev_init:
sdio_claim_host(pfunction);
sdio_release_irq(pfunction);
sdio_release_host(pfunction);
fail_claim_irq:
rsi_kill_thread(&sdev->rx_thread);
fail_kill_thread:
sdio_claim_host(pfunction);
sdio_disable_func(pfunction);
sdio_release_host(pfunction);
fail_free_adapter:
rsi_91x_deinit(adapter);
rsi_dbg(ERR_ZONE, "%s: Failed in probe...Exiting\n", __func__);
return status;
}
static void ulp_read_write(struct rsi_hw *adapter, u16 addr, u32 data,
u16 len_in_bits)
{
rsi_sdio_master_reg_write(adapter, RSI_GSPI_DATA_REG1,
((addr << 6) | ((data >> 16) & 0xffff)), 2);
rsi_sdio_master_reg_write(adapter, RSI_GSPI_DATA_REG0,
(data & 0xffff), 2);
rsi_sdio_master_reg_write(adapter, RSI_GSPI_CTRL_REG0,
RSI_GSPI_CTRL_REG0_VALUE, 2);
rsi_sdio_master_reg_write(adapter, RSI_GSPI_CTRL_REG1,
((len_in_bits - 1) | RSI_GSPI_TRIG), 2);
msleep(20);
}
/*This function resets and re-initializes the chip.*/
static void rsi_reset_chip(struct rsi_hw *adapter)
{
u8 *data;
u8 sdio_interrupt_status = 0;
u8 request = 1;
int ret;
data = kzalloc(sizeof(u32), GFP_KERNEL);
if (!data)
return;
rsi_dbg(INFO_ZONE, "Writing disable to wakeup register\n");
ret = rsi_sdio_write_register(adapter, 0, SDIO_WAKEUP_REG, &request);
if (ret < 0) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write SDIO wakeup register\n", __func__);
goto err;
}
msleep(20);
ret = rsi_sdio_read_register(adapter, RSI_FN1_INT_REGISTER,
&sdio_interrupt_status);
if (ret < 0) {
rsi_dbg(ERR_ZONE, "%s: Failed to Read Intr Status Register\n",
__func__);
goto err;
}
rsi_dbg(INFO_ZONE, "%s: Intr Status Register value = %d\n",
__func__, sdio_interrupt_status);
/* Put Thread-Arch processor on hold */
if (rsi_sdio_master_access_msword(adapter, TA_BASE_ADDR)) {
rsi_dbg(ERR_ZONE,
"%s: Unable to set ms word to common reg\n",
__func__);
goto err;
}
put_unaligned_le32(TA_HOLD_THREAD_VALUE, data);
if (rsi_sdio_write_register_multiple(adapter, TA_HOLD_THREAD_REG |
RSI_SD_REQUEST_MASTER,
data, 4)) {
rsi_dbg(ERR_ZONE,
"%s: Unable to hold Thread-Arch processor threads\n",
__func__);
goto err;
}
/* This msleep will ensure Thread-Arch processor to go to hold
* and any pending dma transfers to rf spi in device to finish.
*/
msleep(100);
if (adapter->device_model != RSI_DEV_9116) {
ulp_read_write(adapter, RSI_ULP_RESET_REG, RSI_ULP_WRITE_0, 32);
ulp_read_write(adapter,
RSI_WATCH_DOG_TIMER_1, RSI_ULP_WRITE_2, 32);
ulp_read_write(adapter, RSI_WATCH_DOG_TIMER_2, RSI_ULP_WRITE_0,
32);
ulp_read_write(adapter, RSI_WATCH_DOG_DELAY_TIMER_1,
RSI_ULP_WRITE_50, 32);
ulp_read_write(adapter, RSI_WATCH_DOG_DELAY_TIMER_2,
RSI_ULP_WRITE_0, 32);
ulp_read_write(adapter, RSI_WATCH_DOG_TIMER_ENABLE,
RSI_ULP_TIMER_ENABLE, 32);
} else {
if ((rsi_sdio_master_reg_write(adapter,
NWP_WWD_INTERRUPT_TIMER,
NWP_WWD_INT_TIMER_CLKS,
RSI_9116_REG_SIZE)) < 0) {
rsi_dbg(ERR_ZONE, "Failed to write to intr timer\n");
}
if ((rsi_sdio_master_reg_write(adapter,
NWP_WWD_SYSTEM_RESET_TIMER,
NWP_WWD_SYS_RESET_TIMER_CLKS,
RSI_9116_REG_SIZE)) < 0) {
rsi_dbg(ERR_ZONE,
"Failed to write to system reset timer\n");
}
if ((rsi_sdio_master_reg_write(adapter,
NWP_WWD_MODE_AND_RSTART,
NWP_WWD_TIMER_DISABLE,
RSI_9116_REG_SIZE)) < 0) {
rsi_dbg(ERR_ZONE,
"Failed to write to mode and restart\n");
}
rsi_dbg(ERR_ZONE, "***** Watch Dog Reset Successful *****\n");
}
/* This msleep will be sufficient for the ulp
* read write operations to complete for chip reset.
*/
msleep(500);
err:
kfree(data);
return;
}
/**
* rsi_disconnect() - This function performs the reverse of the probe function.
* @pfunction: Pointer to the sdio_func structure.
*
* Return: void.
*/
static void rsi_disconnect(struct sdio_func *pfunction)
{
struct rsi_hw *adapter = sdio_get_drvdata(pfunction);
struct rsi_91x_sdiodev *dev;
if (!adapter)
return;
dev = (struct rsi_91x_sdiodev *)adapter->rsi_dev;
rsi_kill_thread(&dev->rx_thread);
sdio_claim_host(pfunction);
sdio_release_irq(pfunction);
sdio_release_host(pfunction);
mdelay(10);
rsi_mac80211_detach(adapter);
mdelay(10);
if (IS_ENABLED(CONFIG_RSI_COEX) && adapter->priv->coex_mode > 1 &&
adapter->priv->bt_adapter) {
rsi_bt_ops.detach(adapter->priv->bt_adapter);
adapter->priv->bt_adapter = NULL;
}
/* Reset Chip */
rsi_reset_chip(adapter);
/* Resetting to take care of the case, where-in driver is re-loaded */
sdio_claim_host(pfunction);
rsi_reset_card(pfunction);
sdio_disable_func(pfunction);
sdio_release_host(pfunction);
dev->write_fail = 2;
rsi_91x_deinit(adapter);
rsi_dbg(ERR_ZONE, "##### RSI SDIO device disconnected #####\n");
}
#ifdef CONFIG_PM
static int rsi_set_sdio_pm_caps(struct rsi_hw *adapter)
{
struct rsi_91x_sdiodev *dev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
struct sdio_func *func = dev->pfunction;
int ret;
ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
if (ret)
rsi_dbg(ERR_ZONE, "Set sdio keep pwr flag failed: %d\n", ret);
return ret;
}
static int rsi_sdio_disable_interrupts(struct sdio_func *pfunc)
{
struct rsi_hw *adapter = sdio_get_drvdata(pfunc);
u8 isr_status = 0, data = 0;
int ret;
unsigned long t1;
rsi_dbg(INFO_ZONE, "Waiting for interrupts to be cleared..");
t1 = jiffies;
do {
rsi_sdio_read_register(adapter, RSI_FN1_INT_REGISTER,
&isr_status);
rsi_dbg(INFO_ZONE, ".");
} while ((isr_status) && (jiffies_to_msecs(jiffies - t1) < 20));
rsi_dbg(INFO_ZONE, "Interrupts cleared\n");
sdio_claim_host(pfunc);
ret = rsi_cmd52readbyte(pfunc->card, RSI_INT_ENABLE_REGISTER, &data);
if (ret < 0) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read int enable register\n",
__func__);
goto done;
}
data &= RSI_INT_ENABLE_MASK;
ret = rsi_cmd52writebyte(pfunc->card, RSI_INT_ENABLE_REGISTER, data);
if (ret < 0) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write to int enable register\n",
__func__);
goto done;
}
ret = rsi_cmd52readbyte(pfunc->card, RSI_INT_ENABLE_REGISTER, &data);
if (ret < 0) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read int enable register\n",
__func__);
goto done;
}
rsi_dbg(INFO_ZONE, "int enable reg content = %x\n", data);
done:
sdio_release_host(pfunc);
return ret;
}
static int rsi_sdio_enable_interrupts(struct sdio_func *pfunc)
{
u8 data;
int ret;
struct rsi_hw *adapter = sdio_get_drvdata(pfunc);
struct rsi_common *common = adapter->priv;
sdio_claim_host(pfunc);
ret = rsi_cmd52readbyte(pfunc->card, RSI_INT_ENABLE_REGISTER, &data);
if (ret < 0) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read int enable register\n", __func__);
goto done;
}
data |= ~RSI_INT_ENABLE_MASK & 0xff;
ret = rsi_cmd52writebyte(pfunc->card, RSI_INT_ENABLE_REGISTER, data);
if (ret < 0) {
rsi_dbg(ERR_ZONE,
"%s: Failed to write to int enable register\n",
__func__);
goto done;
}
if ((common->wow_flags & RSI_WOW_ENABLED) &&
(common->wow_flags & RSI_WOW_NO_CONNECTION))
rsi_dbg(ERR_ZONE,
"##### Device can not wake up through WLAN\n");
ret = rsi_cmd52readbyte(pfunc->card, RSI_INT_ENABLE_REGISTER, &data);
if (ret < 0) {
rsi_dbg(ERR_ZONE,
"%s: Failed to read int enable register\n", __func__);
goto done;
}
rsi_dbg(INFO_ZONE, "int enable reg content = %x\n", data);
done:
sdio_release_host(pfunc);
return ret;
}
static int rsi_suspend(struct device *dev)
{
int ret;
struct sdio_func *pfunction = dev_to_sdio_func(dev);
struct rsi_hw *adapter = sdio_get_drvdata(pfunction);
struct rsi_common *common;
if (!adapter) {
rsi_dbg(ERR_ZONE, "Device is not ready\n");
return -ENODEV;
}
common = adapter->priv;
rsi_sdio_disable_interrupts(pfunction);
ret = rsi_set_sdio_pm_caps(adapter);
if (ret)
rsi_dbg(INFO_ZONE,
"Setting power management caps failed\n");
common->fsm_state = FSM_CARD_NOT_READY;
return 0;
}
static int rsi_resume(struct device *dev)
{
struct sdio_func *pfunction = dev_to_sdio_func(dev);
struct rsi_hw *adapter = sdio_get_drvdata(pfunction);
struct rsi_common *common = adapter->priv;
common->fsm_state = FSM_MAC_INIT_DONE;
rsi_sdio_enable_interrupts(pfunction);
return 0;
}
static int rsi_freeze(struct device *dev)
{
int ret;
struct sdio_func *pfunction = dev_to_sdio_func(dev);
struct rsi_hw *adapter = sdio_get_drvdata(pfunction);
struct rsi_common *common;
struct rsi_91x_sdiodev *sdev;
rsi_dbg(INFO_ZONE, "SDIO Bus freeze ===>\n");
if (!adapter) {
rsi_dbg(ERR_ZONE, "Device is not ready\n");
return -ENODEV;
}
common = adapter->priv;
sdev = (struct rsi_91x_sdiodev *)adapter->rsi_dev;
if ((common->wow_flags & RSI_WOW_ENABLED) &&
(common->wow_flags & RSI_WOW_NO_CONNECTION))
rsi_dbg(ERR_ZONE,
"##### Device can not wake up through WLAN\n");
if (IS_ENABLED(CONFIG_RSI_COEX) && common->coex_mode > 1 &&
common->bt_adapter) {
rsi_bt_ops.detach(common->bt_adapter);
common->bt_adapter = NULL;
}
ret = rsi_sdio_disable_interrupts(pfunction);
if (sdev->write_fail)
rsi_dbg(INFO_ZONE, "###### Device is not ready #######\n");
ret = rsi_set_sdio_pm_caps(adapter);
if (ret)
rsi_dbg(INFO_ZONE, "Setting power management caps failed\n");
rsi_dbg(INFO_ZONE, "***** RSI module freezed *****\n");
return 0;
}
static int rsi_thaw(struct device *dev)
{
struct sdio_func *pfunction = dev_to_sdio_func(dev);
struct rsi_hw *adapter = sdio_get_drvdata(pfunction);
struct rsi_common *common = adapter->priv;
rsi_dbg(ERR_ZONE, "SDIO Bus thaw =====>\n");
common->hibernate_resume = true;
common->fsm_state = FSM_CARD_NOT_READY;
common->iface_down = true;
rsi_sdio_enable_interrupts(pfunction);
rsi_dbg(INFO_ZONE, "***** RSI module thaw done *****\n");
return 0;
}
static void rsi_shutdown(struct device *dev)
{
struct sdio_func *pfunction = dev_to_sdio_func(dev);
struct rsi_hw *adapter = sdio_get_drvdata(pfunction);
struct rsi_91x_sdiodev *sdev =
(struct rsi_91x_sdiodev *)adapter->rsi_dev;
struct ieee80211_hw *hw = adapter->hw;
rsi_dbg(ERR_ZONE, "SDIO Bus shutdown =====>\n");
if (hw) {
struct cfg80211_wowlan *wowlan = hw->wiphy->wowlan_config;
if (rsi_config_wowlan(adapter, wowlan))
rsi_dbg(ERR_ZONE, "Failed to configure WoWLAN\n");
}
if (IS_ENABLED(CONFIG_RSI_COEX) && adapter->priv->coex_mode > 1 &&
adapter->priv->bt_adapter) {
rsi_bt_ops.detach(adapter->priv->bt_adapter);
adapter->priv->bt_adapter = NULL;
}
rsi_sdio_disable_interrupts(sdev->pfunction);
if (sdev->write_fail)
rsi_dbg(INFO_ZONE, "###### Device is not ready #######\n");
if (rsi_set_sdio_pm_caps(adapter))
rsi_dbg(INFO_ZONE, "Setting power management caps failed\n");
rsi_dbg(INFO_ZONE, "***** RSI module shut down *****\n");
}
static int rsi_restore(struct device *dev)
{
struct sdio_func *pfunction = dev_to_sdio_func(dev);
struct rsi_hw *adapter = sdio_get_drvdata(pfunction);
struct rsi_common *common = adapter->priv;
rsi_dbg(INFO_ZONE, "SDIO Bus restore ======>\n");
common->hibernate_resume = true;
common->fsm_state = FSM_FW_NOT_LOADED;
common->iface_down = true;
adapter->sc_nvifs = 0;
adapter->ps_state = PS_NONE;
common->wow_flags = 0;
common->iface_down = false;
rsi_dbg(INFO_ZONE, "RSI module restored\n");
return 0;
}
static const struct dev_pm_ops rsi_pm_ops = {
.suspend = rsi_suspend,
.resume = rsi_resume,
.freeze = rsi_freeze,
.thaw = rsi_thaw,
.restore = rsi_restore,
};
#endif
static const struct sdio_device_id rsi_dev_table[] = {
{ SDIO_DEVICE(RSI_SDIO_VENDOR_ID, RSI_SDIO_PID_9113) },
{ SDIO_DEVICE(RSI_SDIO_VENDOR_ID, RSI_SDIO_PID_9116) },
{ /* Blank */},
};
static struct sdio_driver rsi_driver = {
.name = "RSI-SDIO WLAN",
.probe = rsi_probe,
.remove = rsi_disconnect,
.id_table = rsi_dev_table,
#ifdef CONFIG_PM
.drv = {
.pm = &rsi_pm_ops,
.shutdown = rsi_shutdown,
}
#endif
};
/**
* rsi_module_init() - This function registers the sdio module.
* @void: Void.
*
* Return: 0 on success.
*/
static int rsi_module_init(void)
{
int ret;
ret = sdio_register_driver(&rsi_driver);
rsi_dbg(INIT_ZONE, "%s: Registering driver\n", __func__);
return ret;
}
/**
* rsi_module_exit() - This function unregisters the sdio module.
* @void: Void.
*
* Return: None.
*/
static void rsi_module_exit(void)
{
sdio_unregister_driver(&rsi_driver);
rsi_dbg(INFO_ZONE, "%s: Unregistering driver\n", __func__);
}
module_init(rsi_module_init);
module_exit(rsi_module_exit);
MODULE_AUTHOR("Redpine Signals Inc");
MODULE_DESCRIPTION("Common SDIO layer for RSI drivers");
MODULE_SUPPORTED_DEVICE("RSI-91x");
MODULE_DEVICE_TABLE(sdio, rsi_dev_table);
MODULE_FIRMWARE(FIRMWARE_RSI9113);
MODULE_VERSION("0.1");
MODULE_LICENSE("Dual BSD/GPL");