OpenCloudOS-Kernel/drivers/net/ksz884x.c

7291 lines
180 KiB
C

/**
* drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
*
* Copyright (c) 2009-2010 Micrel, Inc.
* Tristram Ha <Tristram.Ha@micrel.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/mii.h>
#include <linux/platform_device.h>
#include <linux/ethtool.h>
#include <linux/etherdevice.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/if_vlan.h>
#include <linux/crc32.h>
#include <linux/sched.h>
#include <linux/slab.h>
/* DMA Registers */
#define KS_DMA_TX_CTRL 0x0000
#define DMA_TX_ENABLE 0x00000001
#define DMA_TX_CRC_ENABLE 0x00000002
#define DMA_TX_PAD_ENABLE 0x00000004
#define DMA_TX_LOOPBACK 0x00000100
#define DMA_TX_FLOW_ENABLE 0x00000200
#define DMA_TX_CSUM_IP 0x00010000
#define DMA_TX_CSUM_TCP 0x00020000
#define DMA_TX_CSUM_UDP 0x00040000
#define DMA_TX_BURST_SIZE 0x3F000000
#define KS_DMA_RX_CTRL 0x0004
#define DMA_RX_ENABLE 0x00000001
#define KS884X_DMA_RX_MULTICAST 0x00000002
#define DMA_RX_PROMISCUOUS 0x00000004
#define DMA_RX_ERROR 0x00000008
#define DMA_RX_UNICAST 0x00000010
#define DMA_RX_ALL_MULTICAST 0x00000020
#define DMA_RX_BROADCAST 0x00000040
#define DMA_RX_FLOW_ENABLE 0x00000200
#define DMA_RX_CSUM_IP 0x00010000
#define DMA_RX_CSUM_TCP 0x00020000
#define DMA_RX_CSUM_UDP 0x00040000
#define DMA_RX_BURST_SIZE 0x3F000000
#define DMA_BURST_SHIFT 24
#define DMA_BURST_DEFAULT 8
#define KS_DMA_TX_START 0x0008
#define KS_DMA_RX_START 0x000C
#define DMA_START 0x00000001
#define KS_DMA_TX_ADDR 0x0010
#define KS_DMA_RX_ADDR 0x0014
#define DMA_ADDR_LIST_MASK 0xFFFFFFFC
#define DMA_ADDR_LIST_SHIFT 2
/* MTR0 */
#define KS884X_MULTICAST_0_OFFSET 0x0020
#define KS884X_MULTICAST_1_OFFSET 0x0021
#define KS884X_MULTICAST_2_OFFSET 0x0022
#define KS884x_MULTICAST_3_OFFSET 0x0023
/* MTR1 */
#define KS884X_MULTICAST_4_OFFSET 0x0024
#define KS884X_MULTICAST_5_OFFSET 0x0025
#define KS884X_MULTICAST_6_OFFSET 0x0026
#define KS884X_MULTICAST_7_OFFSET 0x0027
/* Interrupt Registers */
/* INTEN */
#define KS884X_INTERRUPTS_ENABLE 0x0028
/* INTST */
#define KS884X_INTERRUPTS_STATUS 0x002C
#define KS884X_INT_RX_STOPPED 0x02000000
#define KS884X_INT_TX_STOPPED 0x04000000
#define KS884X_INT_RX_OVERRUN 0x08000000
#define KS884X_INT_TX_EMPTY 0x10000000
#define KS884X_INT_RX 0x20000000
#define KS884X_INT_TX 0x40000000
#define KS884X_INT_PHY 0x80000000
#define KS884X_INT_RX_MASK \
(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
#define KS884X_INT_TX_MASK \
(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
#define KS884X_INT_MASK (KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
/* MAC Additional Station Address */
/* MAAL0 */
#define KS_ADD_ADDR_0_LO 0x0080
/* MAAH0 */
#define KS_ADD_ADDR_0_HI 0x0084
/* MAAL1 */
#define KS_ADD_ADDR_1_LO 0x0088
/* MAAH1 */
#define KS_ADD_ADDR_1_HI 0x008C
/* MAAL2 */
#define KS_ADD_ADDR_2_LO 0x0090
/* MAAH2 */
#define KS_ADD_ADDR_2_HI 0x0094
/* MAAL3 */
#define KS_ADD_ADDR_3_LO 0x0098
/* MAAH3 */
#define KS_ADD_ADDR_3_HI 0x009C
/* MAAL4 */
#define KS_ADD_ADDR_4_LO 0x00A0
/* MAAH4 */
#define KS_ADD_ADDR_4_HI 0x00A4
/* MAAL5 */
#define KS_ADD_ADDR_5_LO 0x00A8
/* MAAH5 */
#define KS_ADD_ADDR_5_HI 0x00AC
/* MAAL6 */
#define KS_ADD_ADDR_6_LO 0x00B0
/* MAAH6 */
#define KS_ADD_ADDR_6_HI 0x00B4
/* MAAL7 */
#define KS_ADD_ADDR_7_LO 0x00B8
/* MAAH7 */
#define KS_ADD_ADDR_7_HI 0x00BC
/* MAAL8 */
#define KS_ADD_ADDR_8_LO 0x00C0
/* MAAH8 */
#define KS_ADD_ADDR_8_HI 0x00C4
/* MAAL9 */
#define KS_ADD_ADDR_9_LO 0x00C8
/* MAAH9 */
#define KS_ADD_ADDR_9_HI 0x00CC
/* MAAL10 */
#define KS_ADD_ADDR_A_LO 0x00D0
/* MAAH10 */
#define KS_ADD_ADDR_A_HI 0x00D4
/* MAAL11 */
#define KS_ADD_ADDR_B_LO 0x00D8
/* MAAH11 */
#define KS_ADD_ADDR_B_HI 0x00DC
/* MAAL12 */
#define KS_ADD_ADDR_C_LO 0x00E0
/* MAAH12 */
#define KS_ADD_ADDR_C_HI 0x00E4
/* MAAL13 */
#define KS_ADD_ADDR_D_LO 0x00E8
/* MAAH13 */
#define KS_ADD_ADDR_D_HI 0x00EC
/* MAAL14 */
#define KS_ADD_ADDR_E_LO 0x00F0
/* MAAH14 */
#define KS_ADD_ADDR_E_HI 0x00F4
/* MAAL15 */
#define KS_ADD_ADDR_F_LO 0x00F8
/* MAAH15 */
#define KS_ADD_ADDR_F_HI 0x00FC
#define ADD_ADDR_HI_MASK 0x0000FFFF
#define ADD_ADDR_ENABLE 0x80000000
#define ADD_ADDR_INCR 8
/* Miscellaneous Registers */
/* MARL */
#define KS884X_ADDR_0_OFFSET 0x0200
#define KS884X_ADDR_1_OFFSET 0x0201
/* MARM */
#define KS884X_ADDR_2_OFFSET 0x0202
#define KS884X_ADDR_3_OFFSET 0x0203
/* MARH */
#define KS884X_ADDR_4_OFFSET 0x0204
#define KS884X_ADDR_5_OFFSET 0x0205
/* OBCR */
#define KS884X_BUS_CTRL_OFFSET 0x0210
#define BUS_SPEED_125_MHZ 0x0000
#define BUS_SPEED_62_5_MHZ 0x0001
#define BUS_SPEED_41_66_MHZ 0x0002
#define BUS_SPEED_25_MHZ 0x0003
/* EEPCR */
#define KS884X_EEPROM_CTRL_OFFSET 0x0212
#define EEPROM_CHIP_SELECT 0x0001
#define EEPROM_SERIAL_CLOCK 0x0002
#define EEPROM_DATA_OUT 0x0004
#define EEPROM_DATA_IN 0x0008
#define EEPROM_ACCESS_ENABLE 0x0010
/* MBIR */
#define KS884X_MEM_INFO_OFFSET 0x0214
#define RX_MEM_TEST_FAILED 0x0008
#define RX_MEM_TEST_FINISHED 0x0010
#define TX_MEM_TEST_FAILED 0x0800
#define TX_MEM_TEST_FINISHED 0x1000
/* GCR */
#define KS884X_GLOBAL_CTRL_OFFSET 0x0216
#define GLOBAL_SOFTWARE_RESET 0x0001
#define KS8841_POWER_MANAGE_OFFSET 0x0218
/* WFCR */
#define KS8841_WOL_CTRL_OFFSET 0x021A
#define KS8841_WOL_MAGIC_ENABLE 0x0080
#define KS8841_WOL_FRAME3_ENABLE 0x0008
#define KS8841_WOL_FRAME2_ENABLE 0x0004
#define KS8841_WOL_FRAME1_ENABLE 0x0002
#define KS8841_WOL_FRAME0_ENABLE 0x0001
/* WF0 */
#define KS8841_WOL_FRAME_CRC_OFFSET 0x0220
#define KS8841_WOL_FRAME_BYTE0_OFFSET 0x0224
#define KS8841_WOL_FRAME_BYTE2_OFFSET 0x0228
/* IACR */
#define KS884X_IACR_P 0x04A0
#define KS884X_IACR_OFFSET KS884X_IACR_P
/* IADR1 */
#define KS884X_IADR1_P 0x04A2
#define KS884X_IADR2_P 0x04A4
#define KS884X_IADR3_P 0x04A6
#define KS884X_IADR4_P 0x04A8
#define KS884X_IADR5_P 0x04AA
#define KS884X_ACC_CTRL_SEL_OFFSET KS884X_IACR_P
#define KS884X_ACC_CTRL_INDEX_OFFSET (KS884X_ACC_CTRL_SEL_OFFSET + 1)
#define KS884X_ACC_DATA_0_OFFSET KS884X_IADR4_P
#define KS884X_ACC_DATA_1_OFFSET (KS884X_ACC_DATA_0_OFFSET + 1)
#define KS884X_ACC_DATA_2_OFFSET KS884X_IADR5_P
#define KS884X_ACC_DATA_3_OFFSET (KS884X_ACC_DATA_2_OFFSET + 1)
#define KS884X_ACC_DATA_4_OFFSET KS884X_IADR2_P
#define KS884X_ACC_DATA_5_OFFSET (KS884X_ACC_DATA_4_OFFSET + 1)
#define KS884X_ACC_DATA_6_OFFSET KS884X_IADR3_P
#define KS884X_ACC_DATA_7_OFFSET (KS884X_ACC_DATA_6_OFFSET + 1)
#define KS884X_ACC_DATA_8_OFFSET KS884X_IADR1_P
/* P1MBCR */
#define KS884X_P1MBCR_P 0x04D0
#define KS884X_P1MBSR_P 0x04D2
#define KS884X_PHY1ILR_P 0x04D4
#define KS884X_PHY1IHR_P 0x04D6
#define KS884X_P1ANAR_P 0x04D8
#define KS884X_P1ANLPR_P 0x04DA
/* P2MBCR */
#define KS884X_P2MBCR_P 0x04E0
#define KS884X_P2MBSR_P 0x04E2
#define KS884X_PHY2ILR_P 0x04E4
#define KS884X_PHY2IHR_P 0x04E6
#define KS884X_P2ANAR_P 0x04E8
#define KS884X_P2ANLPR_P 0x04EA
#define KS884X_PHY_1_CTRL_OFFSET KS884X_P1MBCR_P
#define PHY_CTRL_INTERVAL (KS884X_P2MBCR_P - KS884X_P1MBCR_P)
#define KS884X_PHY_CTRL_OFFSET 0x00
/* Mode Control Register */
#define PHY_REG_CTRL 0
#define PHY_RESET 0x8000
#define PHY_LOOPBACK 0x4000
#define PHY_SPEED_100MBIT 0x2000
#define PHY_AUTO_NEG_ENABLE 0x1000
#define PHY_POWER_DOWN 0x0800
#define PHY_MII_DISABLE 0x0400
#define PHY_AUTO_NEG_RESTART 0x0200
#define PHY_FULL_DUPLEX 0x0100
#define PHY_COLLISION_TEST 0x0080
#define PHY_HP_MDIX 0x0020
#define PHY_FORCE_MDIX 0x0010
#define PHY_AUTO_MDIX_DISABLE 0x0008
#define PHY_REMOTE_FAULT_DISABLE 0x0004
#define PHY_TRANSMIT_DISABLE 0x0002
#define PHY_LED_DISABLE 0x0001
#define KS884X_PHY_STATUS_OFFSET 0x02
/* Mode Status Register */
#define PHY_REG_STATUS 1
#define PHY_100BT4_CAPABLE 0x8000
#define PHY_100BTX_FD_CAPABLE 0x4000
#define PHY_100BTX_CAPABLE 0x2000
#define PHY_10BT_FD_CAPABLE 0x1000
#define PHY_10BT_CAPABLE 0x0800
#define PHY_MII_SUPPRESS_CAPABLE 0x0040
#define PHY_AUTO_NEG_ACKNOWLEDGE 0x0020
#define PHY_REMOTE_FAULT 0x0010
#define PHY_AUTO_NEG_CAPABLE 0x0008
#define PHY_LINK_STATUS 0x0004
#define PHY_JABBER_DETECT 0x0002
#define PHY_EXTENDED_CAPABILITY 0x0001
#define KS884X_PHY_ID_1_OFFSET 0x04
#define KS884X_PHY_ID_2_OFFSET 0x06
/* PHY Identifier Registers */
#define PHY_REG_ID_1 2
#define PHY_REG_ID_2 3
#define KS884X_PHY_AUTO_NEG_OFFSET 0x08
/* Auto-Negotiation Advertisement Register */
#define PHY_REG_AUTO_NEGOTIATION 4
#define PHY_AUTO_NEG_NEXT_PAGE 0x8000
#define PHY_AUTO_NEG_REMOTE_FAULT 0x2000
/* Not supported. */
#define PHY_AUTO_NEG_ASYM_PAUSE 0x0800
#define PHY_AUTO_NEG_SYM_PAUSE 0x0400
#define PHY_AUTO_NEG_100BT4 0x0200
#define PHY_AUTO_NEG_100BTX_FD 0x0100
#define PHY_AUTO_NEG_100BTX 0x0080
#define PHY_AUTO_NEG_10BT_FD 0x0040
#define PHY_AUTO_NEG_10BT 0x0020
#define PHY_AUTO_NEG_SELECTOR 0x001F
#define PHY_AUTO_NEG_802_3 0x0001
#define PHY_AUTO_NEG_PAUSE (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
#define KS884X_PHY_REMOTE_CAP_OFFSET 0x0A
/* Auto-Negotiation Link Partner Ability Register */
#define PHY_REG_REMOTE_CAPABILITY 5
#define PHY_REMOTE_NEXT_PAGE 0x8000
#define PHY_REMOTE_ACKNOWLEDGE 0x4000
#define PHY_REMOTE_REMOTE_FAULT 0x2000
#define PHY_REMOTE_SYM_PAUSE 0x0400
#define PHY_REMOTE_100BTX_FD 0x0100
#define PHY_REMOTE_100BTX 0x0080
#define PHY_REMOTE_10BT_FD 0x0040
#define PHY_REMOTE_10BT 0x0020
/* P1VCT */
#define KS884X_P1VCT_P 0x04F0
#define KS884X_P1PHYCTRL_P 0x04F2
/* P2VCT */
#define KS884X_P2VCT_P 0x04F4
#define KS884X_P2PHYCTRL_P 0x04F6
#define KS884X_PHY_SPECIAL_OFFSET KS884X_P1VCT_P
#define PHY_SPECIAL_INTERVAL (KS884X_P2VCT_P - KS884X_P1VCT_P)
#define KS884X_PHY_LINK_MD_OFFSET 0x00
#define PHY_START_CABLE_DIAG 0x8000
#define PHY_CABLE_DIAG_RESULT 0x6000
#define PHY_CABLE_STAT_NORMAL 0x0000
#define PHY_CABLE_STAT_OPEN 0x2000
#define PHY_CABLE_STAT_SHORT 0x4000
#define PHY_CABLE_STAT_FAILED 0x6000
#define PHY_CABLE_10M_SHORT 0x1000
#define PHY_CABLE_FAULT_COUNTER 0x01FF
#define KS884X_PHY_PHY_CTRL_OFFSET 0x02
#define PHY_STAT_REVERSED_POLARITY 0x0020
#define PHY_STAT_MDIX 0x0010
#define PHY_FORCE_LINK 0x0008
#define PHY_POWER_SAVING_DISABLE 0x0004
#define PHY_REMOTE_LOOPBACK 0x0002
/* SIDER */
#define KS884X_SIDER_P 0x0400
#define KS884X_CHIP_ID_OFFSET KS884X_SIDER_P
#define KS884X_FAMILY_ID_OFFSET (KS884X_CHIP_ID_OFFSET + 1)
#define REG_FAMILY_ID 0x88
#define REG_CHIP_ID_41 0x8810
#define REG_CHIP_ID_42 0x8800
#define KS884X_CHIP_ID_MASK_41 0xFF10
#define KS884X_CHIP_ID_MASK 0xFFF0
#define KS884X_CHIP_ID_SHIFT 4
#define KS884X_REVISION_MASK 0x000E
#define KS884X_REVISION_SHIFT 1
#define KS8842_START 0x0001
#define CHIP_IP_41_M 0x8810
#define CHIP_IP_42_M 0x8800
#define CHIP_IP_61_M 0x8890
#define CHIP_IP_62_M 0x8880
#define CHIP_IP_41_P 0x8850
#define CHIP_IP_42_P 0x8840
#define CHIP_IP_61_P 0x88D0
#define CHIP_IP_62_P 0x88C0
/* SGCR1 */
#define KS8842_SGCR1_P 0x0402
#define KS8842_SWITCH_CTRL_1_OFFSET KS8842_SGCR1_P
#define SWITCH_PASS_ALL 0x8000
#define SWITCH_TX_FLOW_CTRL 0x2000
#define SWITCH_RX_FLOW_CTRL 0x1000
#define SWITCH_CHECK_LENGTH 0x0800
#define SWITCH_AGING_ENABLE 0x0400
#define SWITCH_FAST_AGING 0x0200
#define SWITCH_AGGR_BACKOFF 0x0100
#define SWITCH_PASS_PAUSE 0x0008
#define SWITCH_LINK_AUTO_AGING 0x0001
/* SGCR2 */
#define KS8842_SGCR2_P 0x0404
#define KS8842_SWITCH_CTRL_2_OFFSET KS8842_SGCR2_P
#define SWITCH_VLAN_ENABLE 0x8000
#define SWITCH_IGMP_SNOOP 0x4000
#define IPV6_MLD_SNOOP_ENABLE 0x2000
#define IPV6_MLD_SNOOP_OPTION 0x1000
#define PRIORITY_SCHEME_SELECT 0x0800
#define SWITCH_MIRROR_RX_TX 0x0100
#define UNICAST_VLAN_BOUNDARY 0x0080
#define MULTICAST_STORM_DISABLE 0x0040
#define SWITCH_BACK_PRESSURE 0x0020
#define FAIR_FLOW_CTRL 0x0010
#define NO_EXC_COLLISION_DROP 0x0008
#define SWITCH_HUGE_PACKET 0x0004
#define SWITCH_LEGAL_PACKET 0x0002
#define SWITCH_BUF_RESERVE 0x0001
/* SGCR3 */
#define KS8842_SGCR3_P 0x0406
#define KS8842_SWITCH_CTRL_3_OFFSET KS8842_SGCR3_P
#define BROADCAST_STORM_RATE_LO 0xFF00
#define SWITCH_REPEATER 0x0080
#define SWITCH_HALF_DUPLEX 0x0040
#define SWITCH_FLOW_CTRL 0x0020
#define SWITCH_10_MBIT 0x0010
#define SWITCH_REPLACE_NULL_VID 0x0008
#define BROADCAST_STORM_RATE_HI 0x0007
#define BROADCAST_STORM_RATE 0x07FF
/* SGCR4 */
#define KS8842_SGCR4_P 0x0408
/* SGCR5 */
#define KS8842_SGCR5_P 0x040A
#define KS8842_SWITCH_CTRL_5_OFFSET KS8842_SGCR5_P
#define LED_MODE 0x8200
#define LED_SPEED_DUPLEX_ACT 0x0000
#define LED_SPEED_DUPLEX_LINK_ACT 0x8000
#define LED_DUPLEX_10_100 0x0200
/* SGCR6 */
#define KS8842_SGCR6_P 0x0410
#define KS8842_SWITCH_CTRL_6_OFFSET KS8842_SGCR6_P
#define KS8842_PRIORITY_MASK 3
#define KS8842_PRIORITY_SHIFT 2
/* SGCR7 */
#define KS8842_SGCR7_P 0x0412
#define KS8842_SWITCH_CTRL_7_OFFSET KS8842_SGCR7_P
#define SWITCH_UNK_DEF_PORT_ENABLE 0x0008
#define SWITCH_UNK_DEF_PORT_3 0x0004
#define SWITCH_UNK_DEF_PORT_2 0x0002
#define SWITCH_UNK_DEF_PORT_1 0x0001
/* MACAR1 */
#define KS8842_MACAR1_P 0x0470
#define KS8842_MACAR2_P 0x0472
#define KS8842_MACAR3_P 0x0474
#define KS8842_MAC_ADDR_1_OFFSET KS8842_MACAR1_P
#define KS8842_MAC_ADDR_0_OFFSET (KS8842_MAC_ADDR_1_OFFSET + 1)
#define KS8842_MAC_ADDR_3_OFFSET KS8842_MACAR2_P
#define KS8842_MAC_ADDR_2_OFFSET (KS8842_MAC_ADDR_3_OFFSET + 1)
#define KS8842_MAC_ADDR_5_OFFSET KS8842_MACAR3_P
#define KS8842_MAC_ADDR_4_OFFSET (KS8842_MAC_ADDR_5_OFFSET + 1)
/* TOSR1 */
#define KS8842_TOSR1_P 0x0480
#define KS8842_TOSR2_P 0x0482
#define KS8842_TOSR3_P 0x0484
#define KS8842_TOSR4_P 0x0486
#define KS8842_TOSR5_P 0x0488
#define KS8842_TOSR6_P 0x048A
#define KS8842_TOSR7_P 0x0490
#define KS8842_TOSR8_P 0x0492
#define KS8842_TOS_1_OFFSET KS8842_TOSR1_P
#define KS8842_TOS_2_OFFSET KS8842_TOSR2_P
#define KS8842_TOS_3_OFFSET KS8842_TOSR3_P
#define KS8842_TOS_4_OFFSET KS8842_TOSR4_P
#define KS8842_TOS_5_OFFSET KS8842_TOSR5_P
#define KS8842_TOS_6_OFFSET KS8842_TOSR6_P
#define KS8842_TOS_7_OFFSET KS8842_TOSR7_P
#define KS8842_TOS_8_OFFSET KS8842_TOSR8_P
/* P1CR1 */
#define KS8842_P1CR1_P 0x0500
#define KS8842_P1CR2_P 0x0502
#define KS8842_P1VIDR_P 0x0504
#define KS8842_P1CR3_P 0x0506
#define KS8842_P1IRCR_P 0x0508
#define KS8842_P1ERCR_P 0x050A
#define KS884X_P1SCSLMD_P 0x0510
#define KS884X_P1CR4_P 0x0512
#define KS884X_P1SR_P 0x0514
/* P2CR1 */
#define KS8842_P2CR1_P 0x0520
#define KS8842_P2CR2_P 0x0522
#define KS8842_P2VIDR_P 0x0524
#define KS8842_P2CR3_P 0x0526
#define KS8842_P2IRCR_P 0x0528
#define KS8842_P2ERCR_P 0x052A
#define KS884X_P2SCSLMD_P 0x0530
#define KS884X_P2CR4_P 0x0532
#define KS884X_P2SR_P 0x0534
/* P3CR1 */
#define KS8842_P3CR1_P 0x0540
#define KS8842_P3CR2_P 0x0542
#define KS8842_P3VIDR_P 0x0544
#define KS8842_P3CR3_P 0x0546
#define KS8842_P3IRCR_P 0x0548
#define KS8842_P3ERCR_P 0x054A
#define KS8842_PORT_1_CTRL_1 KS8842_P1CR1_P
#define KS8842_PORT_2_CTRL_1 KS8842_P2CR1_P
#define KS8842_PORT_3_CTRL_1 KS8842_P3CR1_P
#define PORT_CTRL_ADDR(port, addr) \
(addr = KS8842_PORT_1_CTRL_1 + (port) * \
(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
#define KS8842_PORT_CTRL_1_OFFSET 0x00
#define PORT_BROADCAST_STORM 0x0080
#define PORT_DIFFSERV_ENABLE 0x0040
#define PORT_802_1P_ENABLE 0x0020
#define PORT_BASED_PRIORITY_MASK 0x0018
#define PORT_BASED_PRIORITY_BASE 0x0003
#define PORT_BASED_PRIORITY_SHIFT 3
#define PORT_BASED_PRIORITY_0 0x0000
#define PORT_BASED_PRIORITY_1 0x0008
#define PORT_BASED_PRIORITY_2 0x0010
#define PORT_BASED_PRIORITY_3 0x0018
#define PORT_INSERT_TAG 0x0004
#define PORT_REMOVE_TAG 0x0002
#define PORT_PRIO_QUEUE_ENABLE 0x0001
#define KS8842_PORT_CTRL_2_OFFSET 0x02
#define PORT_INGRESS_VLAN_FILTER 0x4000
#define PORT_DISCARD_NON_VID 0x2000
#define PORT_FORCE_FLOW_CTRL 0x1000
#define PORT_BACK_PRESSURE 0x0800
#define PORT_TX_ENABLE 0x0400
#define PORT_RX_ENABLE 0x0200
#define PORT_LEARN_DISABLE 0x0100
#define PORT_MIRROR_SNIFFER 0x0080
#define PORT_MIRROR_RX 0x0040
#define PORT_MIRROR_TX 0x0020
#define PORT_USER_PRIORITY_CEILING 0x0008
#define PORT_VLAN_MEMBERSHIP 0x0007
#define KS8842_PORT_CTRL_VID_OFFSET 0x04
#define PORT_DEFAULT_VID 0x0001
#define KS8842_PORT_CTRL_3_OFFSET 0x06
#define PORT_INGRESS_LIMIT_MODE 0x000C
#define PORT_INGRESS_ALL 0x0000
#define PORT_INGRESS_UNICAST 0x0004
#define PORT_INGRESS_MULTICAST 0x0008
#define PORT_INGRESS_BROADCAST 0x000C
#define PORT_COUNT_IFG 0x0002
#define PORT_COUNT_PREAMBLE 0x0001
#define KS8842_PORT_IN_RATE_OFFSET 0x08
#define KS8842_PORT_OUT_RATE_OFFSET 0x0A
#define PORT_PRIORITY_RATE 0x0F
#define PORT_PRIORITY_RATE_SHIFT 4
#define KS884X_PORT_LINK_MD 0x10
#define PORT_CABLE_10M_SHORT 0x8000
#define PORT_CABLE_DIAG_RESULT 0x6000
#define PORT_CABLE_STAT_NORMAL 0x0000
#define PORT_CABLE_STAT_OPEN 0x2000
#define PORT_CABLE_STAT_SHORT 0x4000
#define PORT_CABLE_STAT_FAILED 0x6000
#define PORT_START_CABLE_DIAG 0x1000
#define PORT_FORCE_LINK 0x0800
#define PORT_POWER_SAVING_DISABLE 0x0400
#define PORT_PHY_REMOTE_LOOPBACK 0x0200
#define PORT_CABLE_FAULT_COUNTER 0x01FF
#define KS884X_PORT_CTRL_4_OFFSET 0x12
#define PORT_LED_OFF 0x8000
#define PORT_TX_DISABLE 0x4000
#define PORT_AUTO_NEG_RESTART 0x2000
#define PORT_REMOTE_FAULT_DISABLE 0x1000
#define PORT_POWER_DOWN 0x0800
#define PORT_AUTO_MDIX_DISABLE 0x0400
#define PORT_FORCE_MDIX 0x0200
#define PORT_LOOPBACK 0x0100
#define PORT_AUTO_NEG_ENABLE 0x0080
#define PORT_FORCE_100_MBIT 0x0040
#define PORT_FORCE_FULL_DUPLEX 0x0020
#define PORT_AUTO_NEG_SYM_PAUSE 0x0010
#define PORT_AUTO_NEG_100BTX_FD 0x0008
#define PORT_AUTO_NEG_100BTX 0x0004
#define PORT_AUTO_NEG_10BT_FD 0x0002
#define PORT_AUTO_NEG_10BT 0x0001
#define KS884X_PORT_STATUS_OFFSET 0x14
#define PORT_HP_MDIX 0x8000
#define PORT_REVERSED_POLARITY 0x2000
#define PORT_RX_FLOW_CTRL 0x0800
#define PORT_TX_FLOW_CTRL 0x1000
#define PORT_STATUS_SPEED_100MBIT 0x0400
#define PORT_STATUS_FULL_DUPLEX 0x0200
#define PORT_REMOTE_FAULT 0x0100
#define PORT_MDIX_STATUS 0x0080
#define PORT_AUTO_NEG_COMPLETE 0x0040
#define PORT_STATUS_LINK_GOOD 0x0020
#define PORT_REMOTE_SYM_PAUSE 0x0010
#define PORT_REMOTE_100BTX_FD 0x0008
#define PORT_REMOTE_100BTX 0x0004
#define PORT_REMOTE_10BT_FD 0x0002
#define PORT_REMOTE_10BT 0x0001
/*
#define STATIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
#define STATIC_MAC_TABLE_FWD_PORTS 00-00070000-00000000
#define STATIC_MAC_TABLE_VALID 00-00080000-00000000
#define STATIC_MAC_TABLE_OVERRIDE 00-00100000-00000000
#define STATIC_MAC_TABLE_USE_FID 00-00200000-00000000
#define STATIC_MAC_TABLE_FID 00-03C00000-00000000
*/
#define STATIC_MAC_TABLE_ADDR 0x0000FFFF
#define STATIC_MAC_TABLE_FWD_PORTS 0x00070000
#define STATIC_MAC_TABLE_VALID 0x00080000
#define STATIC_MAC_TABLE_OVERRIDE 0x00100000
#define STATIC_MAC_TABLE_USE_FID 0x00200000
#define STATIC_MAC_TABLE_FID 0x03C00000
#define STATIC_MAC_FWD_PORTS_SHIFT 16
#define STATIC_MAC_FID_SHIFT 22
/*
#define VLAN_TABLE_VID 00-00000000-00000FFF
#define VLAN_TABLE_FID 00-00000000-0000F000
#define VLAN_TABLE_MEMBERSHIP 00-00000000-00070000
#define VLAN_TABLE_VALID 00-00000000-00080000
*/
#define VLAN_TABLE_VID 0x00000FFF
#define VLAN_TABLE_FID 0x0000F000
#define VLAN_TABLE_MEMBERSHIP 0x00070000
#define VLAN_TABLE_VALID 0x00080000
#define VLAN_TABLE_FID_SHIFT 12
#define VLAN_TABLE_MEMBERSHIP_SHIFT 16
/*
#define DYNAMIC_MAC_TABLE_ADDR 00-0000FFFF-FFFFFFFF
#define DYNAMIC_MAC_TABLE_FID 00-000F0000-00000000
#define DYNAMIC_MAC_TABLE_SRC_PORT 00-00300000-00000000
#define DYNAMIC_MAC_TABLE_TIMESTAMP 00-00C00000-00000000
#define DYNAMIC_MAC_TABLE_ENTRIES 03-FF000000-00000000
#define DYNAMIC_MAC_TABLE_MAC_EMPTY 04-00000000-00000000
#define DYNAMIC_MAC_TABLE_RESERVED 78-00000000-00000000
#define DYNAMIC_MAC_TABLE_NOT_READY 80-00000000-00000000
*/
#define DYNAMIC_MAC_TABLE_ADDR 0x0000FFFF
#define DYNAMIC_MAC_TABLE_FID 0x000F0000
#define DYNAMIC_MAC_TABLE_SRC_PORT 0x00300000
#define DYNAMIC_MAC_TABLE_TIMESTAMP 0x00C00000
#define DYNAMIC_MAC_TABLE_ENTRIES 0xFF000000
#define DYNAMIC_MAC_TABLE_ENTRIES_H 0x03
#define DYNAMIC_MAC_TABLE_MAC_EMPTY 0x04
#define DYNAMIC_MAC_TABLE_RESERVED 0x78
#define DYNAMIC_MAC_TABLE_NOT_READY 0x80
#define DYNAMIC_MAC_FID_SHIFT 16
#define DYNAMIC_MAC_SRC_PORT_SHIFT 20
#define DYNAMIC_MAC_TIMESTAMP_SHIFT 22
#define DYNAMIC_MAC_ENTRIES_SHIFT 24
#define DYNAMIC_MAC_ENTRIES_H_SHIFT 8
/*
#define MIB_COUNTER_VALUE 00-00000000-3FFFFFFF
#define MIB_COUNTER_VALID 00-00000000-40000000
#define MIB_COUNTER_OVERFLOW 00-00000000-80000000
*/
#define MIB_COUNTER_VALUE 0x3FFFFFFF
#define MIB_COUNTER_VALID 0x40000000
#define MIB_COUNTER_OVERFLOW 0x80000000
#define MIB_PACKET_DROPPED 0x0000FFFF
#define KS_MIB_PACKET_DROPPED_TX_0 0x100
#define KS_MIB_PACKET_DROPPED_TX_1 0x101
#define KS_MIB_PACKET_DROPPED_TX 0x102
#define KS_MIB_PACKET_DROPPED_RX_0 0x103
#define KS_MIB_PACKET_DROPPED_RX_1 0x104
#define KS_MIB_PACKET_DROPPED_RX 0x105
/* Change default LED mode. */
#define SET_DEFAULT_LED LED_SPEED_DUPLEX_ACT
#define MAC_ADDR_LEN 6
#define MAC_ADDR_ORDER(i) (MAC_ADDR_LEN - 1 - (i))
#define MAX_ETHERNET_BODY_SIZE 1500
#define ETHERNET_HEADER_SIZE 14
#define MAX_ETHERNET_PACKET_SIZE \
(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
#define REGULAR_RX_BUF_SIZE (MAX_ETHERNET_PACKET_SIZE + 4)
#define MAX_RX_BUF_SIZE (1912 + 4)
#define ADDITIONAL_ENTRIES 16
#define MAX_MULTICAST_LIST 32
#define HW_MULTICAST_SIZE 8
#define HW_TO_DEV_PORT(port) (port - 1)
enum {
media_connected,
media_disconnected
};
enum {
OID_COUNTER_UNKOWN,
OID_COUNTER_FIRST,
/* total transmit errors */
OID_COUNTER_XMIT_ERROR,
/* total receive errors */
OID_COUNTER_RCV_ERROR,
OID_COUNTER_LAST
};
/*
* Hardware descriptor definitions
*/
#define DESC_ALIGNMENT 16
#define BUFFER_ALIGNMENT 8
#define NUM_OF_RX_DESC 64
#define NUM_OF_TX_DESC 64
#define KS_DESC_RX_FRAME_LEN 0x000007FF
#define KS_DESC_RX_FRAME_TYPE 0x00008000
#define KS_DESC_RX_ERROR_CRC 0x00010000
#define KS_DESC_RX_ERROR_RUNT 0x00020000
#define KS_DESC_RX_ERROR_TOO_LONG 0x00040000
#define KS_DESC_RX_ERROR_PHY 0x00080000
#define KS884X_DESC_RX_PORT_MASK 0x00300000
#define KS_DESC_RX_MULTICAST 0x01000000
#define KS_DESC_RX_ERROR 0x02000000
#define KS_DESC_RX_ERROR_CSUM_UDP 0x04000000
#define KS_DESC_RX_ERROR_CSUM_TCP 0x08000000
#define KS_DESC_RX_ERROR_CSUM_IP 0x10000000
#define KS_DESC_RX_LAST 0x20000000
#define KS_DESC_RX_FIRST 0x40000000
#define KS_DESC_RX_ERROR_COND \
(KS_DESC_RX_ERROR_CRC | \
KS_DESC_RX_ERROR_RUNT | \
KS_DESC_RX_ERROR_PHY | \
KS_DESC_RX_ERROR_TOO_LONG)
#define KS_DESC_HW_OWNED 0x80000000
#define KS_DESC_BUF_SIZE 0x000007FF
#define KS884X_DESC_TX_PORT_MASK 0x00300000
#define KS_DESC_END_OF_RING 0x02000000
#define KS_DESC_TX_CSUM_GEN_UDP 0x04000000
#define KS_DESC_TX_CSUM_GEN_TCP 0x08000000
#define KS_DESC_TX_CSUM_GEN_IP 0x10000000
#define KS_DESC_TX_LAST 0x20000000
#define KS_DESC_TX_FIRST 0x40000000
#define KS_DESC_TX_INTERRUPT 0x80000000
#define KS_DESC_PORT_SHIFT 20
#define KS_DESC_RX_MASK (KS_DESC_BUF_SIZE)
#define KS_DESC_TX_MASK \
(KS_DESC_TX_INTERRUPT | \
KS_DESC_TX_FIRST | \
KS_DESC_TX_LAST | \
KS_DESC_TX_CSUM_GEN_IP | \
KS_DESC_TX_CSUM_GEN_TCP | \
KS_DESC_TX_CSUM_GEN_UDP | \
KS_DESC_BUF_SIZE)
struct ksz_desc_rx_stat {
#ifdef __BIG_ENDIAN_BITFIELD
u32 hw_owned:1;
u32 first_desc:1;
u32 last_desc:1;
u32 csum_err_ip:1;
u32 csum_err_tcp:1;
u32 csum_err_udp:1;
u32 error:1;
u32 multicast:1;
u32 src_port:4;
u32 err_phy:1;
u32 err_too_long:1;
u32 err_runt:1;
u32 err_crc:1;
u32 frame_type:1;
u32 reserved1:4;
u32 frame_len:11;
#else
u32 frame_len:11;
u32 reserved1:4;
u32 frame_type:1;
u32 err_crc:1;
u32 err_runt:1;
u32 err_too_long:1;
u32 err_phy:1;
u32 src_port:4;
u32 multicast:1;
u32 error:1;
u32 csum_err_udp:1;
u32 csum_err_tcp:1;
u32 csum_err_ip:1;
u32 last_desc:1;
u32 first_desc:1;
u32 hw_owned:1;
#endif
};
struct ksz_desc_tx_stat {
#ifdef __BIG_ENDIAN_BITFIELD
u32 hw_owned:1;
u32 reserved1:31;
#else
u32 reserved1:31;
u32 hw_owned:1;
#endif
};
struct ksz_desc_rx_buf {
#ifdef __BIG_ENDIAN_BITFIELD
u32 reserved4:6;
u32 end_of_ring:1;
u32 reserved3:14;
u32 buf_size:11;
#else
u32 buf_size:11;
u32 reserved3:14;
u32 end_of_ring:1;
u32 reserved4:6;
#endif
};
struct ksz_desc_tx_buf {
#ifdef __BIG_ENDIAN_BITFIELD
u32 intr:1;
u32 first_seg:1;
u32 last_seg:1;
u32 csum_gen_ip:1;
u32 csum_gen_tcp:1;
u32 csum_gen_udp:1;
u32 end_of_ring:1;
u32 reserved4:1;
u32 dest_port:4;
u32 reserved3:9;
u32 buf_size:11;
#else
u32 buf_size:11;
u32 reserved3:9;
u32 dest_port:4;
u32 reserved4:1;
u32 end_of_ring:1;
u32 csum_gen_udp:1;
u32 csum_gen_tcp:1;
u32 csum_gen_ip:1;
u32 last_seg:1;
u32 first_seg:1;
u32 intr:1;
#endif
};
union desc_stat {
struct ksz_desc_rx_stat rx;
struct ksz_desc_tx_stat tx;
u32 data;
};
union desc_buf {
struct ksz_desc_rx_buf rx;
struct ksz_desc_tx_buf tx;
u32 data;
};
/**
* struct ksz_hw_desc - Hardware descriptor data structure
* @ctrl: Descriptor control value.
* @buf: Descriptor buffer value.
* @addr: Physical address of memory buffer.
* @next: Pointer to next hardware descriptor.
*/
struct ksz_hw_desc {
union desc_stat ctrl;
union desc_buf buf;
u32 addr;
u32 next;
};
/**
* struct ksz_sw_desc - Software descriptor data structure
* @ctrl: Descriptor control value.
* @buf: Descriptor buffer value.
* @buf_size: Current buffers size value in hardware descriptor.
*/
struct ksz_sw_desc {
union desc_stat ctrl;
union desc_buf buf;
u32 buf_size;
};
/**
* struct ksz_dma_buf - OS dependent DMA buffer data structure
* @skb: Associated socket buffer.
* @dma: Associated physical DMA address.
* len: Actual len used.
*/
struct ksz_dma_buf {
struct sk_buff *skb;
dma_addr_t dma;
int len;
};
/**
* struct ksz_desc - Descriptor structure
* @phw: Hardware descriptor pointer to uncached physical memory.
* @sw: Cached memory to hold hardware descriptor values for
* manipulation.
* @dma_buf: Operating system dependent data structure to hold physical
* memory buffer allocation information.
*/
struct ksz_desc {
struct ksz_hw_desc *phw;
struct ksz_sw_desc sw;
struct ksz_dma_buf dma_buf;
};
#define DMA_BUFFER(desc) ((struct ksz_dma_buf *)(&(desc)->dma_buf))
/**
* struct ksz_desc_info - Descriptor information data structure
* @ring: First descriptor in the ring.
* @cur: Current descriptor being manipulated.
* @ring_virt: First hardware descriptor in the ring.
* @ring_phys: The physical address of the first descriptor of the ring.
* @size: Size of hardware descriptor.
* @alloc: Number of descriptors allocated.
* @avail: Number of descriptors available for use.
* @last: Index for last descriptor released to hardware.
* @next: Index for next descriptor available for use.
* @mask: Mask for index wrapping.
*/
struct ksz_desc_info {
struct ksz_desc *ring;
struct ksz_desc *cur;
struct ksz_hw_desc *ring_virt;
u32 ring_phys;
int size;
int alloc;
int avail;
int last;
int next;
int mask;
};
/*
* KSZ8842 switch definitions
*/
enum {
TABLE_STATIC_MAC = 0,
TABLE_VLAN,
TABLE_DYNAMIC_MAC,
TABLE_MIB
};
#define LEARNED_MAC_TABLE_ENTRIES 1024
#define STATIC_MAC_TABLE_ENTRIES 8
/**
* struct ksz_mac_table - Static MAC table data structure
* @mac_addr: MAC address to filter.
* @vid: VID value.
* @fid: FID value.
* @ports: Port membership.
* @override: Override setting.
* @use_fid: FID use setting.
* @valid: Valid setting indicating the entry is being used.
*/
struct ksz_mac_table {
u8 mac_addr[MAC_ADDR_LEN];
u16 vid;
u8 fid;
u8 ports;
u8 override:1;
u8 use_fid:1;
u8 valid:1;
};
#define VLAN_TABLE_ENTRIES 16
/**
* struct ksz_vlan_table - VLAN table data structure
* @vid: VID value.
* @fid: FID value.
* @member: Port membership.
*/
struct ksz_vlan_table {
u16 vid;
u8 fid;
u8 member;
};
#define DIFFSERV_ENTRIES 64
#define PRIO_802_1P_ENTRIES 8
#define PRIO_QUEUES 4
#define SWITCH_PORT_NUM 2
#define TOTAL_PORT_NUM (SWITCH_PORT_NUM + 1)
#define HOST_MASK (1 << SWITCH_PORT_NUM)
#define PORT_MASK 7
#define MAIN_PORT 0
#define OTHER_PORT 1
#define HOST_PORT SWITCH_PORT_NUM
#define PORT_COUNTER_NUM 0x20
#define TOTAL_PORT_COUNTER_NUM (PORT_COUNTER_NUM + 2)
#define MIB_COUNTER_RX_LO_PRIORITY 0x00
#define MIB_COUNTER_RX_HI_PRIORITY 0x01
#define MIB_COUNTER_RX_UNDERSIZE 0x02
#define MIB_COUNTER_RX_FRAGMENT 0x03
#define MIB_COUNTER_RX_OVERSIZE 0x04
#define MIB_COUNTER_RX_JABBER 0x05
#define MIB_COUNTER_RX_SYMBOL_ERR 0x06
#define MIB_COUNTER_RX_CRC_ERR 0x07
#define MIB_COUNTER_RX_ALIGNMENT_ERR 0x08
#define MIB_COUNTER_RX_CTRL_8808 0x09
#define MIB_COUNTER_RX_PAUSE 0x0A
#define MIB_COUNTER_RX_BROADCAST 0x0B
#define MIB_COUNTER_RX_MULTICAST 0x0C
#define MIB_COUNTER_RX_UNICAST 0x0D
#define MIB_COUNTER_RX_OCTET_64 0x0E
#define MIB_COUNTER_RX_OCTET_65_127 0x0F
#define MIB_COUNTER_RX_OCTET_128_255 0x10
#define MIB_COUNTER_RX_OCTET_256_511 0x11
#define MIB_COUNTER_RX_OCTET_512_1023 0x12
#define MIB_COUNTER_RX_OCTET_1024_1522 0x13
#define MIB_COUNTER_TX_LO_PRIORITY 0x14
#define MIB_COUNTER_TX_HI_PRIORITY 0x15
#define MIB_COUNTER_TX_LATE_COLLISION 0x16
#define MIB_COUNTER_TX_PAUSE 0x17
#define MIB_COUNTER_TX_BROADCAST 0x18
#define MIB_COUNTER_TX_MULTICAST 0x19
#define MIB_COUNTER_TX_UNICAST 0x1A
#define MIB_COUNTER_TX_DEFERRED 0x1B
#define MIB_COUNTER_TX_TOTAL_COLLISION 0x1C
#define MIB_COUNTER_TX_EXCESS_COLLISION 0x1D
#define MIB_COUNTER_TX_SINGLE_COLLISION 0x1E
#define MIB_COUNTER_TX_MULTI_COLLISION 0x1F
#define MIB_COUNTER_RX_DROPPED_PACKET 0x20
#define MIB_COUNTER_TX_DROPPED_PACKET 0x21
/**
* struct ksz_port_mib - Port MIB data structure
* @cnt_ptr: Current pointer to MIB counter index.
* @link_down: Indication the link has just gone down.
* @state: Connection status of the port.
* @mib_start: The starting counter index. Some ports do not start at 0.
* @counter: 64-bit MIB counter value.
* @dropped: Temporary buffer to remember last read packet dropped values.
*
* MIB counters needs to be read periodically so that counters do not get
* overflowed and give incorrect values. A right balance is needed to
* satisfy this condition and not waste too much CPU time.
*
* It is pointless to read MIB counters when the port is disconnected. The
* @state provides the connection status so that MIB counters are read only
* when the port is connected. The @link_down indicates the port is just
* disconnected so that all MIB counters are read one last time to update the
* information.
*/
struct ksz_port_mib {
u8 cnt_ptr;
u8 link_down;
u8 state;
u8 mib_start;
u64 counter[TOTAL_PORT_COUNTER_NUM];
u32 dropped[2];
};
/**
* struct ksz_port_cfg - Port configuration data structure
* @vid: VID value.
* @member: Port membership.
* @port_prio: Port priority.
* @rx_rate: Receive priority rate.
* @tx_rate: Transmit priority rate.
* @stp_state: Current Spanning Tree Protocol state.
*/
struct ksz_port_cfg {
u16 vid;
u8 member;
u8 port_prio;
u32 rx_rate[PRIO_QUEUES];
u32 tx_rate[PRIO_QUEUES];
int stp_state;
};
/**
* struct ksz_switch - KSZ8842 switch data structure
* @mac_table: MAC table entries information.
* @vlan_table: VLAN table entries information.
* @port_cfg: Port configuration information.
* @diffserv: DiffServ priority settings. Possible values from 6-bit of ToS
* (bit7 ~ bit2) field.
* @p_802_1p: 802.1P priority settings. Possible values from 3-bit of 802.1p
* Tag priority field.
* @br_addr: Bridge address. Used for STP.
* @other_addr: Other MAC address. Used for multiple network device mode.
* @broad_per: Broadcast storm percentage.
* @member: Current port membership. Used for STP.
*/
struct ksz_switch {
struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
u8 diffserv[DIFFSERV_ENTRIES];
u8 p_802_1p[PRIO_802_1P_ENTRIES];
u8 br_addr[MAC_ADDR_LEN];
u8 other_addr[MAC_ADDR_LEN];
u8 broad_per;
u8 member;
};
#define TX_RATE_UNIT 10000
/**
* struct ksz_port_info - Port information data structure
* @state: Connection status of the port.
* @tx_rate: Transmit rate divided by 10000 to get Mbit.
* @duplex: Duplex mode.
* @advertised: Advertised auto-negotiation setting. Used to determine link.
* @partner: Auto-negotiation partner setting. Used to determine link.
* @port_id: Port index to access actual hardware register.
* @pdev: Pointer to OS dependent network device.
*/
struct ksz_port_info {
uint state;
uint tx_rate;
u8 duplex;
u8 advertised;
u8 partner;
u8 port_id;
void *pdev;
};
#define MAX_TX_HELD_SIZE 52000
/* Hardware features and bug fixes. */
#define LINK_INT_WORKING (1 << 0)
#define SMALL_PACKET_TX_BUG (1 << 1)
#define HALF_DUPLEX_SIGNAL_BUG (1 << 2)
#define RX_HUGE_FRAME (1 << 4)
#define STP_SUPPORT (1 << 8)
/* Software overrides. */
#define PAUSE_FLOW_CTRL (1 << 0)
#define FAST_AGING (1 << 1)
/**
* struct ksz_hw - KSZ884X hardware data structure
* @io: Virtual address assigned.
* @ksz_switch: Pointer to KSZ8842 switch.
* @port_info: Port information.
* @port_mib: Port MIB information.
* @dev_count: Number of network devices this hardware supports.
* @dst_ports: Destination ports in switch for transmission.
* @id: Hardware ID. Used for display only.
* @mib_cnt: Number of MIB counters this hardware has.
* @mib_port_cnt: Number of ports with MIB counters.
* @tx_cfg: Cached transmit control settings.
* @rx_cfg: Cached receive control settings.
* @intr_mask: Current interrupt mask.
* @intr_set: Current interrup set.
* @intr_blocked: Interrupt blocked.
* @rx_desc_info: Receive descriptor information.
* @tx_desc_info: Transmit descriptor information.
* @tx_int_cnt: Transmit interrupt count. Used for TX optimization.
* @tx_int_mask: Transmit interrupt mask. Used for TX optimization.
* @tx_size: Transmit data size. Used for TX optimization.
* The maximum is defined by MAX_TX_HELD_SIZE.
* @perm_addr: Permanent MAC address.
* @override_addr: Overrided MAC address.
* @address: Additional MAC address entries.
* @addr_list_size: Additional MAC address list size.
* @mac_override: Indication of MAC address overrided.
* @promiscuous: Counter to keep track of promiscuous mode set.
* @all_multi: Counter to keep track of all multicast mode set.
* @multi_list: Multicast address entries.
* @multi_bits: Cached multicast hash table settings.
* @multi_list_size: Multicast address list size.
* @enabled: Indication of hardware enabled.
* @rx_stop: Indication of receive process stop.
* @features: Hardware features to enable.
* @overrides: Hardware features to override.
* @parent: Pointer to parent, network device private structure.
*/
struct ksz_hw {
void __iomem *io;
struct ksz_switch *ksz_switch;
struct ksz_port_info port_info[SWITCH_PORT_NUM];
struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
int dev_count;
int dst_ports;
int id;
int mib_cnt;
int mib_port_cnt;
u32 tx_cfg;
u32 rx_cfg;
u32 intr_mask;
u32 intr_set;
uint intr_blocked;
struct ksz_desc_info rx_desc_info;
struct ksz_desc_info tx_desc_info;
int tx_int_cnt;
int tx_int_mask;
int tx_size;
u8 perm_addr[MAC_ADDR_LEN];
u8 override_addr[MAC_ADDR_LEN];
u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
u8 addr_list_size;
u8 mac_override;
u8 promiscuous;
u8 all_multi;
u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
u8 multi_bits[HW_MULTICAST_SIZE];
u8 multi_list_size;
u8 enabled;
u8 rx_stop;
u8 reserved2[1];
uint features;
uint overrides;
void *parent;
};
enum {
PHY_NO_FLOW_CTRL,
PHY_FLOW_CTRL,
PHY_TX_ONLY,
PHY_RX_ONLY
};
/**
* struct ksz_port - Virtual port data structure
* @duplex: Duplex mode setting. 1 for half duplex, 2 for full
* duplex, and 0 for auto, which normally results in full
* duplex.
* @speed: Speed setting. 10 for 10 Mbit, 100 for 100 Mbit, and
* 0 for auto, which normally results in 100 Mbit.
* @force_link: Force link setting. 0 for auto-negotiation, and 1 for
* force.
* @flow_ctrl: Flow control setting. PHY_NO_FLOW_CTRL for no flow
* control, and PHY_FLOW_CTRL for flow control.
* PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
* Mbit PHY.
* @first_port: Index of first port this port supports.
* @mib_port_cnt: Number of ports with MIB counters.
* @port_cnt: Number of ports this port supports.
* @counter: Port statistics counter.
* @hw: Pointer to hardware structure.
* @linked: Pointer to port information linked to this port.
*/
struct ksz_port {
u8 duplex;
u8 speed;
u8 force_link;
u8 flow_ctrl;
int first_port;
int mib_port_cnt;
int port_cnt;
u64 counter[OID_COUNTER_LAST];
struct ksz_hw *hw;
struct ksz_port_info *linked;
};
/**
* struct ksz_timer_info - Timer information data structure
* @timer: Kernel timer.
* @cnt: Running timer counter.
* @max: Number of times to run timer; -1 for infinity.
* @period: Timer period in jiffies.
*/
struct ksz_timer_info {
struct timer_list timer;
int cnt;
int max;
int period;
};
/**
* struct ksz_shared_mem - OS dependent shared memory data structure
* @dma_addr: Physical DMA address allocated.
* @alloc_size: Allocation size.
* @phys: Actual physical address used.
* @alloc_virt: Virtual address allocated.
* @virt: Actual virtual address used.
*/
struct ksz_shared_mem {
dma_addr_t dma_addr;
uint alloc_size;
uint phys;
u8 *alloc_virt;
u8 *virt;
};
/**
* struct ksz_counter_info - OS dependent counter information data structure
* @counter: Wait queue to wakeup after counters are read.
* @time: Next time in jiffies to read counter.
* @read: Indication of counters read in full or not.
*/
struct ksz_counter_info {
wait_queue_head_t counter;
unsigned long time;
int read;
};
/**
* struct dev_info - Network device information data structure
* @dev: Pointer to network device.
* @pdev: Pointer to PCI device.
* @hw: Hardware structure.
* @desc_pool: Physical memory used for descriptor pool.
* @hwlock: Spinlock to prevent hardware from accessing.
* @lock: Mutex lock to prevent device from accessing.
* @dev_rcv: Receive process function used.
* @last_skb: Socket buffer allocated for descriptor rx fragments.
* @skb_index: Buffer index for receiving fragments.
* @skb_len: Buffer length for receiving fragments.
* @mib_read: Workqueue to read MIB counters.
* @mib_timer_info: Timer to read MIB counters.
* @counter: Used for MIB reading.
* @mtu: Current MTU used. The default is REGULAR_RX_BUF_SIZE;
* the maximum is MAX_RX_BUF_SIZE.
* @opened: Counter to keep track of device open.
* @rx_tasklet: Receive processing tasklet.
* @tx_tasklet: Transmit processing tasklet.
* @wol_enable: Wake-on-LAN enable set by ethtool.
* @wol_support: Wake-on-LAN support used by ethtool.
* @pme_wait: Used for KSZ8841 power management.
*/
struct dev_info {
struct net_device *dev;
struct pci_dev *pdev;
struct ksz_hw hw;
struct ksz_shared_mem desc_pool;
spinlock_t hwlock;
struct mutex lock;
int (*dev_rcv)(struct dev_info *);
struct sk_buff *last_skb;
int skb_index;
int skb_len;
struct work_struct mib_read;
struct ksz_timer_info mib_timer_info;
struct ksz_counter_info counter[TOTAL_PORT_NUM];
int mtu;
int opened;
struct tasklet_struct rx_tasklet;
struct tasklet_struct tx_tasklet;
int wol_enable;
int wol_support;
unsigned long pme_wait;
};
/**
* struct dev_priv - Network device private data structure
* @adapter: Adapter device information.
* @port: Port information.
* @monitor_time_info: Timer to monitor ports.
* @proc_sem: Semaphore for proc accessing.
* @id: Device ID.
* @mii_if: MII interface information.
* @advertising: Temporary variable to store advertised settings.
* @msg_enable: The message flags controlling driver output.
* @media_state: The connection status of the device.
* @multicast: The all multicast state of the device.
* @promiscuous: The promiscuous state of the device.
*/
struct dev_priv {
struct dev_info *adapter;
struct ksz_port port;
struct ksz_timer_info monitor_timer_info;
struct semaphore proc_sem;
int id;
struct mii_if_info mii_if;
u32 advertising;
u32 msg_enable;
int media_state;
int multicast;
int promiscuous;
};
#define DRV_NAME "KSZ884X PCI"
#define DEVICE_NAME "KSZ884x PCI"
#define DRV_VERSION "1.0.0"
#define DRV_RELDATE "Feb 8, 2010"
static char version[] __devinitdata =
"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
/*
* Interrupt processing primary routines
*/
static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
{
writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
}
static inline void hw_dis_intr(struct ksz_hw *hw)
{
hw->intr_blocked = hw->intr_mask;
writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
}
static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
{
hw->intr_set = interrupt;
writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
}
static inline void hw_ena_intr(struct ksz_hw *hw)
{
hw->intr_blocked = 0;
hw_set_intr(hw, hw->intr_mask);
}
static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
{
hw->intr_mask &= ~(bit);
}
static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
{
u32 read_intr;
read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
hw->intr_set = read_intr & ~interrupt;
writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
hw_dis_intr_bit(hw, interrupt);
}
/**
* hw_turn_on_intr - turn on specified interrupts
* @hw: The hardware instance.
* @bit: The interrupt bits to be on.
*
* This routine turns on the specified interrupts in the interrupt mask so that
* those interrupts will be enabled.
*/
static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
{
hw->intr_mask |= bit;
if (!hw->intr_blocked)
hw_set_intr(hw, hw->intr_mask);
}
static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
{
u32 read_intr;
read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
hw->intr_set = read_intr | interrupt;
writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
}
static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
{
*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
*status = *status & hw->intr_set;
}
static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
{
if (interrupt)
hw_ena_intr(hw);
}
/**
* hw_block_intr - block hardware interrupts
*
* This function blocks all interrupts of the hardware and returns the current
* interrupt enable mask so that interrupts can be restored later.
*
* Return the current interrupt enable mask.
*/
static uint hw_block_intr(struct ksz_hw *hw)
{
uint interrupt = 0;
if (!hw->intr_blocked) {
hw_dis_intr(hw);
interrupt = hw->intr_blocked;
}
return interrupt;
}
/*
* Hardware descriptor routines
*/
static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
{
status.rx.hw_owned = 0;
desc->phw->ctrl.data = cpu_to_le32(status.data);
}
static inline void release_desc(struct ksz_desc *desc)
{
desc->sw.ctrl.tx.hw_owned = 1;
if (desc->sw.buf_size != desc->sw.buf.data) {
desc->sw.buf_size = desc->sw.buf.data;
desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
}
desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
}
static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
{
*desc = &info->ring[info->last];
info->last++;
info->last &= info->mask;
info->avail--;
(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
}
static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
{
desc->phw->addr = cpu_to_le32(addr);
}
static inline void set_rx_len(struct ksz_desc *desc, u32 len)
{
desc->sw.buf.rx.buf_size = len;
}
static inline void get_tx_pkt(struct ksz_desc_info *info,
struct ksz_desc **desc)
{
*desc = &info->ring[info->next];
info->next++;
info->next &= info->mask;
info->avail--;
(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
}
static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
{
desc->phw->addr = cpu_to_le32(addr);
}
static inline void set_tx_len(struct ksz_desc *desc, u32 len)
{
desc->sw.buf.tx.buf_size = len;
}
/* Switch functions */
#define TABLE_READ 0x10
#define TABLE_SEL_SHIFT 2
#define HW_DELAY(hw, reg) \
do { \
u16 dummy; \
dummy = readw(hw->io + reg); \
} while (0)
/**
* sw_r_table - read 4 bytes of data from switch table
* @hw: The hardware instance.
* @table: The table selector.
* @addr: The address of the table entry.
* @data: Buffer to store the read data.
*
* This routine reads 4 bytes of data from the table of the switch.
* Hardware interrupts are disabled to minimize corruption of read data.
*/
static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
{
u16 ctrl_addr;
uint interrupt;
ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
interrupt = hw_block_intr(hw);
writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
HW_DELAY(hw, KS884X_IACR_OFFSET);
*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
hw_restore_intr(hw, interrupt);
}
/**
* sw_w_table_64 - write 8 bytes of data to the switch table
* @hw: The hardware instance.
* @table: The table selector.
* @addr: The address of the table entry.
* @data_hi: The high part of data to be written (bit63 ~ bit32).
* @data_lo: The low part of data to be written (bit31 ~ bit0).
*
* This routine writes 8 bytes of data to the table of the switch.
* Hardware interrupts are disabled to minimize corruption of written data.
*/
static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
u32 data_lo)
{
u16 ctrl_addr;
uint interrupt;
ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
interrupt = hw_block_intr(hw);
writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
HW_DELAY(hw, KS884X_IACR_OFFSET);
hw_restore_intr(hw, interrupt);
}
/**
* sw_w_sta_mac_table - write to the static MAC table
* @hw: The hardware instance.
* @addr: The address of the table entry.
* @mac_addr: The MAC address.
* @ports: The port members.
* @override: The flag to override the port receive/transmit settings.
* @valid: The flag to indicate entry is valid.
* @use_fid: The flag to indicate the FID is valid.
* @fid: The FID value.
*
* This routine writes an entry of the static MAC table of the switch. It
* calls sw_w_table_64() to write the data.
*/
static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
u8 ports, int override, int valid, int use_fid, u8 fid)
{
u32 data_hi;
u32 data_lo;
data_lo = ((u32) mac_addr[2] << 24) |
((u32) mac_addr[3] << 16) |
((u32) mac_addr[4] << 8) | mac_addr[5];
data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
if (override)
data_hi |= STATIC_MAC_TABLE_OVERRIDE;
if (use_fid) {
data_hi |= STATIC_MAC_TABLE_USE_FID;
data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
}
if (valid)
data_hi |= STATIC_MAC_TABLE_VALID;
sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
}
/**
* sw_r_vlan_table - read from the VLAN table
* @hw: The hardware instance.
* @addr: The address of the table entry.
* @vid: Buffer to store the VID.
* @fid: Buffer to store the VID.
* @member: Buffer to store the port membership.
*
* This function reads an entry of the VLAN table of the switch. It calls
* sw_r_table() to get the data.
*
* Return 0 if the entry is valid; otherwise -1.
*/
static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
u8 *member)
{
u32 data;
sw_r_table(hw, TABLE_VLAN, addr, &data);
if (data & VLAN_TABLE_VALID) {
*vid = (u16)(data & VLAN_TABLE_VID);
*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
VLAN_TABLE_MEMBERSHIP_SHIFT);
return 0;
}
return -1;
}
/**
* port_r_mib_cnt - read MIB counter
* @hw: The hardware instance.
* @port: The port index.
* @addr: The address of the counter.
* @cnt: Buffer to store the counter.
*
* This routine reads a MIB counter of the port.
* Hardware interrupts are disabled to minimize corruption of read data.
*/
static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
{
u32 data;
u16 ctrl_addr;
uint interrupt;
int timeout;
ctrl_addr = addr + PORT_COUNTER_NUM * port;
interrupt = hw_block_intr(hw);
ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
HW_DELAY(hw, KS884X_IACR_OFFSET);
for (timeout = 100; timeout > 0; timeout--) {
data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
if (data & MIB_COUNTER_VALID) {
if (data & MIB_COUNTER_OVERFLOW)
*cnt += MIB_COUNTER_VALUE + 1;
*cnt += data & MIB_COUNTER_VALUE;
break;
}
}
hw_restore_intr(hw, interrupt);
}
/**
* port_r_mib_pkt - read dropped packet counts
* @hw: The hardware instance.
* @port: The port index.
* @cnt: Buffer to store the receive and transmit dropped packet counts.
*
* This routine reads the dropped packet counts of the port.
* Hardware interrupts are disabled to minimize corruption of read data.
*/
static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
{
u32 cur;
u32 data;
u16 ctrl_addr;
uint interrupt;
int index;
index = KS_MIB_PACKET_DROPPED_RX_0 + port;
do {
interrupt = hw_block_intr(hw);
ctrl_addr = (u16) index;
ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
<< 8);
writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
HW_DELAY(hw, KS884X_IACR_OFFSET);
data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
hw_restore_intr(hw, interrupt);
data &= MIB_PACKET_DROPPED;
cur = *last;
if (data != cur) {
*last = data;
if (data < cur)
data += MIB_PACKET_DROPPED + 1;
data -= cur;
*cnt += data;
}
++last;
++cnt;
index -= KS_MIB_PACKET_DROPPED_TX -
KS_MIB_PACKET_DROPPED_TX_0 + 1;
} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
}
/**
* port_r_cnt - read MIB counters periodically
* @hw: The hardware instance.
* @port: The port index.
*
* This routine is used to read the counters of the port periodically to avoid
* counter overflow. The hardware should be acquired first before calling this
* routine.
*
* Return non-zero when not all counters not read.
*/
static int port_r_cnt(struct ksz_hw *hw, int port)
{
struct ksz_port_mib *mib = &hw->port_mib[port];
if (mib->mib_start < PORT_COUNTER_NUM)
while (mib->cnt_ptr < PORT_COUNTER_NUM) {
port_r_mib_cnt(hw, port, mib->cnt_ptr,
&mib->counter[mib->cnt_ptr]);
++mib->cnt_ptr;
}
if (hw->mib_cnt > PORT_COUNTER_NUM)
port_r_mib_pkt(hw, port, mib->dropped,
&mib->counter[PORT_COUNTER_NUM]);
mib->cnt_ptr = 0;
return 0;
}
/**
* port_init_cnt - initialize MIB counter values
* @hw: The hardware instance.
* @port: The port index.
*
* This routine is used to initialize all counters to zero if the hardware
* cannot do it after reset.
*/
static void port_init_cnt(struct ksz_hw *hw, int port)
{
struct ksz_port_mib *mib = &hw->port_mib[port];
mib->cnt_ptr = 0;
if (mib->mib_start < PORT_COUNTER_NUM)
do {
port_r_mib_cnt(hw, port, mib->cnt_ptr,
&mib->counter[mib->cnt_ptr]);
++mib->cnt_ptr;
} while (mib->cnt_ptr < PORT_COUNTER_NUM);
if (hw->mib_cnt > PORT_COUNTER_NUM)
port_r_mib_pkt(hw, port, mib->dropped,
&mib->counter[PORT_COUNTER_NUM]);
memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
mib->cnt_ptr = 0;
}
/*
* Port functions
*/
/**
* port_chk - check port register bits
* @hw: The hardware instance.
* @port: The port index.
* @offset: The offset of the port register.
* @bits: The data bits to check.
*
* This function checks whether the specified bits of the port register are set
* or not.
*
* Return 0 if the bits are not set.
*/
static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
{
u32 addr;
u16 data;
PORT_CTRL_ADDR(port, addr);
addr += offset;
data = readw(hw->io + addr);
return (data & bits) == bits;
}
/**
* port_cfg - set port register bits
* @hw: The hardware instance.
* @port: The port index.
* @offset: The offset of the port register.
* @bits: The data bits to set.
* @set: The flag indicating whether the bits are to be set or not.
*
* This routine sets or resets the specified bits of the port register.
*/
static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
int set)
{
u32 addr;
u16 data;
PORT_CTRL_ADDR(port, addr);
addr += offset;
data = readw(hw->io + addr);
if (set)
data |= bits;
else
data &= ~bits;
writew(data, hw->io + addr);
}
/**
* port_chk_shift - check port bit
* @hw: The hardware instance.
* @port: The port index.
* @offset: The offset of the register.
* @shift: Number of bits to shift.
*
* This function checks whether the specified port is set in the register or
* not.
*
* Return 0 if the port is not set.
*/
static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
{
u16 data;
u16 bit = 1 << port;
data = readw(hw->io + addr);
data >>= shift;
return (data & bit) == bit;
}
/**
* port_cfg_shift - set port bit
* @hw: The hardware instance.
* @port: The port index.
* @offset: The offset of the register.
* @shift: Number of bits to shift.
* @set: The flag indicating whether the port is to be set or not.
*
* This routine sets or resets the specified port in the register.
*/
static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
int set)
{
u16 data;
u16 bits = 1 << port;
data = readw(hw->io + addr);
bits <<= shift;
if (set)
data |= bits;
else
data &= ~bits;
writew(data, hw->io + addr);
}
/**
* port_r8 - read byte from port register
* @hw: The hardware instance.
* @port: The port index.
* @offset: The offset of the port register.
* @data: Buffer to store the data.
*
* This routine reads a byte from the port register.
*/
static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
{
u32 addr;
PORT_CTRL_ADDR(port, addr);
addr += offset;
*data = readb(hw->io + addr);
}
/**
* port_r16 - read word from port register.
* @hw: The hardware instance.
* @port: The port index.
* @offset: The offset of the port register.
* @data: Buffer to store the data.
*
* This routine reads a word from the port register.
*/
static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
{
u32 addr;
PORT_CTRL_ADDR(port, addr);
addr += offset;
*data = readw(hw->io + addr);
}
/**
* port_w16 - write word to port register.
* @hw: The hardware instance.
* @port: The port index.
* @offset: The offset of the port register.
* @data: Data to write.
*
* This routine writes a word to the port register.
*/
static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
{
u32 addr;
PORT_CTRL_ADDR(port, addr);
addr += offset;
writew(data, hw->io + addr);
}
/**
* sw_chk - check switch register bits
* @hw: The hardware instance.
* @addr: The address of the switch register.
* @bits: The data bits to check.
*
* This function checks whether the specified bits of the switch register are
* set or not.
*
* Return 0 if the bits are not set.
*/
static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
{
u16 data;
data = readw(hw->io + addr);
return (data & bits) == bits;
}
/**
* sw_cfg - set switch register bits
* @hw: The hardware instance.
* @addr: The address of the switch register.
* @bits: The data bits to set.
* @set: The flag indicating whether the bits are to be set or not.
*
* This function sets or resets the specified bits of the switch register.
*/
static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
{
u16 data;
data = readw(hw->io + addr);
if (set)
data |= bits;
else
data &= ~bits;
writew(data, hw->io + addr);
}
/* Bandwidth */
static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
}
static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
}
/* Driver set switch broadcast storm protection at 10% rate. */
#define BROADCAST_STORM_PROTECTION_RATE 10
/* 148,800 frames * 67 ms / 100 */
#define BROADCAST_STORM_VALUE 9969
/**
* sw_cfg_broad_storm - configure broadcast storm threshold
* @hw: The hardware instance.
* @percent: Broadcast storm threshold in percent of transmit rate.
*
* This routine configures the broadcast storm threshold of the switch.
*/
static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
{
u16 data;
u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
if (value > BROADCAST_STORM_RATE)
value = BROADCAST_STORM_RATE;
data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
}
/**
* sw_get_board_storm - get broadcast storm threshold
* @hw: The hardware instance.
* @percent: Buffer to store the broadcast storm threshold percentage.
*
* This routine retrieves the broadcast storm threshold of the switch.
*/
static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
{
int num;
u16 data;
data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
num = (data & BROADCAST_STORM_RATE_HI);
num <<= 8;
num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
*percent = (u8) num;
}
/**
* sw_dis_broad_storm - disable broadstorm
* @hw: The hardware instance.
* @port: The port index.
*
* This routine disables the broadcast storm limit function of the switch.
*/
static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
{
port_cfg_broad_storm(hw, port, 0);
}
/**
* sw_ena_broad_storm - enable broadcast storm
* @hw: The hardware instance.
* @port: The port index.
*
* This routine enables the broadcast storm limit function of the switch.
*/
static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
{
sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
port_cfg_broad_storm(hw, port, 1);
}
/**
* sw_init_broad_storm - initialize broadcast storm
* @hw: The hardware instance.
*
* This routine initializes the broadcast storm limit function of the switch.
*/
static void sw_init_broad_storm(struct ksz_hw *hw)
{
int port;
hw->ksz_switch->broad_per = 1;
sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
for (port = 0; port < TOTAL_PORT_NUM; port++)
sw_dis_broad_storm(hw, port);
sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
}
/**
* hw_cfg_broad_storm - configure broadcast storm
* @hw: The hardware instance.
* @percent: Broadcast storm threshold in percent of transmit rate.
*
* This routine configures the broadcast storm threshold of the switch.
* It is called by user functions. The hardware should be acquired first.
*/
static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
{
if (percent > 100)
percent = 100;
sw_cfg_broad_storm(hw, percent);
sw_get_broad_storm(hw, &percent);
hw->ksz_switch->broad_per = percent;
}
/**
* sw_dis_prio_rate - disable switch priority rate
* @hw: The hardware instance.
* @port: The port index.
*
* This routine disables the priority rate function of the switch.
*/
static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
{
u32 addr;
PORT_CTRL_ADDR(port, addr);
addr += KS8842_PORT_IN_RATE_OFFSET;
writel(0, hw->io + addr);
}
/**
* sw_init_prio_rate - initialize switch prioirty rate
* @hw: The hardware instance.
*
* This routine initializes the priority rate function of the switch.
*/
static void sw_init_prio_rate(struct ksz_hw *hw)
{
int port;
int prio;
struct ksz_switch *sw = hw->ksz_switch;
for (port = 0; port < TOTAL_PORT_NUM; port++) {
for (prio = 0; prio < PRIO_QUEUES; prio++) {
sw->port_cfg[port].rx_rate[prio] =
sw->port_cfg[port].tx_rate[prio] = 0;
}
sw_dis_prio_rate(hw, port);
}
}
/* Communication */
static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
}
static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
}
static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
}
static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
}
/* Spanning Tree */
static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
}
static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
}
static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
}
static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
{
sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
}
static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
{
if (!(hw->overrides & FAST_AGING)) {
sw_cfg_fast_aging(hw, 1);
mdelay(1);
sw_cfg_fast_aging(hw, 0);
}
}
/* VLAN */
static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
}
static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
}
static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
}
static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
}
static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
}
static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
}
static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
}
static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
}
/* Mirroring */
static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
}
static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
}
static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
}
static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
{
sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
}
static void sw_init_mirror(struct ksz_hw *hw)
{
int port;
for (port = 0; port < TOTAL_PORT_NUM; port++) {
port_cfg_mirror_sniffer(hw, port, 0);
port_cfg_mirror_rx(hw, port, 0);
port_cfg_mirror_tx(hw, port, 0);
}
sw_cfg_mirror_rx_tx(hw, 0);
}
static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
{
sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
SWITCH_UNK_DEF_PORT_ENABLE, set);
}
static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
{
return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
SWITCH_UNK_DEF_PORT_ENABLE);
}
static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
{
port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
}
static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
{
return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
}
/* Priority */
static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
}
static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
}
static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
}
static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
{
port_cfg(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
}
static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
}
static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
}
static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
}
static inline int port_chk_prio(struct ksz_hw *hw, int p)
{
return port_chk(hw, p,
KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
}
/**
* sw_dis_diffserv - disable switch DiffServ priority
* @hw: The hardware instance.
* @port: The port index.
*
* This routine disables the DiffServ priority function of the switch.
*/
static void sw_dis_diffserv(struct ksz_hw *hw, int port)
{
port_cfg_diffserv(hw, port, 0);
}
/**
* sw_dis_802_1p - disable switch 802.1p priority
* @hw: The hardware instance.
* @port: The port index.
*
* This routine disables the 802.1p priority function of the switch.
*/
static void sw_dis_802_1p(struct ksz_hw *hw, int port)
{
port_cfg_802_1p(hw, port, 0);
}
/**
* sw_cfg_replace_null_vid -
* @hw: The hardware instance.
* @set: The flag to disable or enable.
*
*/
static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
{
sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
}
/**
* sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
* @hw: The hardware instance.
* @port: The port index.
* @set: The flag to disable or enable.
*
* This routine enables the 802.1p priority re-mapping function of the switch.
* That allows 802.1p priority field to be replaced with the port's default
* tag's priority value if the ingress packet's 802.1p priority has a higher
* priority than port's default tag's priority.
*/
static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
{
port_cfg_replace_vid(hw, port, set);
}
/**
* sw_cfg_port_based - configure switch port based priority
* @hw: The hardware instance.
* @port: The port index.
* @prio: The priority to set.
*
* This routine configures the port based priority of the switch.
*/
static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
{
u16 data;
if (prio > PORT_BASED_PRIORITY_BASE)
prio = PORT_BASED_PRIORITY_BASE;
hw->ksz_switch->port_cfg[port].port_prio = prio;
port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
data &= ~PORT_BASED_PRIORITY_MASK;
data |= prio << PORT_BASED_PRIORITY_SHIFT;
port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
}
/**
* sw_dis_multi_queue - disable transmit multiple queues
* @hw: The hardware instance.
* @port: The port index.
*
* This routine disables the transmit multiple queues selection of the switch
* port. Only single transmit queue on the port.
*/
static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
{
port_cfg_prio(hw, port, 0);
}
/**
* sw_init_prio - initialize switch priority
* @hw: The hardware instance.
*
* This routine initializes the switch QoS priority functions.
*/
static void sw_init_prio(struct ksz_hw *hw)
{
int port;
int tos;
struct ksz_switch *sw = hw->ksz_switch;
/*
* Init all the 802.1p tag priority value to be assigned to different
* priority queue.
*/
sw->p_802_1p[0] = 0;
sw->p_802_1p[1] = 0;
sw->p_802_1p[2] = 1;
sw->p_802_1p[3] = 1;
sw->p_802_1p[4] = 2;
sw->p_802_1p[5] = 2;
sw->p_802_1p[6] = 3;
sw->p_802_1p[7] = 3;
/*
* Init all the DiffServ priority value to be assigned to priority
* queue 0.
*/
for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
sw->diffserv[tos] = 0;
/* All QoS functions disabled. */
for (port = 0; port < TOTAL_PORT_NUM; port++) {
sw_dis_multi_queue(hw, port);
sw_dis_diffserv(hw, port);
sw_dis_802_1p(hw, port);
sw_cfg_replace_vid(hw, port, 0);
sw->port_cfg[port].port_prio = 0;
sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
}
sw_cfg_replace_null_vid(hw, 0);
}
/**
* port_get_def_vid - get port default VID.
* @hw: The hardware instance.
* @port: The port index.
* @vid: Buffer to store the VID.
*
* This routine retrieves the default VID of the port.
*/
static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
{
u32 addr;
PORT_CTRL_ADDR(port, addr);
addr += KS8842_PORT_CTRL_VID_OFFSET;
*vid = readw(hw->io + addr);
}
/**
* sw_init_vlan - initialize switch VLAN
* @hw: The hardware instance.
*
* This routine initializes the VLAN function of the switch.
*/
static void sw_init_vlan(struct ksz_hw *hw)
{
int port;
int entry;
struct ksz_switch *sw = hw->ksz_switch;
/* Read 16 VLAN entries from device's VLAN table. */
for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
sw_r_vlan_table(hw, entry,
&sw->vlan_table[entry].vid,
&sw->vlan_table[entry].fid,
&sw->vlan_table[entry].member);
}
for (port = 0; port < TOTAL_PORT_NUM; port++) {
port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
sw->port_cfg[port].member = PORT_MASK;
}
}
/**
* sw_cfg_port_base_vlan - configure port-based VLAN membership
* @hw: The hardware instance.
* @port: The port index.
* @member: The port-based VLAN membership.
*
* This routine configures the port-based VLAN membership of the port.
*/
static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
{
u32 addr;
u8 data;
PORT_CTRL_ADDR(port, addr);
addr += KS8842_PORT_CTRL_2_OFFSET;
data = readb(hw->io + addr);
data &= ~PORT_VLAN_MEMBERSHIP;
data |= (member & PORT_MASK);
writeb(data, hw->io + addr);
hw->ksz_switch->port_cfg[port].member = member;
}
/**
* sw_get_addr - get the switch MAC address.
* @hw: The hardware instance.
* @mac_addr: Buffer to store the MAC address.
*
* This function retrieves the MAC address of the switch.
*/
static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
{
int i;
for (i = 0; i < 6; i += 2) {
mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
}
}
/**
* sw_set_addr - configure switch MAC address
* @hw: The hardware instance.
* @mac_addr: The MAC address.
*
* This function configures the MAC address of the switch.
*/
static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
{
int i;
for (i = 0; i < 6; i += 2) {
writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
}
}
/**
* sw_set_global_ctrl - set switch global control
* @hw: The hardware instance.
*
* This routine sets the global control of the switch function.
*/
static void sw_set_global_ctrl(struct ksz_hw *hw)
{
u16 data;
/* Enable switch MII flow control. */
data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
data |= SWITCH_FLOW_CTRL;
writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
/* Enable aggressive back off algorithm in half duplex mode. */
data |= SWITCH_AGGR_BACKOFF;
/* Enable automatic fast aging when link changed detected. */
data |= SWITCH_AGING_ENABLE;
data |= SWITCH_LINK_AUTO_AGING;
if (hw->overrides & FAST_AGING)
data |= SWITCH_FAST_AGING;
else
data &= ~SWITCH_FAST_AGING;
writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
/* Enable no excessive collision drop. */
data |= NO_EXC_COLLISION_DROP;
writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
}
enum {
STP_STATE_DISABLED = 0,
STP_STATE_LISTENING,
STP_STATE_LEARNING,
STP_STATE_FORWARDING,
STP_STATE_BLOCKED,
STP_STATE_SIMPLE
};
/**
* port_set_stp_state - configure port spanning tree state
* @hw: The hardware instance.
* @port: The port index.
* @state: The spanning tree state.
*
* This routine configures the spanning tree state of the port.
*/
static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
{
u16 data;
port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
switch (state) {
case STP_STATE_DISABLED:
data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
data |= PORT_LEARN_DISABLE;
break;
case STP_STATE_LISTENING:
/*
* No need to turn on transmit because of port direct mode.
* Turning on receive is required if static MAC table is not setup.
*/
data &= ~PORT_TX_ENABLE;
data |= PORT_RX_ENABLE;
data |= PORT_LEARN_DISABLE;
break;
case STP_STATE_LEARNING:
data &= ~PORT_TX_ENABLE;
data |= PORT_RX_ENABLE;
data &= ~PORT_LEARN_DISABLE;
break;
case STP_STATE_FORWARDING:
data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
data &= ~PORT_LEARN_DISABLE;
break;
case STP_STATE_BLOCKED:
/*
* Need to setup static MAC table with override to keep receiving BPDU
* messages. See sw_init_stp routine.
*/
data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
data |= PORT_LEARN_DISABLE;
break;
case STP_STATE_SIMPLE:
data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
data |= PORT_LEARN_DISABLE;
break;
}
port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
hw->ksz_switch->port_cfg[port].stp_state = state;
}
#define STP_ENTRY 0
#define BROADCAST_ENTRY 1
#define BRIDGE_ADDR_ENTRY 2
#define IPV6_ADDR_ENTRY 3
/**
* sw_clr_sta_mac_table - clear static MAC table
* @hw: The hardware instance.
*
* This routine clears the static MAC table.
*/
static void sw_clr_sta_mac_table(struct ksz_hw *hw)
{
struct ksz_mac_table *entry;
int i;
for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
entry = &hw->ksz_switch->mac_table[i];
sw_w_sta_mac_table(hw, i,
entry->mac_addr, entry->ports,
entry->override, 0,
entry->use_fid, entry->fid);
}
}
/**
* sw_init_stp - initialize switch spanning tree support
* @hw: The hardware instance.
*
* This routine initializes the spanning tree support of the switch.
*/
static void sw_init_stp(struct ksz_hw *hw)
{
struct ksz_mac_table *entry;
entry = &hw->ksz_switch->mac_table[STP_ENTRY];
entry->mac_addr[0] = 0x01;
entry->mac_addr[1] = 0x80;
entry->mac_addr[2] = 0xC2;
entry->mac_addr[3] = 0x00;
entry->mac_addr[4] = 0x00;
entry->mac_addr[5] = 0x00;
entry->ports = HOST_MASK;
entry->override = 1;
entry->valid = 1;
sw_w_sta_mac_table(hw, STP_ENTRY,
entry->mac_addr, entry->ports,
entry->override, entry->valid,
entry->use_fid, entry->fid);
}
/**
* sw_block_addr - block certain packets from the host port
* @hw: The hardware instance.
*
* This routine blocks certain packets from reaching to the host port.
*/
static void sw_block_addr(struct ksz_hw *hw)
{
struct ksz_mac_table *entry;
int i;
for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
entry = &hw->ksz_switch->mac_table[i];
entry->valid = 0;
sw_w_sta_mac_table(hw, i,
entry->mac_addr, entry->ports,
entry->override, entry->valid,
entry->use_fid, entry->fid);
}
}
#define PHY_LINK_SUPPORT \
(PHY_AUTO_NEG_ASYM_PAUSE | \
PHY_AUTO_NEG_SYM_PAUSE | \
PHY_AUTO_NEG_100BT4 | \
PHY_AUTO_NEG_100BTX_FD | \
PHY_AUTO_NEG_100BTX | \
PHY_AUTO_NEG_10BT_FD | \
PHY_AUTO_NEG_10BT)
static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
{
*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
}
static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
{
writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
}
static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
{
*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
}
static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
{
*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
}
static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
{
writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
}
static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
{
*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
}
static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
{
*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
}
static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
{
writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
}
static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
{
*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
}
static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
{
writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
}
static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
{
*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
}
static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
{
writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
}
/**
* hw_r_phy - read data from PHY register
* @hw: The hardware instance.
* @port: Port to read.
* @reg: PHY register to read.
* @val: Buffer to store the read data.
*
* This routine reads data from the PHY register.
*/
static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
{
int phy;
phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
*val = readw(hw->io + phy);
}
/**
* port_w_phy - write data to PHY register
* @hw: The hardware instance.
* @port: Port to write.
* @reg: PHY register to write.
* @val: Word data to write.
*
* This routine writes data to the PHY register.
*/
static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
{
int phy;
phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
writew(val, hw->io + phy);
}
/*
* EEPROM access functions
*/
#define AT93C_CODE 0
#define AT93C_WR_OFF 0x00
#define AT93C_WR_ALL 0x10
#define AT93C_ER_ALL 0x20
#define AT93C_WR_ON 0x30
#define AT93C_WRITE 1
#define AT93C_READ 2
#define AT93C_ERASE 3
#define EEPROM_DELAY 4
static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
{
u16 data;
data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
data &= ~gpio;
writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
}
static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
{
u16 data;
data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
data |= gpio;
writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
}
static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
{
u16 data;
data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
return (u8)(data & gpio);
}
static void eeprom_clk(struct ksz_hw *hw)
{
raise_gpio(hw, EEPROM_SERIAL_CLOCK);
udelay(EEPROM_DELAY);
drop_gpio(hw, EEPROM_SERIAL_CLOCK);
udelay(EEPROM_DELAY);
}
static u16 spi_r(struct ksz_hw *hw)
{
int i;
u16 temp = 0;
for (i = 15; i >= 0; i--) {
raise_gpio(hw, EEPROM_SERIAL_CLOCK);
udelay(EEPROM_DELAY);
temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
drop_gpio(hw, EEPROM_SERIAL_CLOCK);
udelay(EEPROM_DELAY);
}
return temp;
}
static void spi_w(struct ksz_hw *hw, u16 data)
{
int i;
for (i = 15; i >= 0; i--) {
(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
drop_gpio(hw, EEPROM_DATA_OUT);
eeprom_clk(hw);
}
}
static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
{
int i;
/* Initial start bit */
raise_gpio(hw, EEPROM_DATA_OUT);
eeprom_clk(hw);
/* AT93C operation */
for (i = 1; i >= 0; i--) {
(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
drop_gpio(hw, EEPROM_DATA_OUT);
eeprom_clk(hw);
}
/* Address location */
for (i = 5; i >= 0; i--) {
(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
drop_gpio(hw, EEPROM_DATA_OUT);
eeprom_clk(hw);
}
}
#define EEPROM_DATA_RESERVED 0
#define EEPROM_DATA_MAC_ADDR_0 1
#define EEPROM_DATA_MAC_ADDR_1 2
#define EEPROM_DATA_MAC_ADDR_2 3
#define EEPROM_DATA_SUBSYS_ID 4
#define EEPROM_DATA_SUBSYS_VEN_ID 5
#define EEPROM_DATA_PM_CAP 6
/* User defined EEPROM data */
#define EEPROM_DATA_OTHER_MAC_ADDR 9
/**
* eeprom_read - read from AT93C46 EEPROM
* @hw: The hardware instance.
* @reg: The register offset.
*
* This function reads a word from the AT93C46 EEPROM.
*
* Return the data value.
*/
static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
{
u16 data;
raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
spi_reg(hw, AT93C_READ, reg);
data = spi_r(hw);
drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
return data;
}
/**
* eeprom_write - write to AT93C46 EEPROM
* @hw: The hardware instance.
* @reg: The register offset.
* @data: The data value.
*
* This procedure writes a word to the AT93C46 EEPROM.
*/
static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
{
int timeout;
raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
/* Enable write. */
spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
drop_gpio(hw, EEPROM_CHIP_SELECT);
udelay(1);
/* Erase the register. */
raise_gpio(hw, EEPROM_CHIP_SELECT);
spi_reg(hw, AT93C_ERASE, reg);
drop_gpio(hw, EEPROM_CHIP_SELECT);
udelay(1);
/* Check operation complete. */
raise_gpio(hw, EEPROM_CHIP_SELECT);
timeout = 8;
mdelay(2);
do {
mdelay(1);
} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
drop_gpio(hw, EEPROM_CHIP_SELECT);
udelay(1);
/* Write the register. */
raise_gpio(hw, EEPROM_CHIP_SELECT);
spi_reg(hw, AT93C_WRITE, reg);
spi_w(hw, data);
drop_gpio(hw, EEPROM_CHIP_SELECT);
udelay(1);
/* Check operation complete. */
raise_gpio(hw, EEPROM_CHIP_SELECT);
timeout = 8;
mdelay(2);
do {
mdelay(1);
} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
drop_gpio(hw, EEPROM_CHIP_SELECT);
udelay(1);
/* Disable write. */
raise_gpio(hw, EEPROM_CHIP_SELECT);
spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
}
/*
* Link detection routines
*/
static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
{
ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
switch (port->flow_ctrl) {
case PHY_FLOW_CTRL:
ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
break;
/* Not supported. */
case PHY_TX_ONLY:
case PHY_RX_ONLY:
default:
break;
}
return ctrl;
}
static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
{
u32 rx_cfg;
u32 tx_cfg;
rx_cfg = hw->rx_cfg;
tx_cfg = hw->tx_cfg;
if (rx)
hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
else
hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
if (tx)
hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
else
hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
if (hw->enabled) {
if (rx_cfg != hw->rx_cfg)
writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
if (tx_cfg != hw->tx_cfg)
writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
}
}
static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
u16 local, u16 remote)
{
int rx;
int tx;
if (hw->overrides & PAUSE_FLOW_CTRL)
return;
rx = tx = 0;
if (port->force_link)
rx = tx = 1;
if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
if (local & PHY_AUTO_NEG_SYM_PAUSE) {
rx = tx = 1;
} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
(local & PHY_AUTO_NEG_PAUSE) ==
PHY_AUTO_NEG_ASYM_PAUSE) {
tx = 1;
}
} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
rx = 1;
}
if (!hw->ksz_switch)
set_flow_ctrl(hw, rx, tx);
}
static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
struct ksz_port_info *info, u16 link_status)
{
if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
!(hw->overrides & PAUSE_FLOW_CTRL)) {
u32 cfg = hw->tx_cfg;
/* Disable flow control in the half duplex mode. */
if (1 == info->duplex)
hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
if (hw->enabled && cfg != hw->tx_cfg)
writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
}
}
/**
* port_get_link_speed - get current link status
* @port: The port instance.
*
* This routine reads PHY registers to determine the current link status of the
* switch ports.
*/
static void port_get_link_speed(struct ksz_port *port)
{
uint interrupt;
struct ksz_port_info *info;
struct ksz_port_info *linked = NULL;
struct ksz_hw *hw = port->hw;
u16 data;
u16 status;
u8 local;
u8 remote;
int i;
int p;
int change = 0;
interrupt = hw_block_intr(hw);
for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
info = &hw->port_info[p];
port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
/*
* Link status is changing all the time even when there is no
* cable connection!
*/
remote = status & (PORT_AUTO_NEG_COMPLETE |
PORT_STATUS_LINK_GOOD);
local = (u8) data;
/* No change to status. */
if (local == info->advertised && remote == info->partner)
continue;
info->advertised = local;
info->partner = remote;
if (status & PORT_STATUS_LINK_GOOD) {
/* Remember the first linked port. */
if (!linked)
linked = info;
info->tx_rate = 10 * TX_RATE_UNIT;
if (status & PORT_STATUS_SPEED_100MBIT)
info->tx_rate = 100 * TX_RATE_UNIT;
info->duplex = 1;
if (status & PORT_STATUS_FULL_DUPLEX)
info->duplex = 2;
if (media_connected != info->state) {
hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
&data);
hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
&status);
determine_flow_ctrl(hw, port, data, status);
if (hw->ksz_switch) {
port_cfg_back_pressure(hw, p,
(1 == info->duplex));
}
change |= 1 << i;
port_cfg_change(hw, port, info, status);
}
info->state = media_connected;
} else {
if (media_disconnected != info->state) {
change |= 1 << i;
/* Indicate the link just goes down. */
hw->port_mib[p].link_down = 1;
}
info->state = media_disconnected;
}
hw->port_mib[p].state = (u8) info->state;
}
if (linked && media_disconnected == port->linked->state)
port->linked = linked;
hw_restore_intr(hw, interrupt);
}
#define PHY_RESET_TIMEOUT 10
/**
* port_set_link_speed - set port speed
* @port: The port instance.
*
* This routine sets the link speed of the switch ports.
*/
static void port_set_link_speed(struct ksz_port *port)
{
struct ksz_port_info *info;
struct ksz_hw *hw = port->hw;
u16 data;
u16 cfg;
u8 status;
int i;
int p;
for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
info = &hw->port_info[p];
port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
cfg = 0;
if (status & PORT_STATUS_LINK_GOOD)
cfg = data;
data |= PORT_AUTO_NEG_ENABLE;
data = advertised_flow_ctrl(port, data);
data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
/* Check if manual configuration is specified by the user. */
if (port->speed || port->duplex) {
if (10 == port->speed)
data &= ~(PORT_AUTO_NEG_100BTX_FD |
PORT_AUTO_NEG_100BTX);
else if (100 == port->speed)
data &= ~(PORT_AUTO_NEG_10BT_FD |
PORT_AUTO_NEG_10BT);
if (1 == port->duplex)
data &= ~(PORT_AUTO_NEG_100BTX_FD |
PORT_AUTO_NEG_10BT_FD);
else if (2 == port->duplex)
data &= ~(PORT_AUTO_NEG_100BTX |
PORT_AUTO_NEG_10BT);
}
if (data != cfg) {
data |= PORT_AUTO_NEG_RESTART;
port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
}
}
}
/**
* port_force_link_speed - force port speed
* @port: The port instance.
*
* This routine forces the link speed of the switch ports.
*/
static void port_force_link_speed(struct ksz_port *port)
{
struct ksz_hw *hw = port->hw;
u16 data;
int i;
int phy;
int p;
for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
hw_r_phy_ctrl(hw, phy, &data);
data &= ~PHY_AUTO_NEG_ENABLE;
if (10 == port->speed)
data &= ~PHY_SPEED_100MBIT;
else if (100 == port->speed)
data |= PHY_SPEED_100MBIT;
if (1 == port->duplex)
data &= ~PHY_FULL_DUPLEX;
else if (2 == port->duplex)
data |= PHY_FULL_DUPLEX;
hw_w_phy_ctrl(hw, phy, data);
}
}
static void port_set_power_saving(struct ksz_port *port, int enable)
{
struct ksz_hw *hw = port->hw;
int i;
int p;
for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
port_cfg(hw, p,
KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
}
/*
* KSZ8841 power management functions
*/
/**
* hw_chk_wol_pme_status - check PMEN pin
* @hw: The hardware instance.
*
* This function is used to check PMEN pin is asserted.
*
* Return 1 if PMEN pin is asserted; otherwise, 0.
*/
static int hw_chk_wol_pme_status(struct ksz_hw *hw)
{
struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
struct pci_dev *pdev = hw_priv->pdev;
u16 data;
if (!pdev->pm_cap)
return 0;
pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
}
/**
* hw_clr_wol_pme_status - clear PMEN pin
* @hw: The hardware instance.
*
* This routine is used to clear PME_Status to deassert PMEN pin.
*/
static void hw_clr_wol_pme_status(struct ksz_hw *hw)
{
struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
struct pci_dev *pdev = hw_priv->pdev;
u16 data;
if (!pdev->pm_cap)
return;
/* Clear PME_Status to deassert PMEN pin. */
pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
data |= PCI_PM_CTRL_PME_STATUS;
pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
}
/**
* hw_cfg_wol_pme - enable or disable Wake-on-LAN
* @hw: The hardware instance.
* @set: The flag indicating whether to enable or disable.
*
* This routine is used to enable or disable Wake-on-LAN.
*/
static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
{
struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
struct pci_dev *pdev = hw_priv->pdev;
u16 data;
if (!pdev->pm_cap)
return;
pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
data &= ~PCI_PM_CTRL_STATE_MASK;
if (set)
data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
else
data &= ~PCI_PM_CTRL_PME_ENABLE;
pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
}
/**
* hw_cfg_wol - configure Wake-on-LAN features
* @hw: The hardware instance.
* @frame: The pattern frame bit.
* @set: The flag indicating whether to enable or disable.
*
* This routine is used to enable or disable certain Wake-on-LAN features.
*/
static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
{
u16 data;
data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
if (set)
data |= frame;
else
data &= ~frame;
writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
}
/**
* hw_set_wol_frame - program Wake-on-LAN pattern
* @hw: The hardware instance.
* @i: The frame index.
* @mask_size: The size of the mask.
* @mask: Mask to ignore certain bytes in the pattern.
* @frame_size: The size of the frame.
* @pattern: The frame data.
*
* This routine is used to program Wake-on-LAN pattern.
*/
static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
const u8 *mask, uint frame_size, const u8 *pattern)
{
int bits;
int from;
int len;
int to;
u32 crc;
u8 data[64];
u8 val = 0;
if (frame_size > mask_size * 8)
frame_size = mask_size * 8;
if (frame_size > 64)
frame_size = 64;
i *= 0x10;
writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
bits = len = from = to = 0;
do {
if (bits) {
if ((val & 1))
data[to++] = pattern[from];
val >>= 1;
++from;
--bits;
} else {
val = mask[len];
writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
+ len);
++len;
if (val)
bits = 8;
else
from += 8;
}
} while (from < (int) frame_size);
if (val) {
bits = mask[len - 1];
val <<= (from % 8);
bits &= ~val;
writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
1);
}
crc = ether_crc(to, data);
writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
}
/**
* hw_add_wol_arp - add ARP pattern
* @hw: The hardware instance.
* @ip_addr: The IPv4 address assigned to the device.
*
* This routine is used to add ARP pattern for waking up the host.
*/
static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
{
static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
u8 pattern[42] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x08, 0x06,
0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 };
memcpy(&pattern[38], ip_addr, 4);
hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
}
/**
* hw_add_wol_bcast - add broadcast pattern
* @hw: The hardware instance.
*
* This routine is used to add broadcast pattern for waking up the host.
*/
static void hw_add_wol_bcast(struct ksz_hw *hw)
{
static const u8 mask[] = { 0x3F };
static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
}
/**
* hw_add_wol_mcast - add multicast pattern
* @hw: The hardware instance.
*
* This routine is used to add multicast pattern for waking up the host.
*
* It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
* by IPv6 ping command. Note that multicast packets are filtred through the
* multicast hash table, so not all multicast packets can wake up the host.
*/
static void hw_add_wol_mcast(struct ksz_hw *hw)
{
static const u8 mask[] = { 0x3F };
u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
memcpy(&pattern[3], &hw->override_addr[3], 3);
hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
}
/**
* hw_add_wol_ucast - add unicast pattern
* @hw: The hardware instance.
*
* This routine is used to add unicast pattern to wakeup the host.
*
* It is assumed the unicast packet is directed to the device, as the hardware
* can only receive them in normal case.
*/
static void hw_add_wol_ucast(struct ksz_hw *hw)
{
static const u8 mask[] = { 0x3F };
hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
}
/**
* hw_enable_wol - enable Wake-on-LAN
* @hw: The hardware instance.
* @wol_enable: The Wake-on-LAN settings.
* @net_addr: The IPv4 address assigned to the device.
*
* This routine is used to enable Wake-on-LAN depending on driver settings.
*/
static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
{
hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
hw_add_wol_ucast(hw);
hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
hw_add_wol_mcast(hw);
hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
hw_add_wol_arp(hw, net_addr);
}
/**
* hw_init - check driver is correct for the hardware
* @hw: The hardware instance.
*
* This function checks the hardware is correct for this driver and sets the
* hardware up for proper initialization.
*
* Return number of ports or 0 if not right.
*/
static int hw_init(struct ksz_hw *hw)
{
int rc = 0;
u16 data;
u16 revision;
/* Set bus speed to 125MHz. */
writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
/* Check KSZ884x chip ID. */
data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
data &= KS884X_CHIP_ID_MASK_41;
if (REG_CHIP_ID_41 == data)
rc = 1;
else if (REG_CHIP_ID_42 == data)
rc = 2;
else
return 0;
/* Setup hardware features or bug workarounds. */
if (revision <= 1) {
hw->features |= SMALL_PACKET_TX_BUG;
if (1 == rc)
hw->features |= HALF_DUPLEX_SIGNAL_BUG;
}
return rc;
}
/**
* hw_reset - reset the hardware
* @hw: The hardware instance.
*
* This routine resets the hardware.
*/
static void hw_reset(struct ksz_hw *hw)
{
writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
/* Wait for device to reset. */
mdelay(10);
/* Write 0 to clear device reset. */
writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
}
/**
* hw_setup - setup the hardware
* @hw: The hardware instance.
*
* This routine setup the hardware for proper operation.
*/
static void hw_setup(struct ksz_hw *hw)
{
#if SET_DEFAULT_LED
u16 data;
/* Change default LED mode. */
data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
data &= ~LED_MODE;
data |= SET_DEFAULT_LED;
writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
#endif
/* Setup transmit control. */
hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
/* Setup receive control. */
hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
/* Hardware cannot handle UDP packet in IP fragments. */
hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
if (hw->all_multi)
hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
if (hw->promiscuous)
hw->rx_cfg |= DMA_RX_PROMISCUOUS;
}
/**
* hw_setup_intr - setup interrupt mask
* @hw: The hardware instance.
*
* This routine setup the interrupt mask for proper operation.
*/
static void hw_setup_intr(struct ksz_hw *hw)
{
hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
}
static void ksz_check_desc_num(struct ksz_desc_info *info)
{
#define MIN_DESC_SHIFT 2
int alloc = info->alloc;
int shift;
shift = 0;
while (!(alloc & 1)) {
shift++;
alloc >>= 1;
}
if (alloc != 1 || shift < MIN_DESC_SHIFT) {
pr_alert("Hardware descriptor numbers not right!\n");
while (alloc) {
shift++;
alloc >>= 1;
}
if (shift < MIN_DESC_SHIFT)
shift = MIN_DESC_SHIFT;
alloc = 1 << shift;
info->alloc = alloc;
}
info->mask = info->alloc - 1;
}
static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
{
int i;
u32 phys = desc_info->ring_phys;
struct ksz_hw_desc *desc = desc_info->ring_virt;
struct ksz_desc *cur = desc_info->ring;
struct ksz_desc *previous = NULL;
for (i = 0; i < desc_info->alloc; i++) {
cur->phw = desc++;
phys += desc_info->size;
previous = cur++;
previous->phw->next = cpu_to_le32(phys);
}
previous->phw->next = cpu_to_le32(desc_info->ring_phys);
previous->sw.buf.rx.end_of_ring = 1;
previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
desc_info->avail = desc_info->alloc;
desc_info->last = desc_info->next = 0;
desc_info->cur = desc_info->ring;
}
/**
* hw_set_desc_base - set descriptor base addresses
* @hw: The hardware instance.
* @tx_addr: The transmit descriptor base.
* @rx_addr: The receive descriptor base.
*
* This routine programs the descriptor base addresses after reset.
*/
static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
{
/* Set base address of Tx/Rx descriptors. */
writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
}
static void hw_reset_pkts(struct ksz_desc_info *info)
{
info->cur = info->ring;
info->avail = info->alloc;
info->last = info->next = 0;
}
static inline void hw_resume_rx(struct ksz_hw *hw)
{
writel(DMA_START, hw->io + KS_DMA_RX_START);
}
/**
* hw_start_rx - start receiving
* @hw: The hardware instance.
*
* This routine starts the receive function of the hardware.
*/
static void hw_start_rx(struct ksz_hw *hw)
{
writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
/* Notify when the receive stops. */
hw->intr_mask |= KS884X_INT_RX_STOPPED;
writel(DMA_START, hw->io + KS_DMA_RX_START);
hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
hw->rx_stop++;
/* Variable overflows. */
if (0 == hw->rx_stop)
hw->rx_stop = 2;
}
/*
* hw_stop_rx - stop receiving
* @hw: The hardware instance.
*
* This routine stops the receive function of the hardware.
*/
static void hw_stop_rx(struct ksz_hw *hw)
{
hw->rx_stop = 0;
hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
}
/**
* hw_start_tx - start transmitting
* @hw: The hardware instance.
*
* This routine starts the transmit function of the hardware.
*/
static void hw_start_tx(struct ksz_hw *hw)
{
writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
}
/**
* hw_stop_tx - stop transmitting
* @hw: The hardware instance.
*
* This routine stops the transmit function of the hardware.
*/
static void hw_stop_tx(struct ksz_hw *hw)
{
writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
}
/**
* hw_disable - disable hardware
* @hw: The hardware instance.
*
* This routine disables the hardware.
*/
static void hw_disable(struct ksz_hw *hw)
{
hw_stop_rx(hw);
hw_stop_tx(hw);
hw->enabled = 0;
}
/**
* hw_enable - enable hardware
* @hw: The hardware instance.
*
* This routine enables the hardware.
*/
static void hw_enable(struct ksz_hw *hw)
{
hw_start_tx(hw);
hw_start_rx(hw);
hw->enabled = 1;
}
/**
* hw_alloc_pkt - allocate enough descriptors for transmission
* @hw: The hardware instance.
* @length: The length of the packet.
* @physical: Number of descriptors required.
*
* This function allocates descriptors for transmission.
*
* Return 0 if not successful; 1 for buffer copy; or number of descriptors.
*/
static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
{
/* Always leave one descriptor free. */
if (hw->tx_desc_info.avail <= 1)
return 0;
/* Allocate a descriptor for transmission and mark it current. */
get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
/* Keep track of number of transmit descriptors used so far. */
++hw->tx_int_cnt;
hw->tx_size += length;
/* Cannot hold on too much data. */
if (hw->tx_size >= MAX_TX_HELD_SIZE)
hw->tx_int_cnt = hw->tx_int_mask + 1;
if (physical > hw->tx_desc_info.avail)
return 1;
return hw->tx_desc_info.avail;
}
/**
* hw_send_pkt - mark packet for transmission
* @hw: The hardware instance.
*
* This routine marks the packet for transmission in PCI version.
*/
static void hw_send_pkt(struct ksz_hw *hw)
{
struct ksz_desc *cur = hw->tx_desc_info.cur;
cur->sw.buf.tx.last_seg = 1;
/* Interrupt only after specified number of descriptors used. */
if (hw->tx_int_cnt > hw->tx_int_mask) {
cur->sw.buf.tx.intr = 1;
hw->tx_int_cnt = 0;
hw->tx_size = 0;
}
/* KSZ8842 supports port directed transmission. */
cur->sw.buf.tx.dest_port = hw->dst_ports;
release_desc(cur);
writel(0, hw->io + KS_DMA_TX_START);
}
static int empty_addr(u8 *addr)
{
u32 *addr1 = (u32 *) addr;
u16 *addr2 = (u16 *) &addr[4];
return 0 == *addr1 && 0 == *addr2;
}
/**
* hw_set_addr - set MAC address
* @hw: The hardware instance.
*
* This routine programs the MAC address of the hardware when the address is
* overrided.
*/
static void hw_set_addr(struct ksz_hw *hw)
{
int i;
for (i = 0; i < MAC_ADDR_LEN; i++)
writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
hw->io + KS884X_ADDR_0_OFFSET + i);
sw_set_addr(hw, hw->override_addr);
}
/**
* hw_read_addr - read MAC address
* @hw: The hardware instance.
*
* This routine retrieves the MAC address of the hardware.
*/
static void hw_read_addr(struct ksz_hw *hw)
{
int i;
for (i = 0; i < MAC_ADDR_LEN; i++)
hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
KS884X_ADDR_0_OFFSET + i);
if (!hw->mac_override) {
memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
if (empty_addr(hw->override_addr)) {
memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
MAC_ADDR_LEN);
memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
MAC_ADDR_LEN);
hw->override_addr[5] += hw->id;
hw_set_addr(hw);
}
}
}
static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
{
int i;
u32 mac_addr_lo;
u32 mac_addr_hi;
mac_addr_hi = 0;
for (i = 0; i < 2; i++) {
mac_addr_hi <<= 8;
mac_addr_hi |= mac_addr[i];
}
mac_addr_hi |= ADD_ADDR_ENABLE;
mac_addr_lo = 0;
for (i = 2; i < 6; i++) {
mac_addr_lo <<= 8;
mac_addr_lo |= mac_addr[i];
}
index *= ADD_ADDR_INCR;
writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
}
static void hw_set_add_addr(struct ksz_hw *hw)
{
int i;
for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
if (empty_addr(hw->address[i]))
writel(0, hw->io + ADD_ADDR_INCR * i +
KS_ADD_ADDR_0_HI);
else
hw_ena_add_addr(hw, i, hw->address[i]);
}
}
static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
{
int i;
int j = ADDITIONAL_ENTRIES;
if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
return 0;
for (i = 0; i < hw->addr_list_size; i++) {
if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
return 0;
if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
j = i;
}
if (j < ADDITIONAL_ENTRIES) {
memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
hw_ena_add_addr(hw, j, hw->address[j]);
return 0;
}
return -1;
}
static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
{
int i;
for (i = 0; i < hw->addr_list_size; i++) {
if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
memset(hw->address[i], 0, MAC_ADDR_LEN);
writel(0, hw->io + ADD_ADDR_INCR * i +
KS_ADD_ADDR_0_HI);
return 0;
}
}
return -1;
}
/**
* hw_clr_multicast - clear multicast addresses
* @hw: The hardware instance.
*
* This routine removes all multicast addresses set in the hardware.
*/
static void hw_clr_multicast(struct ksz_hw *hw)
{
int i;
for (i = 0; i < HW_MULTICAST_SIZE; i++) {
hw->multi_bits[i] = 0;
writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
}
}
/**
* hw_set_grp_addr - set multicast addresses
* @hw: The hardware instance.
*
* This routine programs multicast addresses for the hardware to accept those
* addresses.
*/
static void hw_set_grp_addr(struct ksz_hw *hw)
{
int i;
int index;
int position;
int value;
memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
for (i = 0; i < hw->multi_list_size; i++) {
position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
index = position >> 3;
value = 1 << (position & 7);
hw->multi_bits[index] |= (u8) value;
}
for (i = 0; i < HW_MULTICAST_SIZE; i++)
writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
i);
}
/**
* hw_set_multicast - enable or disable all multicast receiving
* @hw: The hardware instance.
* @multicast: To turn on or off the all multicast feature.
*
* This routine enables/disables the hardware to accept all multicast packets.
*/
static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
{
/* Stop receiving for reconfiguration. */
hw_stop_rx(hw);
if (multicast)
hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
else
hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
if (hw->enabled)
hw_start_rx(hw);
}
/**
* hw_set_promiscuous - enable or disable promiscuous receiving
* @hw: The hardware instance.
* @prom: To turn on or off the promiscuous feature.
*
* This routine enables/disables the hardware to accept all packets.
*/
static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
{
/* Stop receiving for reconfiguration. */
hw_stop_rx(hw);
if (prom)
hw->rx_cfg |= DMA_RX_PROMISCUOUS;
else
hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
if (hw->enabled)
hw_start_rx(hw);
}
/**
* sw_enable - enable the switch
* @hw: The hardware instance.
* @enable: The flag to enable or disable the switch
*
* This routine is used to enable/disable the switch in KSZ8842.
*/
static void sw_enable(struct ksz_hw *hw, int enable)
{
int port;
for (port = 0; port < SWITCH_PORT_NUM; port++) {
if (hw->dev_count > 1) {
/* Set port-base vlan membership with host port. */
sw_cfg_port_base_vlan(hw, port,
HOST_MASK | (1 << port));
port_set_stp_state(hw, port, STP_STATE_DISABLED);
} else {
sw_cfg_port_base_vlan(hw, port, PORT_MASK);
port_set_stp_state(hw, port, STP_STATE_FORWARDING);
}
}
if (hw->dev_count > 1)
port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
else
port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
if (enable)
enable = KS8842_START;
writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
}
/**
* sw_setup - setup the switch
* @hw: The hardware instance.
*
* This routine setup the hardware switch engine for default operation.
*/
static void sw_setup(struct ksz_hw *hw)
{
int port;
sw_set_global_ctrl(hw);
/* Enable switch broadcast storm protection at 10% percent rate. */
sw_init_broad_storm(hw);
hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
for (port = 0; port < SWITCH_PORT_NUM; port++)
sw_ena_broad_storm(hw, port);
sw_init_prio(hw);
sw_init_mirror(hw);
sw_init_prio_rate(hw);
sw_init_vlan(hw);
if (hw->features & STP_SUPPORT)
sw_init_stp(hw);
if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
hw->overrides |= PAUSE_FLOW_CTRL;
sw_enable(hw, 1);
}
/**
* ksz_start_timer - start kernel timer
* @info: Kernel timer information.
* @time: The time tick.
*
* This routine starts the kernel timer after the specified time tick.
*/
static void ksz_start_timer(struct ksz_timer_info *info, int time)
{
info->cnt = 0;
info->timer.expires = jiffies + time;
add_timer(&info->timer);
/* infinity */
info->max = -1;
}
/**
* ksz_stop_timer - stop kernel timer
* @info: Kernel timer information.
*
* This routine stops the kernel timer.
*/
static void ksz_stop_timer(struct ksz_timer_info *info)
{
if (info->max) {
info->max = 0;
del_timer_sync(&info->timer);
}
}
static void ksz_init_timer(struct ksz_timer_info *info, int period,
void (*function)(unsigned long), void *data)
{
info->max = 0;
info->period = period;
init_timer(&info->timer);
info->timer.function = function;
info->timer.data = (unsigned long) data;
}
static void ksz_update_timer(struct ksz_timer_info *info)
{
++info->cnt;
if (info->max > 0) {
if (info->cnt < info->max) {
info->timer.expires = jiffies + info->period;
add_timer(&info->timer);
} else
info->max = 0;
} else if (info->max < 0) {
info->timer.expires = jiffies + info->period;
add_timer(&info->timer);
}
}
/**
* ksz_alloc_soft_desc - allocate software descriptors
* @desc_info: Descriptor information structure.
* @transmit: Indication that descriptors are for transmit.
*
* This local function allocates software descriptors for manipulation in
* memory.
*
* Return 0 if successful.
*/
static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
{
desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
GFP_KERNEL);
if (!desc_info->ring)
return 1;
memset((void *) desc_info->ring, 0,
sizeof(struct ksz_desc) * desc_info->alloc);
hw_init_desc(desc_info, transmit);
return 0;
}
/**
* ksz_alloc_desc - allocate hardware descriptors
* @adapter: Adapter information structure.
*
* This local function allocates hardware descriptors for receiving and
* transmitting.
*
* Return 0 if successful.
*/
static int ksz_alloc_desc(struct dev_info *adapter)
{
struct ksz_hw *hw = &adapter->hw;
int offset;
/* Allocate memory for RX & TX descriptors. */
adapter->desc_pool.alloc_size =
hw->rx_desc_info.size * hw->rx_desc_info.alloc +
hw->tx_desc_info.size * hw->tx_desc_info.alloc +
DESC_ALIGNMENT;
adapter->desc_pool.alloc_virt =
pci_alloc_consistent(
adapter->pdev, adapter->desc_pool.alloc_size,
&adapter->desc_pool.dma_addr);
if (adapter->desc_pool.alloc_virt == NULL) {
adapter->desc_pool.alloc_size = 0;
return 1;
}
memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
/* Align to the next cache line boundary. */
offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
(DESC_ALIGNMENT -
((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
/* Allocate receive/transmit descriptors. */
hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
adapter->desc_pool.virt;
hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
(adapter->desc_pool.virt + offset);
hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
return 1;
if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
return 1;
return 0;
}
/**
* free_dma_buf - release DMA buffer resources
* @adapter: Adapter information structure.
*
* This routine is just a helper function to release the DMA buffer resources.
*/
static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
int direction)
{
pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
dev_kfree_skb(dma_buf->skb);
dma_buf->skb = NULL;
dma_buf->dma = 0;
}
/**
* ksz_init_rx_buffers - initialize receive descriptors
* @adapter: Adapter information structure.
*
* This routine initializes DMA buffers for receiving.
*/
static void ksz_init_rx_buffers(struct dev_info *adapter)
{
int i;
struct ksz_desc *desc;
struct ksz_dma_buf *dma_buf;
struct ksz_hw *hw = &adapter->hw;
struct ksz_desc_info *info = &hw->rx_desc_info;
for (i = 0; i < hw->rx_desc_info.alloc; i++) {
get_rx_pkt(info, &desc);
dma_buf = DMA_BUFFER(desc);
if (dma_buf->skb && dma_buf->len != adapter->mtu)
free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
dma_buf->len = adapter->mtu;
if (!dma_buf->skb)
dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
if (dma_buf->skb && !dma_buf->dma) {
dma_buf->skb->dev = adapter->dev;
dma_buf->dma = pci_map_single(
adapter->pdev,
skb_tail_pointer(dma_buf->skb),
dma_buf->len,
PCI_DMA_FROMDEVICE);
}
/* Set descriptor. */
set_rx_buf(desc, dma_buf->dma);
set_rx_len(desc, dma_buf->len);
release_desc(desc);
}
}
/**
* ksz_alloc_mem - allocate memory for hardware descriptors
* @adapter: Adapter information structure.
*
* This function allocates memory for use by hardware descriptors for receiving
* and transmitting.
*
* Return 0 if successful.
*/
static int ksz_alloc_mem(struct dev_info *adapter)
{
struct ksz_hw *hw = &adapter->hw;
/* Determine the number of receive and transmit descriptors. */
hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
/* Determine how many descriptors to skip transmit interrupt. */
hw->tx_int_cnt = 0;
hw->tx_int_mask = NUM_OF_TX_DESC / 4;
if (hw->tx_int_mask > 8)
hw->tx_int_mask = 8;
while (hw->tx_int_mask) {
hw->tx_int_cnt++;
hw->tx_int_mask >>= 1;
}
if (hw->tx_int_cnt) {
hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
hw->tx_int_cnt = 0;
}
/* Determine the descriptor size. */
hw->rx_desc_info.size =
(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
DESC_ALIGNMENT) * DESC_ALIGNMENT);
hw->tx_desc_info.size =
(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
DESC_ALIGNMENT) * DESC_ALIGNMENT);
if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
pr_alert("Hardware descriptor size not right!\n");
ksz_check_desc_num(&hw->rx_desc_info);
ksz_check_desc_num(&hw->tx_desc_info);
/* Allocate descriptors. */
if (ksz_alloc_desc(adapter))
return 1;
return 0;
}
/**
* ksz_free_desc - free software and hardware descriptors
* @adapter: Adapter information structure.
*
* This local routine frees the software and hardware descriptors allocated by
* ksz_alloc_desc().
*/
static void ksz_free_desc(struct dev_info *adapter)
{
struct ksz_hw *hw = &adapter->hw;
/* Reset descriptor. */
hw->rx_desc_info.ring_virt = NULL;
hw->tx_desc_info.ring_virt = NULL;
hw->rx_desc_info.ring_phys = 0;
hw->tx_desc_info.ring_phys = 0;
/* Free memory. */
if (adapter->desc_pool.alloc_virt)
pci_free_consistent(
adapter->pdev,
adapter->desc_pool.alloc_size,
adapter->desc_pool.alloc_virt,
adapter->desc_pool.dma_addr);
/* Reset resource pool. */
adapter->desc_pool.alloc_size = 0;
adapter->desc_pool.alloc_virt = NULL;
kfree(hw->rx_desc_info.ring);
hw->rx_desc_info.ring = NULL;
kfree(hw->tx_desc_info.ring);
hw->tx_desc_info.ring = NULL;
}
/**
* ksz_free_buffers - free buffers used in the descriptors
* @adapter: Adapter information structure.
* @desc_info: Descriptor information structure.
*
* This local routine frees buffers used in the DMA buffers.
*/
static void ksz_free_buffers(struct dev_info *adapter,
struct ksz_desc_info *desc_info, int direction)
{
int i;
struct ksz_dma_buf *dma_buf;
struct ksz_desc *desc = desc_info->ring;
for (i = 0; i < desc_info->alloc; i++) {
dma_buf = DMA_BUFFER(desc);
if (dma_buf->skb)
free_dma_buf(adapter, dma_buf, direction);
desc++;
}
}
/**
* ksz_free_mem - free all resources used by descriptors
* @adapter: Adapter information structure.
*
* This local routine frees all the resources allocated by ksz_alloc_mem().
*/
static void ksz_free_mem(struct dev_info *adapter)
{
/* Free transmit buffers. */
ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
PCI_DMA_TODEVICE);
/* Free receive buffers. */
ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
PCI_DMA_FROMDEVICE);
/* Free descriptors. */
ksz_free_desc(adapter);
}
static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
u64 *counter)
{
int i;
int mib;
int port;
struct ksz_port_mib *port_mib;
memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
for (i = 0, port = first; i < cnt; i++, port++) {
port_mib = &hw->port_mib[port];
for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
counter[mib] += port_mib->counter[mib];
}
}
/**
* send_packet - send packet
* @skb: Socket buffer.
* @dev: Network device.
*
* This routine is used to send a packet out to the network.
*/
static void send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct ksz_desc *desc;
struct ksz_desc *first;
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
struct ksz_desc_info *info = &hw->tx_desc_info;
struct ksz_dma_buf *dma_buf;
int len;
int last_frag = skb_shinfo(skb)->nr_frags;
/*
* KSZ8842 with multiple device interfaces needs to be told which port
* to send.
*/
if (hw->dev_count > 1)
hw->dst_ports = 1 << priv->port.first_port;
/* Hardware will pad the length to 60. */
len = skb->len;
/* Remember the very first descriptor. */
first = info->cur;
desc = first;
dma_buf = DMA_BUFFER(desc);
if (last_frag) {
int frag;
skb_frag_t *this_frag;
dma_buf->len = skb_headlen(skb);
dma_buf->dma = pci_map_single(
hw_priv->pdev, skb->data, dma_buf->len,
PCI_DMA_TODEVICE);
set_tx_buf(desc, dma_buf->dma);
set_tx_len(desc, dma_buf->len);
frag = 0;
do {
this_frag = &skb_shinfo(skb)->frags[frag];
/* Get a new descriptor. */
get_tx_pkt(info, &desc);
/* Keep track of descriptors used so far. */
++hw->tx_int_cnt;
dma_buf = DMA_BUFFER(desc);
dma_buf->len = this_frag->size;
dma_buf->dma = pci_map_single(
hw_priv->pdev,
page_address(this_frag->page) +
this_frag->page_offset,
dma_buf->len,
PCI_DMA_TODEVICE);
set_tx_buf(desc, dma_buf->dma);
set_tx_len(desc, dma_buf->len);
frag++;
if (frag == last_frag)
break;
/* Do not release the last descriptor here. */
release_desc(desc);
} while (1);
/* current points to the last descriptor. */
info->cur = desc;
/* Release the first descriptor. */
release_desc(first);
} else {
dma_buf->len = len;
dma_buf->dma = pci_map_single(
hw_priv->pdev, skb->data, dma_buf->len,
PCI_DMA_TODEVICE);
set_tx_buf(desc, dma_buf->dma);
set_tx_len(desc, dma_buf->len);
}
if (skb->ip_summed == CHECKSUM_PARTIAL) {
(desc)->sw.buf.tx.csum_gen_tcp = 1;
(desc)->sw.buf.tx.csum_gen_udp = 1;
}
/*
* The last descriptor holds the packet so that it can be returned to
* network subsystem after all descriptors are transmitted.
*/
dma_buf->skb = skb;
hw_send_pkt(hw);
/* Update transmit statistics. */
dev->stats.tx_packets++;
dev->stats.tx_bytes += len;
}
/**
* transmit_cleanup - clean up transmit descriptors
* @dev: Network device.
*
* This routine is called to clean up the transmitted buffers.
*/
static void transmit_cleanup(struct dev_info *hw_priv, int normal)
{
int last;
union desc_stat status;
struct ksz_hw *hw = &hw_priv->hw;
struct ksz_desc_info *info = &hw->tx_desc_info;
struct ksz_desc *desc;
struct ksz_dma_buf *dma_buf;
struct net_device *dev = NULL;
spin_lock(&hw_priv->hwlock);
last = info->last;
while (info->avail < info->alloc) {
/* Get next descriptor which is not hardware owned. */
desc = &info->ring[last];
status.data = le32_to_cpu(desc->phw->ctrl.data);
if (status.tx.hw_owned) {
if (normal)
break;
else
reset_desc(desc, status);
}
dma_buf = DMA_BUFFER(desc);
pci_unmap_single(
hw_priv->pdev, dma_buf->dma, dma_buf->len,
PCI_DMA_TODEVICE);
/* This descriptor contains the last buffer in the packet. */
if (dma_buf->skb) {
dev = dma_buf->skb->dev;
/* Release the packet back to network subsystem. */
dev_kfree_skb_irq(dma_buf->skb);
dma_buf->skb = NULL;
}
/* Free the transmitted descriptor. */
last++;
last &= info->mask;
info->avail++;
}
info->last = last;
spin_unlock(&hw_priv->hwlock);
/* Notify the network subsystem that the packet has been sent. */
if (dev)
dev->trans_start = jiffies;
}
/**
* transmit_done - transmit done processing
* @dev: Network device.
*
* This routine is called when the transmit interrupt is triggered, indicating
* either a packet is sent successfully or there are transmit errors.
*/
static void tx_done(struct dev_info *hw_priv)
{
struct ksz_hw *hw = &hw_priv->hw;
int port;
transmit_cleanup(hw_priv, 1);
for (port = 0; port < hw->dev_count; port++) {
struct net_device *dev = hw->port_info[port].pdev;
if (netif_running(dev) && netif_queue_stopped(dev))
netif_wake_queue(dev);
}
}
static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
{
skb->dev = old->dev;
skb->protocol = old->protocol;
skb->ip_summed = old->ip_summed;
skb->csum = old->csum;
skb_set_network_header(skb, ETH_HLEN);
dev_kfree_skb(old);
}
/**
* netdev_tx - send out packet
* @skb: Socket buffer.
* @dev: Network device.
*
* This function is used by the upper network layer to send out a packet.
*
* Return 0 if successful; otherwise an error code indicating failure.
*/
static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
int left;
int num = 1;
int rc = 0;
if (hw->features & SMALL_PACKET_TX_BUG) {
struct sk_buff *org_skb = skb;
if (skb->len <= 48) {
if (skb_end_pointer(skb) - skb->data >= 50) {
memset(&skb->data[skb->len], 0, 50 - skb->len);
skb->len = 50;
} else {
skb = dev_alloc_skb(50);
if (!skb)
return NETDEV_TX_BUSY;
memcpy(skb->data, org_skb->data, org_skb->len);
memset(&skb->data[org_skb->len], 0,
50 - org_skb->len);
skb->len = 50;
copy_old_skb(org_skb, skb);
}
}
}
spin_lock_irq(&hw_priv->hwlock);
num = skb_shinfo(skb)->nr_frags + 1;
left = hw_alloc_pkt(hw, skb->len, num);
if (left) {
if (left < num ||
((CHECKSUM_PARTIAL == skb->ip_summed) &&
(ETH_P_IPV6 == htons(skb->protocol)))) {
struct sk_buff *org_skb = skb;
skb = dev_alloc_skb(org_skb->len);
if (!skb) {
rc = NETDEV_TX_BUSY;
goto unlock;
}
skb_copy_and_csum_dev(org_skb, skb->data);
org_skb->ip_summed = CHECKSUM_NONE;
skb->len = org_skb->len;
copy_old_skb(org_skb, skb);
}
send_packet(skb, dev);
if (left <= num)
netif_stop_queue(dev);
} else {
/* Stop the transmit queue until packet is allocated. */
netif_stop_queue(dev);
rc = NETDEV_TX_BUSY;
}
unlock:
spin_unlock_irq(&hw_priv->hwlock);
return rc;
}
/**
* netdev_tx_timeout - transmit timeout processing
* @dev: Network device.
*
* This routine is called when the transmit timer expires. That indicates the
* hardware is not running correctly because transmit interrupts are not
* triggered to free up resources so that the transmit routine can continue
* sending out packets. The hardware is reset to correct the problem.
*/
static void netdev_tx_timeout(struct net_device *dev)
{
static unsigned long last_reset;
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
int port;
if (hw->dev_count > 1) {
/*
* Only reset the hardware if time between calls is long
* enough.
*/
if (jiffies - last_reset <= dev->watchdog_timeo)
hw_priv = NULL;
}
last_reset = jiffies;
if (hw_priv) {
hw_dis_intr(hw);
hw_disable(hw);
transmit_cleanup(hw_priv, 0);
hw_reset_pkts(&hw->rx_desc_info);
hw_reset_pkts(&hw->tx_desc_info);
ksz_init_rx_buffers(hw_priv);
hw_reset(hw);
hw_set_desc_base(hw,
hw->tx_desc_info.ring_phys,
hw->rx_desc_info.ring_phys);
hw_set_addr(hw);
if (hw->all_multi)
hw_set_multicast(hw, hw->all_multi);
else if (hw->multi_list_size)
hw_set_grp_addr(hw);
if (hw->dev_count > 1) {
hw_set_add_addr(hw);
for (port = 0; port < SWITCH_PORT_NUM; port++) {
struct net_device *port_dev;
port_set_stp_state(hw, port,
STP_STATE_DISABLED);
port_dev = hw->port_info[port].pdev;
if (netif_running(port_dev))
port_set_stp_state(hw, port,
STP_STATE_SIMPLE);
}
}
hw_enable(hw);
hw_ena_intr(hw);
}
dev->trans_start = jiffies;
netif_wake_queue(dev);
}
static inline void csum_verified(struct sk_buff *skb)
{
unsigned short protocol;
struct iphdr *iph;
protocol = skb->protocol;
skb_reset_network_header(skb);
iph = (struct iphdr *) skb_network_header(skb);
if (protocol == htons(ETH_P_8021Q)) {
protocol = iph->tot_len;
skb_set_network_header(skb, VLAN_HLEN);
iph = (struct iphdr *) skb_network_header(skb);
}
if (protocol == htons(ETH_P_IP)) {
if (iph->protocol == IPPROTO_TCP)
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
struct ksz_desc *desc, union desc_stat status)
{
int packet_len;
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_dma_buf *dma_buf;
struct sk_buff *skb;
int rx_status;
/* Received length includes 4-byte CRC. */
packet_len = status.rx.frame_len - 4;
dma_buf = DMA_BUFFER(desc);
pci_dma_sync_single_for_cpu(
hw_priv->pdev, dma_buf->dma, packet_len + 4,
PCI_DMA_FROMDEVICE);
do {
/* skb->data != skb->head */
skb = dev_alloc_skb(packet_len + 2);
if (!skb) {
dev->stats.rx_dropped++;
return -ENOMEM;
}
/*
* Align socket buffer in 4-byte boundary for better
* performance.
*/
skb_reserve(skb, 2);
memcpy(skb_put(skb, packet_len),
dma_buf->skb->data, packet_len);
} while (0);
skb->protocol = eth_type_trans(skb, dev);
if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
csum_verified(skb);
/* Update receive statistics. */
dev->stats.rx_packets++;
dev->stats.rx_bytes += packet_len;
/* Notify upper layer for received packet. */
rx_status = netif_rx(skb);
return 0;
}
static int dev_rcv_packets(struct dev_info *hw_priv)
{
int next;
union desc_stat status;
struct ksz_hw *hw = &hw_priv->hw;
struct net_device *dev = hw->port_info[0].pdev;
struct ksz_desc_info *info = &hw->rx_desc_info;
int left = info->alloc;
struct ksz_desc *desc;
int received = 0;
next = info->next;
while (left--) {
/* Get next descriptor which is not hardware owned. */
desc = &info->ring[next];
status.data = le32_to_cpu(desc->phw->ctrl.data);
if (status.rx.hw_owned)
break;
/* Status valid only when last descriptor bit is set. */
if (status.rx.last_desc && status.rx.first_desc) {
if (rx_proc(dev, hw, desc, status))
goto release_packet;
received++;
}
release_packet:
release_desc(desc);
next++;
next &= info->mask;
}
info->next = next;
return received;
}
static int port_rcv_packets(struct dev_info *hw_priv)
{
int next;
union desc_stat status;
struct ksz_hw *hw = &hw_priv->hw;
struct net_device *dev = hw->port_info[0].pdev;
struct ksz_desc_info *info = &hw->rx_desc_info;
int left = info->alloc;
struct ksz_desc *desc;
int received = 0;
next = info->next;
while (left--) {
/* Get next descriptor which is not hardware owned. */
desc = &info->ring[next];
status.data = le32_to_cpu(desc->phw->ctrl.data);
if (status.rx.hw_owned)
break;
if (hw->dev_count > 1) {
/* Get received port number. */
int p = HW_TO_DEV_PORT(status.rx.src_port);
dev = hw->port_info[p].pdev;
if (!netif_running(dev))
goto release_packet;
}
/* Status valid only when last descriptor bit is set. */
if (status.rx.last_desc && status.rx.first_desc) {
if (rx_proc(dev, hw, desc, status))
goto release_packet;
received++;
}
release_packet:
release_desc(desc);
next++;
next &= info->mask;
}
info->next = next;
return received;
}
static int dev_rcv_special(struct dev_info *hw_priv)
{
int next;
union desc_stat status;
struct ksz_hw *hw = &hw_priv->hw;
struct net_device *dev = hw->port_info[0].pdev;
struct ksz_desc_info *info = &hw->rx_desc_info;
int left = info->alloc;
struct ksz_desc *desc;
int received = 0;
next = info->next;
while (left--) {
/* Get next descriptor which is not hardware owned. */
desc = &info->ring[next];
status.data = le32_to_cpu(desc->phw->ctrl.data);
if (status.rx.hw_owned)
break;
if (hw->dev_count > 1) {
/* Get received port number. */
int p = HW_TO_DEV_PORT(status.rx.src_port);
dev = hw->port_info[p].pdev;
if (!netif_running(dev))
goto release_packet;
}
/* Status valid only when last descriptor bit is set. */
if (status.rx.last_desc && status.rx.first_desc) {
/*
* Receive without error. With receive errors
* disabled, packets with receive errors will be
* dropped, so no need to check the error bit.
*/
if (!status.rx.error || (status.data &
KS_DESC_RX_ERROR_COND) ==
KS_DESC_RX_ERROR_TOO_LONG) {
if (rx_proc(dev, hw, desc, status))
goto release_packet;
received++;
} else {
struct dev_priv *priv = netdev_priv(dev);
/* Update receive error statistics. */
priv->port.counter[OID_COUNTER_RCV_ERROR]++;
}
}
release_packet:
release_desc(desc);
next++;
next &= info->mask;
}
info->next = next;
return received;
}
static void rx_proc_task(unsigned long data)
{
struct dev_info *hw_priv = (struct dev_info *) data;
struct ksz_hw *hw = &hw_priv->hw;
if (!hw->enabled)
return;
if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
/* In case receive process is suspended because of overrun. */
hw_resume_rx(hw);
/* tasklets are interruptible. */
spin_lock_irq(&hw_priv->hwlock);
hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
spin_unlock_irq(&hw_priv->hwlock);
} else {
hw_ack_intr(hw, KS884X_INT_RX);
tasklet_schedule(&hw_priv->rx_tasklet);
}
}
static void tx_proc_task(unsigned long data)
{
struct dev_info *hw_priv = (struct dev_info *) data;
struct ksz_hw *hw = &hw_priv->hw;
hw_ack_intr(hw, KS884X_INT_TX_MASK);
tx_done(hw_priv);
/* tasklets are interruptible. */
spin_lock_irq(&hw_priv->hwlock);
hw_turn_on_intr(hw, KS884X_INT_TX);
spin_unlock_irq(&hw_priv->hwlock);
}
static inline void handle_rx_stop(struct ksz_hw *hw)
{
/* Receive just has been stopped. */
if (0 == hw->rx_stop)
hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
else if (hw->rx_stop > 1) {
if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
hw_start_rx(hw);
} else {
hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
hw->rx_stop = 0;
}
} else
/* Receive just has been started. */
hw->rx_stop++;
}
/**
* netdev_intr - interrupt handling
* @irq: Interrupt number.
* @dev_id: Network device.
*
* This function is called by upper network layer to signal interrupt.
*
* Return IRQ_HANDLED if interrupt is handled.
*/
static irqreturn_t netdev_intr(int irq, void *dev_id)
{
uint int_enable = 0;
struct net_device *dev = (struct net_device *) dev_id;
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
hw_read_intr(hw, &int_enable);
/* Not our interrupt! */
if (!int_enable)
return IRQ_NONE;
do {
hw_ack_intr(hw, int_enable);
int_enable &= hw->intr_mask;
if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
tasklet_schedule(&hw_priv->tx_tasklet);
}
if (likely(int_enable & KS884X_INT_RX)) {
hw_dis_intr_bit(hw, KS884X_INT_RX);
tasklet_schedule(&hw_priv->rx_tasklet);
}
if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
dev->stats.rx_fifo_errors++;
hw_resume_rx(hw);
}
if (unlikely(int_enable & KS884X_INT_PHY)) {
struct ksz_port *port = &priv->port;
hw->features |= LINK_INT_WORKING;
port_get_link_speed(port);
}
if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
handle_rx_stop(hw);
break;
}
if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
u32 data;
hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
pr_info("Tx stopped\n");
data = readl(hw->io + KS_DMA_TX_CTRL);
if (!(data & DMA_TX_ENABLE))
pr_info("Tx disabled\n");
break;
}
} while (0);
hw_ena_intr(hw);
return IRQ_HANDLED;
}
/*
* Linux network device functions
*/
static unsigned long next_jiffies;
#ifdef CONFIG_NET_POLL_CONTROLLER
static void netdev_netpoll(struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
hw_dis_intr(&hw_priv->hw);
netdev_intr(dev->irq, dev);
}
#endif
static void bridge_change(struct ksz_hw *hw)
{
int port;
u8 member;
struct ksz_switch *sw = hw->ksz_switch;
/* No ports in forwarding state. */
if (!sw->member) {
port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
sw_block_addr(hw);
}
for (port = 0; port < SWITCH_PORT_NUM; port++) {
if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
member = HOST_MASK | sw->member;
else
member = HOST_MASK | (1 << port);
if (member != sw->port_cfg[port].member)
sw_cfg_port_base_vlan(hw, port, member);
}
}
/**
* netdev_close - close network device
* @dev: Network device.
*
* This function process the close operation of network device. This is caused
* by the user command "ifconfig ethX down."
*
* Return 0 if successful; otherwise an error code indicating failure.
*/
static int netdev_close(struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_port *port = &priv->port;
struct ksz_hw *hw = &hw_priv->hw;
int pi;
netif_stop_queue(dev);
ksz_stop_timer(&priv->monitor_timer_info);
/* Need to shut the port manually in multiple device interfaces mode. */
if (hw->dev_count > 1) {
port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
/* Port is closed. Need to change bridge setting. */
if (hw->features & STP_SUPPORT) {
pi = 1 << port->first_port;
if (hw->ksz_switch->member & pi) {
hw->ksz_switch->member &= ~pi;
bridge_change(hw);
}
}
}
if (port->first_port > 0)
hw_del_addr(hw, dev->dev_addr);
if (!hw_priv->wol_enable)
port_set_power_saving(port, true);
if (priv->multicast)
--hw->all_multi;
if (priv->promiscuous)
--hw->promiscuous;
hw_priv->opened--;
if (!(hw_priv->opened)) {
ksz_stop_timer(&hw_priv->mib_timer_info);
flush_work(&hw_priv->mib_read);
hw_dis_intr(hw);
hw_disable(hw);
hw_clr_multicast(hw);
/* Delay for receive task to stop scheduling itself. */
msleep(2000 / HZ);
tasklet_disable(&hw_priv->rx_tasklet);
tasklet_disable(&hw_priv->tx_tasklet);
free_irq(dev->irq, hw_priv->dev);
transmit_cleanup(hw_priv, 0);
hw_reset_pkts(&hw->rx_desc_info);
hw_reset_pkts(&hw->tx_desc_info);
/* Clean out static MAC table when the switch is shutdown. */
if (hw->features & STP_SUPPORT)
sw_clr_sta_mac_table(hw);
}
return 0;
}
static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
{
if (hw->ksz_switch) {
u32 data;
data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
if (hw->features & RX_HUGE_FRAME)
data |= SWITCH_HUGE_PACKET;
else
data &= ~SWITCH_HUGE_PACKET;
writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
}
if (hw->features & RX_HUGE_FRAME) {
hw->rx_cfg |= DMA_RX_ERROR;
hw_priv->dev_rcv = dev_rcv_special;
} else {
hw->rx_cfg &= ~DMA_RX_ERROR;
if (hw->dev_count > 1)
hw_priv->dev_rcv = port_rcv_packets;
else
hw_priv->dev_rcv = dev_rcv_packets;
}
}
static int prepare_hardware(struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
int rc = 0;
/* Remember the network device that requests interrupts. */
hw_priv->dev = dev;
rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
if (rc)
return rc;
tasklet_enable(&hw_priv->rx_tasklet);
tasklet_enable(&hw_priv->tx_tasklet);
hw->promiscuous = 0;
hw->all_multi = 0;
hw->multi_list_size = 0;
hw_reset(hw);
hw_set_desc_base(hw,
hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
hw_set_addr(hw);
hw_cfg_huge_frame(hw_priv, hw);
ksz_init_rx_buffers(hw_priv);
return 0;
}
static void set_media_state(struct net_device *dev, int media_state)
{
struct dev_priv *priv = netdev_priv(dev);
if (media_state == priv->media_state)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
netif_info(priv, link, dev, "link %s\n",
media_state == priv->media_state ? "on" : "off");
}
/**
* netdev_open - open network device
* @dev: Network device.
*
* This function process the open operation of network device. This is caused
* by the user command "ifconfig ethX up."
*
* Return 0 if successful; otherwise an error code indicating failure.
*/
static int netdev_open(struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
struct ksz_port *port = &priv->port;
int i;
int p;
int rc = 0;
priv->multicast = 0;
priv->promiscuous = 0;
/* Reset device statistics. */
memset(&dev->stats, 0, sizeof(struct net_device_stats));
memset((void *) port->counter, 0,
(sizeof(u64) * OID_COUNTER_LAST));
if (!(hw_priv->opened)) {
rc = prepare_hardware(dev);
if (rc)
return rc;
for (i = 0; i < hw->mib_port_cnt; i++) {
if (next_jiffies < jiffies)
next_jiffies = jiffies + HZ * 2;
else
next_jiffies += HZ * 1;
hw_priv->counter[i].time = next_jiffies;
hw->port_mib[i].state = media_disconnected;
port_init_cnt(hw, i);
}
if (hw->ksz_switch)
hw->port_mib[HOST_PORT].state = media_connected;
else {
hw_add_wol_bcast(hw);
hw_cfg_wol_pme(hw, 0);
hw_clr_wol_pme_status(&hw_priv->hw);
}
}
port_set_power_saving(port, false);
for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
/*
* Initialize to invalid value so that link detection
* is done.
*/
hw->port_info[p].partner = 0xFF;
hw->port_info[p].state = media_disconnected;
}
/* Need to open the port in multiple device interfaces mode. */
if (hw->dev_count > 1) {
port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
if (port->first_port > 0)
hw_add_addr(hw, dev->dev_addr);
}
port_get_link_speed(port);
if (port->force_link)
port_force_link_speed(port);
else
port_set_link_speed(port);
if (!(hw_priv->opened)) {
hw_setup_intr(hw);
hw_enable(hw);
hw_ena_intr(hw);
if (hw->mib_port_cnt)
ksz_start_timer(&hw_priv->mib_timer_info,
hw_priv->mib_timer_info.period);
}
hw_priv->opened++;
ksz_start_timer(&priv->monitor_timer_info,
priv->monitor_timer_info.period);
priv->media_state = port->linked->state;
set_media_state(dev, media_connected);
netif_start_queue(dev);
return 0;
}
/* RX errors = rx_errors */
/* RX dropped = rx_dropped */
/* RX overruns = rx_fifo_errors */
/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
/* TX errors = tx_errors */
/* TX dropped = tx_dropped */
/* TX overruns = tx_fifo_errors */
/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
/* collisions = collisions */
/**
* netdev_query_statistics - query network device statistics
* @dev: Network device.
*
* This function returns the statistics of the network device. The device
* needs not be opened.
*
* Return network device statistics.
*/
static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
struct ksz_port *port = &priv->port;
struct ksz_hw *hw = &priv->adapter->hw;
struct ksz_port_mib *mib;
int i;
int p;
dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
/* Reset to zero to add count later. */
dev->stats.multicast = 0;
dev->stats.collisions = 0;
dev->stats.rx_length_errors = 0;
dev->stats.rx_crc_errors = 0;
dev->stats.rx_frame_errors = 0;
dev->stats.tx_window_errors = 0;
for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
mib = &hw->port_mib[p];
dev->stats.multicast += (unsigned long)
mib->counter[MIB_COUNTER_RX_MULTICAST];
dev->stats.collisions += (unsigned long)
mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
dev->stats.rx_length_errors += (unsigned long)(
mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
mib->counter[MIB_COUNTER_RX_FRAGMENT] +
mib->counter[MIB_COUNTER_RX_OVERSIZE] +
mib->counter[MIB_COUNTER_RX_JABBER]);
dev->stats.rx_crc_errors += (unsigned long)
mib->counter[MIB_COUNTER_RX_CRC_ERR];
dev->stats.rx_frame_errors += (unsigned long)(
mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
dev->stats.tx_window_errors += (unsigned long)
mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
}
return &dev->stats;
}
/**
* netdev_set_mac_address - set network device MAC address
* @dev: Network device.
* @addr: Buffer of MAC address.
*
* This function is used to set the MAC address of the network device.
*
* Return 0 to indicate success.
*/
static int netdev_set_mac_address(struct net_device *dev, void *addr)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
struct sockaddr *mac = addr;
uint interrupt;
if (priv->port.first_port > 0)
hw_del_addr(hw, dev->dev_addr);
else {
hw->mac_override = 1;
memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
}
memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);
interrupt = hw_block_intr(hw);
if (priv->port.first_port > 0)
hw_add_addr(hw, dev->dev_addr);
else
hw_set_addr(hw);
hw_restore_intr(hw, interrupt);
return 0;
}
static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
struct ksz_hw *hw, int promiscuous)
{
if (promiscuous != priv->promiscuous) {
u8 prev_state = hw->promiscuous;
if (promiscuous)
++hw->promiscuous;
else
--hw->promiscuous;
priv->promiscuous = promiscuous;
/* Turn on/off promiscuous mode. */
if (hw->promiscuous <= 1 && prev_state <= 1)
hw_set_promiscuous(hw, hw->promiscuous);
/*
* Port is not in promiscuous mode, meaning it is released
* from the bridge.
*/
if ((hw->features & STP_SUPPORT) && !promiscuous &&
(dev->priv_flags & IFF_BRIDGE_PORT)) {
struct ksz_switch *sw = hw->ksz_switch;
int port = priv->port.first_port;
port_set_stp_state(hw, port, STP_STATE_DISABLED);
port = 1 << port;
if (sw->member & port) {
sw->member &= ~port;
bridge_change(hw);
}
}
}
}
static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
int multicast)
{
if (multicast != priv->multicast) {
u8 all_multi = hw->all_multi;
if (multicast)
++hw->all_multi;
else
--hw->all_multi;
priv->multicast = multicast;
/* Turn on/off all multicast mode. */
if (hw->all_multi <= 1 && all_multi <= 1)
hw_set_multicast(hw, hw->all_multi);
}
}
/**
* netdev_set_rx_mode
* @dev: Network device.
*
* This routine is used to set multicast addresses or put the network device
* into promiscuous mode.
*/
static void netdev_set_rx_mode(struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
struct netdev_hw_addr *ha;
int multicast = (dev->flags & IFF_ALLMULTI);
dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
if (hw_priv->hw.dev_count > 1)
multicast |= (dev->flags & IFF_MULTICAST);
dev_set_multicast(priv, hw, multicast);
/* Cannot use different hashes in multiple device interfaces mode. */
if (hw_priv->hw.dev_count > 1)
return;
if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
int i = 0;
/* List too big to support so turn on all multicast mode. */
if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
if (MAX_MULTICAST_LIST != hw->multi_list_size) {
hw->multi_list_size = MAX_MULTICAST_LIST;
++hw->all_multi;
hw_set_multicast(hw, hw->all_multi);
}
return;
}
netdev_for_each_mc_addr(ha, dev) {
if (!(*ha->addr & 1))
continue;
if (i >= MAX_MULTICAST_LIST)
break;
memcpy(hw->multi_list[i++], ha->addr, MAC_ADDR_LEN);
}
hw->multi_list_size = (u8) i;
hw_set_grp_addr(hw);
} else {
if (MAX_MULTICAST_LIST == hw->multi_list_size) {
--hw->all_multi;
hw_set_multicast(hw, hw->all_multi);
}
hw->multi_list_size = 0;
hw_clr_multicast(hw);
}
}
static int netdev_change_mtu(struct net_device *dev, int new_mtu)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
int hw_mtu;
if (netif_running(dev))
return -EBUSY;
/* Cannot use different MTU in multiple device interfaces mode. */
if (hw->dev_count > 1)
if (dev != hw_priv->dev)
return 0;
if (new_mtu < 60)
return -EINVAL;
if (dev->mtu != new_mtu) {
hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
if (hw_mtu > MAX_RX_BUF_SIZE)
return -EINVAL;
if (hw_mtu > REGULAR_RX_BUF_SIZE) {
hw->features |= RX_HUGE_FRAME;
hw_mtu = MAX_RX_BUF_SIZE;
} else {
hw->features &= ~RX_HUGE_FRAME;
hw_mtu = REGULAR_RX_BUF_SIZE;
}
hw_mtu = (hw_mtu + 3) & ~3;
hw_priv->mtu = hw_mtu;
dev->mtu = new_mtu;
}
return 0;
}
/**
* netdev_ioctl - I/O control processing
* @dev: Network device.
* @ifr: Interface request structure.
* @cmd: I/O control code.
*
* This function is used to process I/O control calls.
*
* Return 0 to indicate success.
*/
static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
struct ksz_port *port = &priv->port;
int rc;
int result = 0;
struct mii_ioctl_data *data = if_mii(ifr);
if (down_interruptible(&priv->proc_sem))
return -ERESTARTSYS;
/* assume success */
rc = 0;
switch (cmd) {
/* Get address of MII PHY in use. */
case SIOCGMIIPHY:
data->phy_id = priv->id;
/* Fallthrough... */
/* Read MII PHY register. */
case SIOCGMIIREG:
if (data->phy_id != priv->id || data->reg_num >= 6)
result = -EIO;
else
hw_r_phy(hw, port->linked->port_id, data->reg_num,
&data->val_out);
break;
/* Write MII PHY register. */
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
result = -EPERM;
else if (data->phy_id != priv->id || data->reg_num >= 6)
result = -EIO;
else
hw_w_phy(hw, port->linked->port_id, data->reg_num,
data->val_in);
break;
default:
result = -EOPNOTSUPP;
}
up(&priv->proc_sem);
return result;
}
/*
* MII support
*/
/**
* mdio_read - read PHY register
* @dev: Network device.
* @phy_id: The PHY id.
* @reg_num: The register number.
*
* This function returns the PHY register value.
*
* Return the register value.
*/
static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
{
struct dev_priv *priv = netdev_priv(dev);
struct ksz_port *port = &priv->port;
struct ksz_hw *hw = port->hw;
u16 val_out;
hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
return val_out;
}
/**
* mdio_write - set PHY register
* @dev: Network device.
* @phy_id: The PHY id.
* @reg_num: The register number.
* @val: The register value.
*
* This procedure sets the PHY register value.
*/
static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
{
struct dev_priv *priv = netdev_priv(dev);
struct ksz_port *port = &priv->port;
struct ksz_hw *hw = port->hw;
int i;
int pi;
for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
hw_w_phy(hw, pi, reg_num << 1, val);
}
/*
* ethtool support
*/
#define EEPROM_SIZE 0x40
static u16 eeprom_data[EEPROM_SIZE] = { 0 };
#define ADVERTISED_ALL \
(ADVERTISED_10baseT_Half | \
ADVERTISED_10baseT_Full | \
ADVERTISED_100baseT_Half | \
ADVERTISED_100baseT_Full)
/* These functions use the MII functions in mii.c. */
/**
* netdev_get_settings - get network device settings
* @dev: Network device.
* @cmd: Ethtool command.
*
* This function queries the PHY and returns its state in the ethtool command.
*
* Return 0 if successful; otherwise an error code.
*/
static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
mutex_lock(&hw_priv->lock);
mii_ethtool_gset(&priv->mii_if, cmd);
cmd->advertising |= SUPPORTED_TP;
mutex_unlock(&hw_priv->lock);
/* Save advertised settings for workaround in next function. */
priv->advertising = cmd->advertising;
return 0;
}
/**
* netdev_set_settings - set network device settings
* @dev: Network device.
* @cmd: Ethtool command.
*
* This function sets the PHY according to the ethtool command.
*
* Return 0 if successful; otherwise an error code.
*/
static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_port *port = &priv->port;
u32 speed = ethtool_cmd_speed(cmd);
int rc;
/*
* ethtool utility does not change advertised setting if auto
* negotiation is not specified explicitly.
*/
if (cmd->autoneg && priv->advertising == cmd->advertising) {
cmd->advertising |= ADVERTISED_ALL;
if (10 == speed)
cmd->advertising &=
~(ADVERTISED_100baseT_Full |
ADVERTISED_100baseT_Half);
else if (100 == speed)
cmd->advertising &=
~(ADVERTISED_10baseT_Full |
ADVERTISED_10baseT_Half);
if (0 == cmd->duplex)
cmd->advertising &=
~(ADVERTISED_100baseT_Full |
ADVERTISED_10baseT_Full);
else if (1 == cmd->duplex)
cmd->advertising &=
~(ADVERTISED_100baseT_Half |
ADVERTISED_10baseT_Half);
}
mutex_lock(&hw_priv->lock);
if (cmd->autoneg &&
(cmd->advertising & ADVERTISED_ALL) ==
ADVERTISED_ALL) {
port->duplex = 0;
port->speed = 0;
port->force_link = 0;
} else {
port->duplex = cmd->duplex + 1;
if (1000 != speed)
port->speed = speed;
if (cmd->autoneg)
port->force_link = 0;
else
port->force_link = 1;
}
rc = mii_ethtool_sset(&priv->mii_if, cmd);
mutex_unlock(&hw_priv->lock);
return rc;
}
/**
* netdev_nway_reset - restart auto-negotiation
* @dev: Network device.
*
* This function restarts the PHY for auto-negotiation.
*
* Return 0 if successful; otherwise an error code.
*/
static int netdev_nway_reset(struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
int rc;
mutex_lock(&hw_priv->lock);
rc = mii_nway_restart(&priv->mii_if);
mutex_unlock(&hw_priv->lock);
return rc;
}
/**
* netdev_get_link - get network device link status
* @dev: Network device.
*
* This function gets the link status from the PHY.
*
* Return true if PHY is linked and false otherwise.
*/
static u32 netdev_get_link(struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
int rc;
rc = mii_link_ok(&priv->mii_if);
return rc;
}
/**
* netdev_get_drvinfo - get network driver information
* @dev: Network device.
* @info: Ethtool driver info data structure.
*
* This procedure returns the driver information.
*/
static void netdev_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(hw_priv->pdev));
}
/**
* netdev_get_regs_len - get length of register dump
* @dev: Network device.
*
* This function returns the length of the register dump.
*
* Return length of the register dump.
*/
static struct hw_regs {
int start;
int end;
} hw_regs_range[] = {
{ KS_DMA_TX_CTRL, KS884X_INTERRUPTS_STATUS },
{ KS_ADD_ADDR_0_LO, KS_ADD_ADDR_F_HI },
{ KS884X_ADDR_0_OFFSET, KS8841_WOL_FRAME_BYTE2_OFFSET },
{ KS884X_SIDER_P, KS8842_SGCR7_P },
{ KS8842_MACAR1_P, KS8842_TOSR8_P },
{ KS884X_P1MBCR_P, KS8842_P3ERCR_P },
{ 0, 0 }
};
static int netdev_get_regs_len(struct net_device *dev)
{
struct hw_regs *range = hw_regs_range;
int regs_len = 0x10 * sizeof(u32);
while (range->end > range->start) {
regs_len += (range->end - range->start + 3) / 4 * 4;
range++;
}
return regs_len;
}
/**
* netdev_get_regs - get register dump
* @dev: Network device.
* @regs: Ethtool registers data structure.
* @ptr: Buffer to store the register values.
*
* This procedure dumps the register values in the provided buffer.
*/
static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *ptr)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
int *buf = (int *) ptr;
struct hw_regs *range = hw_regs_range;
int len;
mutex_lock(&hw_priv->lock);
regs->version = 0;
for (len = 0; len < 0x40; len += 4) {
pci_read_config_dword(hw_priv->pdev, len, buf);
buf++;
}
while (range->end > range->start) {
for (len = range->start; len < range->end; len += 4) {
*buf = readl(hw->io + len);
buf++;
}
range++;
}
mutex_unlock(&hw_priv->lock);
}
#define WOL_SUPPORT \
(WAKE_PHY | WAKE_MAGIC | \
WAKE_UCAST | WAKE_MCAST | \
WAKE_BCAST | WAKE_ARP)
/**
* netdev_get_wol - get Wake-on-LAN support
* @dev: Network device.
* @wol: Ethtool Wake-on-LAN data structure.
*
* This procedure returns Wake-on-LAN support.
*/
static void netdev_get_wol(struct net_device *dev,
struct ethtool_wolinfo *wol)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
wol->supported = hw_priv->wol_support;
wol->wolopts = hw_priv->wol_enable;
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
/**
* netdev_set_wol - set Wake-on-LAN support
* @dev: Network device.
* @wol: Ethtool Wake-on-LAN data structure.
*
* This function sets Wake-on-LAN support.
*
* Return 0 if successful; otherwise an error code.
*/
static int netdev_set_wol(struct net_device *dev,
struct ethtool_wolinfo *wol)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
/* Need to find a way to retrieve the device IP address. */
static const u8 net_addr[] = { 192, 168, 1, 1 };
if (wol->wolopts & ~hw_priv->wol_support)
return -EINVAL;
hw_priv->wol_enable = wol->wolopts;
/* Link wakeup cannot really be disabled. */
if (wol->wolopts)
hw_priv->wol_enable |= WAKE_PHY;
hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
return 0;
}
/**
* netdev_get_msglevel - get debug message level
* @dev: Network device.
*
* This function returns current debug message level.
*
* Return current debug message flags.
*/
static u32 netdev_get_msglevel(struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
return priv->msg_enable;
}
/**
* netdev_set_msglevel - set debug message level
* @dev: Network device.
* @value: Debug message flags.
*
* This procedure sets debug message level.
*/
static void netdev_set_msglevel(struct net_device *dev, u32 value)
{
struct dev_priv *priv = netdev_priv(dev);
priv->msg_enable = value;
}
/**
* netdev_get_eeprom_len - get EEPROM length
* @dev: Network device.
*
* This function returns the length of the EEPROM.
*
* Return length of the EEPROM.
*/
static int netdev_get_eeprom_len(struct net_device *dev)
{
return EEPROM_SIZE * 2;
}
/**
* netdev_get_eeprom - get EEPROM data
* @dev: Network device.
* @eeprom: Ethtool EEPROM data structure.
* @data: Buffer to store the EEPROM data.
*
* This function dumps the EEPROM data in the provided buffer.
*
* Return 0 if successful; otherwise an error code.
*/
#define EEPROM_MAGIC 0x10A18842
static int netdev_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
u8 *eeprom_byte = (u8 *) eeprom_data;
int i;
int len;
len = (eeprom->offset + eeprom->len + 1) / 2;
for (i = eeprom->offset / 2; i < len; i++)
eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
eeprom->magic = EEPROM_MAGIC;
memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
return 0;
}
/**
* netdev_set_eeprom - write EEPROM data
* @dev: Network device.
* @eeprom: Ethtool EEPROM data structure.
* @data: Data buffer.
*
* This function modifies the EEPROM data one byte at a time.
*
* Return 0 if successful; otherwise an error code.
*/
static int netdev_set_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
u16 eeprom_word[EEPROM_SIZE];
u8 *eeprom_byte = (u8 *) eeprom_word;
int i;
int len;
if (eeprom->magic != EEPROM_MAGIC)
return -EINVAL;
len = (eeprom->offset + eeprom->len + 1) / 2;
for (i = eeprom->offset / 2; i < len; i++)
eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
for (i = 0; i < EEPROM_SIZE; i++)
if (eeprom_word[i] != eeprom_data[i]) {
eeprom_data[i] = eeprom_word[i];
eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
}
return 0;
}
/**
* netdev_get_pauseparam - get flow control parameters
* @dev: Network device.
* @pause: Ethtool PAUSE settings data structure.
*
* This procedure returns the PAUSE control flow settings.
*/
static void netdev_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *pause)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
if (!hw->ksz_switch) {
pause->rx_pause =
(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
pause->tx_pause =
(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
} else {
pause->rx_pause =
(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
pause->tx_pause =
(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
}
}
/**
* netdev_set_pauseparam - set flow control parameters
* @dev: Network device.
* @pause: Ethtool PAUSE settings data structure.
*
* This function sets the PAUSE control flow settings.
* Not implemented yet.
*
* Return 0 if successful; otherwise an error code.
*/
static int netdev_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *pause)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
struct ksz_port *port = &priv->port;
mutex_lock(&hw_priv->lock);
if (pause->autoneg) {
if (!pause->rx_pause && !pause->tx_pause)
port->flow_ctrl = PHY_NO_FLOW_CTRL;
else
port->flow_ctrl = PHY_FLOW_CTRL;
hw->overrides &= ~PAUSE_FLOW_CTRL;
port->force_link = 0;
if (hw->ksz_switch) {
sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
SWITCH_RX_FLOW_CTRL, 1);
sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
SWITCH_TX_FLOW_CTRL, 1);
}
port_set_link_speed(port);
} else {
hw->overrides |= PAUSE_FLOW_CTRL;
if (hw->ksz_switch) {
sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
SWITCH_RX_FLOW_CTRL, pause->rx_pause);
sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
SWITCH_TX_FLOW_CTRL, pause->tx_pause);
} else
set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
}
mutex_unlock(&hw_priv->lock);
return 0;
}
/**
* netdev_get_ringparam - get tx/rx ring parameters
* @dev: Network device.
* @pause: Ethtool RING settings data structure.
*
* This procedure returns the TX/RX ring settings.
*/
static void netdev_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ring)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
ring->tx_max_pending = (1 << 9);
ring->tx_pending = hw->tx_desc_info.alloc;
ring->rx_max_pending = (1 << 9);
ring->rx_pending = hw->rx_desc_info.alloc;
}
#define STATS_LEN (TOTAL_PORT_COUNTER_NUM)
static struct {
char string[ETH_GSTRING_LEN];
} ethtool_stats_keys[STATS_LEN] = {
{ "rx_lo_priority_octets" },
{ "rx_hi_priority_octets" },
{ "rx_undersize_packets" },
{ "rx_fragments" },
{ "rx_oversize_packets" },
{ "rx_jabbers" },
{ "rx_symbol_errors" },
{ "rx_crc_errors" },
{ "rx_align_errors" },
{ "rx_mac_ctrl_packets" },
{ "rx_pause_packets" },
{ "rx_bcast_packets" },
{ "rx_mcast_packets" },
{ "rx_ucast_packets" },
{ "rx_64_or_less_octet_packets" },
{ "rx_65_to_127_octet_packets" },
{ "rx_128_to_255_octet_packets" },
{ "rx_256_to_511_octet_packets" },
{ "rx_512_to_1023_octet_packets" },
{ "rx_1024_to_1522_octet_packets" },
{ "tx_lo_priority_octets" },
{ "tx_hi_priority_octets" },
{ "tx_late_collisions" },
{ "tx_pause_packets" },
{ "tx_bcast_packets" },
{ "tx_mcast_packets" },
{ "tx_ucast_packets" },
{ "tx_deferred" },
{ "tx_total_collisions" },
{ "tx_excessive_collisions" },
{ "tx_single_collisions" },
{ "tx_mult_collisions" },
{ "rx_discards" },
{ "tx_discards" },
};
/**
* netdev_get_strings - get statistics identity strings
* @dev: Network device.
* @stringset: String set identifier.
* @buf: Buffer to store the strings.
*
* This procedure returns the strings used to identify the statistics.
*/
static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
if (ETH_SS_STATS == stringset)
memcpy(buf, &ethtool_stats_keys,
ETH_GSTRING_LEN * hw->mib_cnt);
}
/**
* netdev_get_sset_count - get statistics size
* @dev: Network device.
* @sset: The statistics set number.
*
* This function returns the size of the statistics to be reported.
*
* Return size of the statistics to be reported.
*/
static int netdev_get_sset_count(struct net_device *dev, int sset)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
switch (sset) {
case ETH_SS_STATS:
return hw->mib_cnt;
default:
return -EOPNOTSUPP;
}
}
/**
* netdev_get_ethtool_stats - get network device statistics
* @dev: Network device.
* @stats: Ethtool statistics data structure.
* @data: Buffer to store the statistics.
*
* This procedure returns the statistics.
*/
static void netdev_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
struct ksz_port *port = &priv->port;
int n_stats = stats->n_stats;
int i;
int n;
int p;
int rc;
u64 counter[TOTAL_PORT_COUNTER_NUM];
mutex_lock(&hw_priv->lock);
n = SWITCH_PORT_NUM;
for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
if (media_connected == hw->port_mib[p].state) {
hw_priv->counter[p].read = 1;
/* Remember first port that requests read. */
if (n == SWITCH_PORT_NUM)
n = p;
}
}
mutex_unlock(&hw_priv->lock);
if (n < SWITCH_PORT_NUM)
schedule_work(&hw_priv->mib_read);
if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
p = n;
rc = wait_event_interruptible_timeout(
hw_priv->counter[p].counter,
2 == hw_priv->counter[p].read,
HZ * 1);
} else
for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
if (0 == i) {
rc = wait_event_interruptible_timeout(
hw_priv->counter[p].counter,
2 == hw_priv->counter[p].read,
HZ * 2);
} else if (hw->port_mib[p].cnt_ptr) {
rc = wait_event_interruptible_timeout(
hw_priv->counter[p].counter,
2 == hw_priv->counter[p].read,
HZ * 1);
}
}
get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
n = hw->mib_cnt;
if (n > n_stats)
n = n_stats;
n_stats -= n;
for (i = 0; i < n; i++)
*data++ = counter[i];
}
/**
* netdev_set_features - set receive checksum support
* @dev: Network device.
* @features: New device features (offloads).
*
* This function sets receive checksum support setting.
*
* Return 0 if successful; otherwise an error code.
*/
static int netdev_set_features(struct net_device *dev, u32 features)
{
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
mutex_lock(&hw_priv->lock);
/* see note in hw_setup() */
if (features & NETIF_F_RXCSUM)
hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
else
hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
if (hw->enabled)
writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
mutex_unlock(&hw_priv->lock);
return 0;
}
static struct ethtool_ops netdev_ethtool_ops = {
.get_settings = netdev_get_settings,
.set_settings = netdev_set_settings,
.nway_reset = netdev_nway_reset,
.get_link = netdev_get_link,
.get_drvinfo = netdev_get_drvinfo,
.get_regs_len = netdev_get_regs_len,
.get_regs = netdev_get_regs,
.get_wol = netdev_get_wol,
.set_wol = netdev_set_wol,
.get_msglevel = netdev_get_msglevel,
.set_msglevel = netdev_set_msglevel,
.get_eeprom_len = netdev_get_eeprom_len,
.get_eeprom = netdev_get_eeprom,
.set_eeprom = netdev_set_eeprom,
.get_pauseparam = netdev_get_pauseparam,
.set_pauseparam = netdev_set_pauseparam,
.get_ringparam = netdev_get_ringparam,
.get_strings = netdev_get_strings,
.get_sset_count = netdev_get_sset_count,
.get_ethtool_stats = netdev_get_ethtool_stats,
};
/*
* Hardware monitoring
*/
static void update_link(struct net_device *dev, struct dev_priv *priv,
struct ksz_port *port)
{
if (priv->media_state != port->linked->state) {
priv->media_state = port->linked->state;
if (netif_running(dev))
set_media_state(dev, media_connected);
}
}
static void mib_read_work(struct work_struct *work)
{
struct dev_info *hw_priv =
container_of(work, struct dev_info, mib_read);
struct ksz_hw *hw = &hw_priv->hw;
struct ksz_port_mib *mib;
int i;
next_jiffies = jiffies;
for (i = 0; i < hw->mib_port_cnt; i++) {
mib = &hw->port_mib[i];
/* Reading MIB counters or requested to read. */
if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
/* Need to process receive interrupt. */
if (port_r_cnt(hw, i))
break;
hw_priv->counter[i].read = 0;
/* Finish reading counters. */
if (0 == mib->cnt_ptr) {
hw_priv->counter[i].read = 2;
wake_up_interruptible(
&hw_priv->counter[i].counter);
}
} else if (jiffies >= hw_priv->counter[i].time) {
/* Only read MIB counters when the port is connected. */
if (media_connected == mib->state)
hw_priv->counter[i].read = 1;
next_jiffies += HZ * 1 * hw->mib_port_cnt;
hw_priv->counter[i].time = next_jiffies;
/* Port is just disconnected. */
} else if (mib->link_down) {
mib->link_down = 0;
/* Read counters one last time after link is lost. */
hw_priv->counter[i].read = 1;
}
}
}
static void mib_monitor(unsigned long ptr)
{
struct dev_info *hw_priv = (struct dev_info *) ptr;
mib_read_work(&hw_priv->mib_read);
/* This is used to verify Wake-on-LAN is working. */
if (hw_priv->pme_wait) {
if (hw_priv->pme_wait <= jiffies) {
hw_clr_wol_pme_status(&hw_priv->hw);
hw_priv->pme_wait = 0;
}
} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
/* PME is asserted. Wait 2 seconds to clear it. */
hw_priv->pme_wait = jiffies + HZ * 2;
}
ksz_update_timer(&hw_priv->mib_timer_info);
}
/**
* dev_monitor - periodic monitoring
* @ptr: Network device pointer.
*
* This routine is run in a kernel timer to monitor the network device.
*/
static void dev_monitor(unsigned long ptr)
{
struct net_device *dev = (struct net_device *) ptr;
struct dev_priv *priv = netdev_priv(dev);
struct dev_info *hw_priv = priv->adapter;
struct ksz_hw *hw = &hw_priv->hw;
struct ksz_port *port = &priv->port;
if (!(hw->features & LINK_INT_WORKING))
port_get_link_speed(port);
update_link(dev, priv, port);
ksz_update_timer(&priv->monitor_timer_info);
}
/*
* Linux network device interface functions
*/
/* Driver exported variables */
static int msg_enable;
static char *macaddr = ":";
static char *mac1addr = ":";
/*
* This enables multiple network device mode for KSZ8842, which contains a
* switch with two physical ports. Some users like to take control of the
* ports for running Spanning Tree Protocol. The driver will create an
* additional eth? device for the other port.
*
* Some limitations are the network devices cannot have different MTU and
* multicast hash tables.
*/
static int multi_dev;
/*
* As most users select multiple network device mode to use Spanning Tree
* Protocol, this enables a feature in which most unicast and multicast packets
* are forwarded inside the switch and not passed to the host. Only packets
* that need the host's attention are passed to it. This prevents the host
* wasting CPU time to examine each and every incoming packets and do the
* forwarding itself.
*
* As the hack requires the private bridge header, the driver cannot compile
* with just the kernel headers.
*
* Enabling STP support also turns on multiple network device mode.
*/
static int stp;
/*
* This enables fast aging in the KSZ8842 switch. Not sure what situation
* needs that. However, fast aging is used to flush the dynamic MAC table when
* STP suport is enabled.
*/
static int fast_aging;
/**
* netdev_init - initialize network device.
* @dev: Network device.
*
* This function initializes the network device.
*
* Return 0 if successful; otherwise an error code indicating failure.
*/
static int __init netdev_init(struct net_device *dev)
{
struct dev_priv *priv = netdev_priv(dev);
/* 500 ms timeout */
ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
dev_monitor, dev);
/* 500 ms timeout */
dev->watchdog_timeo = HZ / 2;
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
/*
* Hardware does not really support IPv6 checksum generation, but
* driver actually runs faster with this on.
*/
dev->hw_features |= NETIF_F_IPV6_CSUM;
dev->features |= dev->hw_features;
sema_init(&priv->proc_sem, 1);
priv->mii_if.phy_id_mask = 0x1;
priv->mii_if.reg_num_mask = 0x7;
priv->mii_if.dev = dev;
priv->mii_if.mdio_read = mdio_read;
priv->mii_if.mdio_write = mdio_write;
priv->mii_if.phy_id = priv->port.first_port + 1;
priv->msg_enable = netif_msg_init(msg_enable,
(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
return 0;
}
static const struct net_device_ops netdev_ops = {
.ndo_init = netdev_init,
.ndo_open = netdev_open,
.ndo_stop = netdev_close,
.ndo_get_stats = netdev_query_statistics,
.ndo_start_xmit = netdev_tx,
.ndo_tx_timeout = netdev_tx_timeout,
.ndo_change_mtu = netdev_change_mtu,
.ndo_set_features = netdev_set_features,
.ndo_set_mac_address = netdev_set_mac_address,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = netdev_ioctl,
.ndo_set_rx_mode = netdev_set_rx_mode,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = netdev_netpoll,
#endif
};
static void netdev_free(struct net_device *dev)
{
if (dev->watchdog_timeo)
unregister_netdev(dev);
free_netdev(dev);
}
struct platform_info {
struct dev_info dev_info;
struct net_device *netdev[SWITCH_PORT_NUM];
};
static int net_device_present;
static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
{
int i;
int j;
int got_num;
int num;
i = j = num = got_num = 0;
while (j < MAC_ADDR_LEN) {
if (macaddr[i]) {
int digit;
got_num = 1;
digit = hex_to_bin(macaddr[i]);
if (digit >= 0)
num = num * 16 + digit;
else if (':' == macaddr[i])
got_num = 2;
else
break;
} else if (got_num)
got_num = 2;
else
break;
if (2 == got_num) {
if (MAIN_PORT == port) {
hw_priv->hw.override_addr[j++] = (u8) num;
hw_priv->hw.override_addr[5] +=
hw_priv->hw.id;
} else {
hw_priv->hw.ksz_switch->other_addr[j++] =
(u8) num;
hw_priv->hw.ksz_switch->other_addr[5] +=
hw_priv->hw.id;
}
num = got_num = 0;
}
i++;
}
if (MAC_ADDR_LEN == j) {
if (MAIN_PORT == port)
hw_priv->hw.mac_override = 1;
}
}
#define KS884X_DMA_MASK (~0x0UL)
static void read_other_addr(struct ksz_hw *hw)
{
int i;
u16 data[3];
struct ksz_switch *sw = hw->ksz_switch;
for (i = 0; i < 3; i++)
data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
sw->other_addr[5] = (u8) data[0];
sw->other_addr[4] = (u8)(data[0] >> 8);
sw->other_addr[3] = (u8) data[1];
sw->other_addr[2] = (u8)(data[1] >> 8);
sw->other_addr[1] = (u8) data[2];
sw->other_addr[0] = (u8)(data[2] >> 8);
}
}
#ifndef PCI_VENDOR_ID_MICREL_KS
#define PCI_VENDOR_ID_MICREL_KS 0x16c6
#endif
static int __devinit pcidev_init(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct net_device *dev;
struct dev_priv *priv;
struct dev_info *hw_priv;
struct ksz_hw *hw;
struct platform_info *info;
struct ksz_port *port;
unsigned long reg_base;
unsigned long reg_len;
int cnt;
int i;
int mib_port_count;
int pi;
int port_count;
int result;
char banner[sizeof(version)];
struct ksz_switch *sw = NULL;
result = pci_enable_device(pdev);
if (result)
return result;
result = -ENODEV;
if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
return result;
reg_base = pci_resource_start(pdev, 0);
reg_len = pci_resource_len(pdev, 0);
if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
return result;
if (!request_mem_region(reg_base, reg_len, DRV_NAME))
return result;
pci_set_master(pdev);
result = -ENOMEM;
info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
if (!info)
goto pcidev_init_dev_err;
hw_priv = &info->dev_info;
hw_priv->pdev = pdev;
hw = &hw_priv->hw;
hw->io = ioremap(reg_base, reg_len);
if (!hw->io)
goto pcidev_init_io_err;
cnt = hw_init(hw);
if (!cnt) {
if (msg_enable & NETIF_MSG_PROBE)
pr_alert("chip not detected\n");
result = -ENODEV;
goto pcidev_init_alloc_err;
}
snprintf(banner, sizeof(banner), "%s", version);
banner[13] = cnt + '0'; /* Replace x in "Micrel KSZ884x" */
dev_info(&hw_priv->pdev->dev, "%s\n", banner);
dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
/* Assume device is KSZ8841. */
hw->dev_count = 1;
port_count = 1;
mib_port_count = 1;
hw->addr_list_size = 0;
hw->mib_cnt = PORT_COUNTER_NUM;
hw->mib_port_cnt = 1;
/* KSZ8842 has a switch with multiple ports. */
if (2 == cnt) {
if (fast_aging)
hw->overrides |= FAST_AGING;
hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
/* Multiple network device interfaces are required. */
if (multi_dev) {
hw->dev_count = SWITCH_PORT_NUM;
hw->addr_list_size = SWITCH_PORT_NUM - 1;
}
/* Single network device has multiple ports. */
if (1 == hw->dev_count) {
port_count = SWITCH_PORT_NUM;
mib_port_count = SWITCH_PORT_NUM;
}
hw->mib_port_cnt = TOTAL_PORT_NUM;
hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
if (!hw->ksz_switch)
goto pcidev_init_alloc_err;
sw = hw->ksz_switch;
}
for (i = 0; i < hw->mib_port_cnt; i++)
hw->port_mib[i].mib_start = 0;
hw->parent = hw_priv;
/* Default MTU is 1500. */
hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
if (ksz_alloc_mem(hw_priv))
goto pcidev_init_mem_err;
hw_priv->hw.id = net_device_present;
spin_lock_init(&hw_priv->hwlock);
mutex_init(&hw_priv->lock);
/* tasklet is enabled. */
tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
(unsigned long) hw_priv);
tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
(unsigned long) hw_priv);
/* tasklet_enable will decrement the atomic counter. */
tasklet_disable(&hw_priv->rx_tasklet);
tasklet_disable(&hw_priv->tx_tasklet);
for (i = 0; i < TOTAL_PORT_NUM; i++)
init_waitqueue_head(&hw_priv->counter[i].counter);
if (macaddr[0] != ':')
get_mac_addr(hw_priv, macaddr, MAIN_PORT);
/* Read MAC address and initialize override address if not overrided. */
hw_read_addr(hw);
/* Multiple device interfaces mode requires a second MAC address. */
if (hw->dev_count > 1) {
memcpy(sw->other_addr, hw->override_addr, MAC_ADDR_LEN);
read_other_addr(hw);
if (mac1addr[0] != ':')
get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
}
hw_setup(hw);
if (hw->ksz_switch)
sw_setup(hw);
else {
hw_priv->wol_support = WOL_SUPPORT;
hw_priv->wol_enable = 0;
}
INIT_WORK(&hw_priv->mib_read, mib_read_work);
/* 500 ms timeout */
ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
mib_monitor, hw_priv);
for (i = 0; i < hw->dev_count; i++) {
dev = alloc_etherdev(sizeof(struct dev_priv));
if (!dev)
goto pcidev_init_reg_err;
info->netdev[i] = dev;
priv = netdev_priv(dev);
priv->adapter = hw_priv;
priv->id = net_device_present++;
port = &priv->port;
port->port_cnt = port_count;
port->mib_port_cnt = mib_port_count;
port->first_port = i;
port->flow_ctrl = PHY_FLOW_CTRL;
port->hw = hw;
port->linked = &hw->port_info[port->first_port];
for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
hw->port_info[pi].port_id = pi;
hw->port_info[pi].pdev = dev;
hw->port_info[pi].state = media_disconnected;
}
dev->mem_start = (unsigned long) hw->io;
dev->mem_end = dev->mem_start + reg_len - 1;
dev->irq = pdev->irq;
if (MAIN_PORT == i)
memcpy(dev->dev_addr, hw_priv->hw.override_addr,
MAC_ADDR_LEN);
else {
memcpy(dev->dev_addr, sw->other_addr,
MAC_ADDR_LEN);
if (!memcmp(sw->other_addr, hw->override_addr,
MAC_ADDR_LEN))
dev->dev_addr[5] += port->first_port;
}
dev->netdev_ops = &netdev_ops;
SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
if (register_netdev(dev))
goto pcidev_init_reg_err;
port_set_power_saving(port, true);
}
pci_dev_get(hw_priv->pdev);
pci_set_drvdata(pdev, info);
return 0;
pcidev_init_reg_err:
for (i = 0; i < hw->dev_count; i++) {
if (info->netdev[i]) {
netdev_free(info->netdev[i]);
info->netdev[i] = NULL;
}
}
pcidev_init_mem_err:
ksz_free_mem(hw_priv);
kfree(hw->ksz_switch);
pcidev_init_alloc_err:
iounmap(hw->io);
pcidev_init_io_err:
kfree(info);
pcidev_init_dev_err:
release_mem_region(reg_base, reg_len);
return result;
}
static void pcidev_exit(struct pci_dev *pdev)
{
int i;
struct platform_info *info = pci_get_drvdata(pdev);
struct dev_info *hw_priv = &info->dev_info;
pci_set_drvdata(pdev, NULL);
release_mem_region(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
for (i = 0; i < hw_priv->hw.dev_count; i++) {
if (info->netdev[i])
netdev_free(info->netdev[i]);
}
if (hw_priv->hw.io)
iounmap(hw_priv->hw.io);
ksz_free_mem(hw_priv);
kfree(hw_priv->hw.ksz_switch);
pci_dev_put(hw_priv->pdev);
kfree(info);
}
#ifdef CONFIG_PM
static int pcidev_resume(struct pci_dev *pdev)
{
int i;
struct platform_info *info = pci_get_drvdata(pdev);
struct dev_info *hw_priv = &info->dev_info;
struct ksz_hw *hw = &hw_priv->hw;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_enable_wake(pdev, PCI_D0, 0);
if (hw_priv->wol_enable)
hw_cfg_wol_pme(hw, 0);
for (i = 0; i < hw->dev_count; i++) {
if (info->netdev[i]) {
struct net_device *dev = info->netdev[i];
if (netif_running(dev)) {
netdev_open(dev);
netif_device_attach(dev);
}
}
}
return 0;
}
static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
{
int i;
struct platform_info *info = pci_get_drvdata(pdev);
struct dev_info *hw_priv = &info->dev_info;
struct ksz_hw *hw = &hw_priv->hw;
/* Need to find a way to retrieve the device IP address. */
static const u8 net_addr[] = { 192, 168, 1, 1 };
for (i = 0; i < hw->dev_count; i++) {
if (info->netdev[i]) {
struct net_device *dev = info->netdev[i];
if (netif_running(dev)) {
netif_device_detach(dev);
netdev_close(dev);
}
}
}
if (hw_priv->wol_enable) {
hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
hw_cfg_wol_pme(hw, 1);
}
pci_save_state(pdev);
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
#endif
static char pcidev_name[] = "ksz884xp";
static struct pci_device_id pcidev_table[] = {
{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, pcidev_table);
static struct pci_driver pci_device_driver = {
#ifdef CONFIG_PM
.suspend = pcidev_suspend,
.resume = pcidev_resume,
#endif
.name = pcidev_name,
.id_table = pcidev_table,
.probe = pcidev_init,
.remove = pcidev_exit
};
static int __init ksz884x_init_module(void)
{
return pci_register_driver(&pci_device_driver);
}
static void __exit ksz884x_cleanup_module(void)
{
pci_unregister_driver(&pci_device_driver);
}
module_init(ksz884x_init_module);
module_exit(ksz884x_cleanup_module);
MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
MODULE_LICENSE("GPL");
module_param_named(message, msg_enable, int, 0);
MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
module_param(macaddr, charp, 0);
module_param(mac1addr, charp, 0);
module_param(fast_aging, int, 0);
module_param(multi_dev, int, 0);
module_param(stp, int, 0);
MODULE_PARM_DESC(macaddr, "MAC address");
MODULE_PARM_DESC(mac1addr, "Second MAC address");
MODULE_PARM_DESC(fast_aging, "Fast aging");
MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
MODULE_PARM_DESC(stp, "STP support");