OpenCloudOS-Kernel/drivers/phy/qualcomm/phy-qcom-usb-hs-28nm.c

426 lines
9.3 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2009-2018, Linux Foundation. All rights reserved.
* Copyright (c) 2018-2020, Linaro Limited
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/slab.h>
/* PHY register and bit definitions */
#define PHY_CTRL_COMMON0 0x078
#define SIDDQ BIT(2)
#define PHY_IRQ_CMD 0x0d0
#define PHY_INTR_MASK0 0x0d4
#define PHY_INTR_CLEAR0 0x0dc
#define DPDM_MASK 0x1e
#define DP_1_0 BIT(4)
#define DP_0_1 BIT(3)
#define DM_1_0 BIT(2)
#define DM_0_1 BIT(1)
enum hsphy_voltage {
VOL_NONE,
VOL_MIN,
VOL_MAX,
VOL_NUM,
};
enum hsphy_vreg {
VDD,
VDDA_1P8,
VDDA_3P3,
VREG_NUM,
};
struct hsphy_init_seq {
int offset;
int val;
int delay;
};
struct hsphy_data {
const struct hsphy_init_seq *init_seq;
unsigned int init_seq_num;
};
struct hsphy_priv {
void __iomem *base;
struct clk_bulk_data *clks;
int num_clks;
struct reset_control *phy_reset;
struct reset_control *por_reset;
struct regulator_bulk_data vregs[VREG_NUM];
const struct hsphy_data *data;
enum phy_mode mode;
};
static int qcom_snps_hsphy_set_mode(struct phy *phy, enum phy_mode mode,
int submode)
{
struct hsphy_priv *priv = phy_get_drvdata(phy);
priv->mode = PHY_MODE_INVALID;
if (mode > 0)
priv->mode = mode;
return 0;
}
static void qcom_snps_hsphy_enable_hv_interrupts(struct hsphy_priv *priv)
{
u32 val;
/* Clear any existing interrupts before enabling the interrupts */
val = readb(priv->base + PHY_INTR_CLEAR0);
val |= DPDM_MASK;
writeb(val, priv->base + PHY_INTR_CLEAR0);
writeb(0x0, priv->base + PHY_IRQ_CMD);
usleep_range(200, 220);
writeb(0x1, priv->base + PHY_IRQ_CMD);
/* Make sure the interrupts are cleared */
usleep_range(200, 220);
val = readb(priv->base + PHY_INTR_MASK0);
switch (priv->mode) {
case PHY_MODE_USB_HOST_HS:
case PHY_MODE_USB_HOST_FS:
case PHY_MODE_USB_DEVICE_HS:
case PHY_MODE_USB_DEVICE_FS:
val |= DP_1_0 | DM_0_1;
break;
case PHY_MODE_USB_HOST_LS:
case PHY_MODE_USB_DEVICE_LS:
val |= DP_0_1 | DM_1_0;
break;
default:
/* No device connected */
val |= DP_0_1 | DM_0_1;
break;
}
writeb(val, priv->base + PHY_INTR_MASK0);
}
static void qcom_snps_hsphy_disable_hv_interrupts(struct hsphy_priv *priv)
{
u32 val;
val = readb(priv->base + PHY_INTR_MASK0);
val &= ~DPDM_MASK;
writeb(val, priv->base + PHY_INTR_MASK0);
/* Clear any pending interrupts */
val = readb(priv->base + PHY_INTR_CLEAR0);
val |= DPDM_MASK;
writeb(val, priv->base + PHY_INTR_CLEAR0);
writeb(0x0, priv->base + PHY_IRQ_CMD);
usleep_range(200, 220);
writeb(0x1, priv->base + PHY_IRQ_CMD);
usleep_range(200, 220);
}
static void qcom_snps_hsphy_enter_retention(struct hsphy_priv *priv)
{
u32 val;
val = readb(priv->base + PHY_CTRL_COMMON0);
val |= SIDDQ;
writeb(val, priv->base + PHY_CTRL_COMMON0);
}
static void qcom_snps_hsphy_exit_retention(struct hsphy_priv *priv)
{
u32 val;
val = readb(priv->base + PHY_CTRL_COMMON0);
val &= ~SIDDQ;
writeb(val, priv->base + PHY_CTRL_COMMON0);
}
static int qcom_snps_hsphy_power_on(struct phy *phy)
{
struct hsphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = regulator_bulk_enable(VREG_NUM, priv->vregs);
if (ret)
return ret;
qcom_snps_hsphy_disable_hv_interrupts(priv);
qcom_snps_hsphy_exit_retention(priv);
return 0;
}
static int qcom_snps_hsphy_power_off(struct phy *phy)
{
struct hsphy_priv *priv = phy_get_drvdata(phy);
qcom_snps_hsphy_enter_retention(priv);
qcom_snps_hsphy_enable_hv_interrupts(priv);
regulator_bulk_disable(VREG_NUM, priv->vregs);
return 0;
}
static int qcom_snps_hsphy_reset(struct hsphy_priv *priv)
{
int ret;
ret = reset_control_assert(priv->phy_reset);
if (ret)
return ret;
usleep_range(10, 15);
ret = reset_control_deassert(priv->phy_reset);
if (ret)
return ret;
usleep_range(80, 100);
return 0;
}
static void qcom_snps_hsphy_init_sequence(struct hsphy_priv *priv)
{
const struct hsphy_data *data = priv->data;
const struct hsphy_init_seq *seq;
int i;
/* Device match data is optional. */
if (!data)
return;
seq = data->init_seq;
for (i = 0; i < data->init_seq_num; i++, seq++) {
writeb(seq->val, priv->base + seq->offset);
if (seq->delay)
usleep_range(seq->delay, seq->delay + 10);
}
}
static int qcom_snps_hsphy_por_reset(struct hsphy_priv *priv)
{
int ret;
ret = reset_control_assert(priv->por_reset);
if (ret)
return ret;
/*
* The Femto PHY is POR reset in the following scenarios.
*
* 1. After overriding the parameter registers.
* 2. Low power mode exit from PHY retention.
*
* Ensure that SIDDQ is cleared before bringing the PHY
* out of reset.
*/
qcom_snps_hsphy_exit_retention(priv);
/*
* As per databook, 10 usec delay is required between
* PHY POR assert and de-assert.
*/
usleep_range(10, 20);
ret = reset_control_deassert(priv->por_reset);
if (ret)
return ret;
/*
* As per databook, it takes 75 usec for PHY to stabilize
* after the reset.
*/
usleep_range(80, 100);
return 0;
}
static int qcom_snps_hsphy_init(struct phy *phy)
{
struct hsphy_priv *priv = phy_get_drvdata(phy);
int ret;
ret = clk_bulk_prepare_enable(priv->num_clks, priv->clks);
if (ret)
return ret;
ret = qcom_snps_hsphy_reset(priv);
if (ret)
goto disable_clocks;
qcom_snps_hsphy_init_sequence(priv);
ret = qcom_snps_hsphy_por_reset(priv);
if (ret)
goto disable_clocks;
return 0;
disable_clocks:
clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
return ret;
}
static int qcom_snps_hsphy_exit(struct phy *phy)
{
struct hsphy_priv *priv = phy_get_drvdata(phy);
clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
return 0;
}
static const struct phy_ops qcom_snps_hsphy_ops = {
.init = qcom_snps_hsphy_init,
.exit = qcom_snps_hsphy_exit,
.power_on = qcom_snps_hsphy_power_on,
.power_off = qcom_snps_hsphy_power_off,
.set_mode = qcom_snps_hsphy_set_mode,
.owner = THIS_MODULE,
};
static const char * const qcom_snps_hsphy_clks[] = {
"ref",
"ahb",
"sleep",
};
static int qcom_snps_hsphy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct phy_provider *provider;
struct hsphy_priv *priv;
struct phy *phy;
int ret;
int i;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
priv->num_clks = ARRAY_SIZE(qcom_snps_hsphy_clks);
priv->clks = devm_kcalloc(dev, priv->num_clks, sizeof(*priv->clks),
GFP_KERNEL);
if (!priv->clks)
return -ENOMEM;
for (i = 0; i < priv->num_clks; i++)
priv->clks[i].id = qcom_snps_hsphy_clks[i];
ret = devm_clk_bulk_get(dev, priv->num_clks, priv->clks);
if (ret)
return ret;
priv->phy_reset = devm_reset_control_get_exclusive(dev, "phy");
if (IS_ERR(priv->phy_reset))
return PTR_ERR(priv->phy_reset);
priv->por_reset = devm_reset_control_get_exclusive(dev, "por");
if (IS_ERR(priv->por_reset))
return PTR_ERR(priv->por_reset);
priv->vregs[VDD].supply = "vdd";
priv->vregs[VDDA_1P8].supply = "vdda1p8";
priv->vregs[VDDA_3P3].supply = "vdda3p3";
ret = devm_regulator_bulk_get(dev, VREG_NUM, priv->vregs);
if (ret)
return ret;
/* Get device match data */
priv->data = device_get_match_data(dev);
phy = devm_phy_create(dev, dev->of_node, &qcom_snps_hsphy_ops);
if (IS_ERR(phy))
return PTR_ERR(phy);
phy_set_drvdata(phy, priv);
provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
if (IS_ERR(provider))
return PTR_ERR(provider);
ret = regulator_set_load(priv->vregs[VDDA_1P8].consumer, 19000);
if (ret < 0)
return ret;
ret = regulator_set_load(priv->vregs[VDDA_3P3].consumer, 16000);
if (ret < 0)
goto unset_1p8_load;
return 0;
unset_1p8_load:
regulator_set_load(priv->vregs[VDDA_1P8].consumer, 0);
return ret;
}
/*
* The macro is used to define an initialization sequence. Each tuple
* is meant to program 'value' into phy register at 'offset' with 'delay'
* in us followed.
*/
#define HSPHY_INIT_CFG(o, v, d) { .offset = o, .val = v, .delay = d, }
static const struct hsphy_init_seq init_seq_femtophy[] = {
HSPHY_INIT_CFG(0xc0, 0x01, 0),
HSPHY_INIT_CFG(0xe8, 0x0d, 0),
HSPHY_INIT_CFG(0x74, 0x12, 0),
HSPHY_INIT_CFG(0x98, 0x63, 0),
HSPHY_INIT_CFG(0x9c, 0x03, 0),
HSPHY_INIT_CFG(0xa0, 0x1d, 0),
HSPHY_INIT_CFG(0xa4, 0x03, 0),
HSPHY_INIT_CFG(0x8c, 0x23, 0),
HSPHY_INIT_CFG(0x78, 0x08, 0),
HSPHY_INIT_CFG(0x7c, 0xdc, 0),
HSPHY_INIT_CFG(0x90, 0xe0, 20),
HSPHY_INIT_CFG(0x74, 0x10, 0),
HSPHY_INIT_CFG(0x90, 0x60, 0),
};
static const struct hsphy_data hsphy_data_femtophy = {
.init_seq = init_seq_femtophy,
.init_seq_num = ARRAY_SIZE(init_seq_femtophy),
};
static const struct of_device_id qcom_snps_hsphy_match[] = {
{ .compatible = "qcom,usb-hs-28nm-femtophy", .data = &hsphy_data_femtophy, },
{ },
};
MODULE_DEVICE_TABLE(of, qcom_snps_hsphy_match);
static struct platform_driver qcom_snps_hsphy_driver = {
.probe = qcom_snps_hsphy_probe,
.driver = {
.name = "qcom,usb-hs-28nm-phy",
.of_match_table = qcom_snps_hsphy_match,
},
};
module_platform_driver(qcom_snps_hsphy_driver);
MODULE_DESCRIPTION("Qualcomm 28nm Hi-Speed USB PHY driver");
MODULE_LICENSE("GPL v2");