479 lines
10 KiB
C
479 lines
10 KiB
C
/*
|
|
* This code largely moved from arch/i386/kernel/timer/timer_tsc.c
|
|
* which was originally moved from arch/i386/kernel/time.c.
|
|
* See comments there for proper credits.
|
|
*/
|
|
|
|
#include <linux/clocksource.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/init.h>
|
|
#include <linux/dmi.h>
|
|
|
|
#include <asm/delay.h>
|
|
#include <asm/tsc.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "mach_timer.h"
|
|
|
|
/*
|
|
* On some systems the TSC frequency does not
|
|
* change with the cpu frequency. So we need
|
|
* an extra value to store the TSC freq
|
|
*/
|
|
unsigned int tsc_khz;
|
|
|
|
int tsc_disable __cpuinitdata = 0;
|
|
|
|
#ifdef CONFIG_X86_TSC
|
|
static int __init tsc_setup(char *str)
|
|
{
|
|
printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
|
|
"cannot disable TSC.\n");
|
|
return 1;
|
|
}
|
|
#else
|
|
/*
|
|
* disable flag for tsc. Takes effect by clearing the TSC cpu flag
|
|
* in cpu/common.c
|
|
*/
|
|
static int __init tsc_setup(char *str)
|
|
{
|
|
tsc_disable = 1;
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
__setup("notsc", tsc_setup);
|
|
|
|
/*
|
|
* code to mark and check if the TSC is unstable
|
|
* due to cpufreq or due to unsynced TSCs
|
|
*/
|
|
static int tsc_unstable;
|
|
|
|
static inline int check_tsc_unstable(void)
|
|
{
|
|
return tsc_unstable;
|
|
}
|
|
|
|
void mark_tsc_unstable(void)
|
|
{
|
|
tsc_unstable = 1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mark_tsc_unstable);
|
|
|
|
/* Accellerators for sched_clock()
|
|
* convert from cycles(64bits) => nanoseconds (64bits)
|
|
* basic equation:
|
|
* ns = cycles / (freq / ns_per_sec)
|
|
* ns = cycles * (ns_per_sec / freq)
|
|
* ns = cycles * (10^9 / (cpu_khz * 10^3))
|
|
* ns = cycles * (10^6 / cpu_khz)
|
|
*
|
|
* Then we use scaling math (suggested by george@mvista.com) to get:
|
|
* ns = cycles * (10^6 * SC / cpu_khz) / SC
|
|
* ns = cycles * cyc2ns_scale / SC
|
|
*
|
|
* And since SC is a constant power of two, we can convert the div
|
|
* into a shift.
|
|
*
|
|
* We can use khz divisor instead of mhz to keep a better percision, since
|
|
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
|
|
* (mathieu.desnoyers@polymtl.ca)
|
|
*
|
|
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
|
|
*/
|
|
static unsigned long cyc2ns_scale __read_mostly;
|
|
|
|
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
|
|
|
|
static inline void set_cyc2ns_scale(unsigned long cpu_khz)
|
|
{
|
|
cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
|
|
}
|
|
|
|
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
|
|
{
|
|
return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
|
|
}
|
|
|
|
/*
|
|
* Scheduler clock - returns current time in nanosec units.
|
|
*/
|
|
unsigned long long sched_clock(void)
|
|
{
|
|
unsigned long long this_offset;
|
|
|
|
/*
|
|
* in the NUMA case we dont use the TSC as they are not
|
|
* synchronized across all CPUs.
|
|
*/
|
|
#ifndef CONFIG_NUMA
|
|
if (!cpu_khz || check_tsc_unstable())
|
|
#endif
|
|
/* no locking but a rare wrong value is not a big deal */
|
|
return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
|
|
|
|
/* read the Time Stamp Counter: */
|
|
rdtscll(this_offset);
|
|
|
|
/* return the value in ns */
|
|
return cycles_2_ns(this_offset);
|
|
}
|
|
|
|
static unsigned long calculate_cpu_khz(void)
|
|
{
|
|
unsigned long long start, end;
|
|
unsigned long count;
|
|
u64 delta64;
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
|
|
/* run 3 times to ensure the cache is warm */
|
|
for (i = 0; i < 3; i++) {
|
|
mach_prepare_counter();
|
|
rdtscll(start);
|
|
mach_countup(&count);
|
|
rdtscll(end);
|
|
}
|
|
/*
|
|
* Error: ECTCNEVERSET
|
|
* The CTC wasn't reliable: we got a hit on the very first read,
|
|
* or the CPU was so fast/slow that the quotient wouldn't fit in
|
|
* 32 bits..
|
|
*/
|
|
if (count <= 1)
|
|
goto err;
|
|
|
|
delta64 = end - start;
|
|
|
|
/* cpu freq too fast: */
|
|
if (delta64 > (1ULL<<32))
|
|
goto err;
|
|
|
|
/* cpu freq too slow: */
|
|
if (delta64 <= CALIBRATE_TIME_MSEC)
|
|
goto err;
|
|
|
|
delta64 += CALIBRATE_TIME_MSEC/2; /* round for do_div */
|
|
do_div(delta64,CALIBRATE_TIME_MSEC);
|
|
|
|
local_irq_restore(flags);
|
|
return (unsigned long)delta64;
|
|
err:
|
|
local_irq_restore(flags);
|
|
return 0;
|
|
}
|
|
|
|
int recalibrate_cpu_khz(void)
|
|
{
|
|
#ifndef CONFIG_SMP
|
|
unsigned long cpu_khz_old = cpu_khz;
|
|
|
|
if (cpu_has_tsc) {
|
|
cpu_khz = calculate_cpu_khz();
|
|
tsc_khz = cpu_khz;
|
|
cpu_data[0].loops_per_jiffy =
|
|
cpufreq_scale(cpu_data[0].loops_per_jiffy,
|
|
cpu_khz_old, cpu_khz);
|
|
return 0;
|
|
} else
|
|
return -ENODEV;
|
|
#else
|
|
return -ENODEV;
|
|
#endif
|
|
}
|
|
|
|
EXPORT_SYMBOL(recalibrate_cpu_khz);
|
|
|
|
void __init tsc_init(void)
|
|
{
|
|
if (!cpu_has_tsc || tsc_disable)
|
|
return;
|
|
|
|
cpu_khz = calculate_cpu_khz();
|
|
tsc_khz = cpu_khz;
|
|
|
|
if (!cpu_khz)
|
|
return;
|
|
|
|
printk("Detected %lu.%03lu MHz processor.\n",
|
|
(unsigned long)cpu_khz / 1000,
|
|
(unsigned long)cpu_khz % 1000);
|
|
|
|
set_cyc2ns_scale(cpu_khz);
|
|
use_tsc_delay();
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
|
|
static unsigned int cpufreq_delayed_issched = 0;
|
|
static unsigned int cpufreq_init = 0;
|
|
static struct work_struct cpufreq_delayed_get_work;
|
|
|
|
static void handle_cpufreq_delayed_get(void *v)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
for_each_online_cpu(cpu)
|
|
cpufreq_get(cpu);
|
|
|
|
cpufreq_delayed_issched = 0;
|
|
}
|
|
|
|
/*
|
|
* if we notice cpufreq oddness, schedule a call to cpufreq_get() as it tries
|
|
* to verify the CPU frequency the timing core thinks the CPU is running
|
|
* at is still correct.
|
|
*/
|
|
static inline void cpufreq_delayed_get(void)
|
|
{
|
|
if (cpufreq_init && !cpufreq_delayed_issched) {
|
|
cpufreq_delayed_issched = 1;
|
|
printk(KERN_DEBUG "Checking if CPU frequency changed.\n");
|
|
schedule_work(&cpufreq_delayed_get_work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* if the CPU frequency is scaled, TSC-based delays will need a different
|
|
* loops_per_jiffy value to function properly.
|
|
*/
|
|
static unsigned int ref_freq = 0;
|
|
static unsigned long loops_per_jiffy_ref = 0;
|
|
static unsigned long cpu_khz_ref = 0;
|
|
|
|
static int
|
|
time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
|
|
if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
|
|
write_seqlock_irq(&xtime_lock);
|
|
|
|
if (!ref_freq) {
|
|
if (!freq->old){
|
|
ref_freq = freq->new;
|
|
goto end;
|
|
}
|
|
ref_freq = freq->old;
|
|
loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy;
|
|
cpu_khz_ref = cpu_khz;
|
|
}
|
|
|
|
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
|
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
|
|
(val == CPUFREQ_RESUMECHANGE)) {
|
|
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
|
cpu_data[freq->cpu].loops_per_jiffy =
|
|
cpufreq_scale(loops_per_jiffy_ref,
|
|
ref_freq, freq->new);
|
|
|
|
if (cpu_khz) {
|
|
|
|
if (num_online_cpus() == 1)
|
|
cpu_khz = cpufreq_scale(cpu_khz_ref,
|
|
ref_freq, freq->new);
|
|
if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
|
|
tsc_khz = cpu_khz;
|
|
set_cyc2ns_scale(cpu_khz);
|
|
/*
|
|
* TSC based sched_clock turns
|
|
* to junk w/ cpufreq
|
|
*/
|
|
mark_tsc_unstable();
|
|
}
|
|
}
|
|
}
|
|
end:
|
|
if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
|
|
write_sequnlock_irq(&xtime_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block time_cpufreq_notifier_block = {
|
|
.notifier_call = time_cpufreq_notifier
|
|
};
|
|
|
|
static int __init cpufreq_tsc(void)
|
|
{
|
|
int ret;
|
|
|
|
INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
|
|
ret = cpufreq_register_notifier(&time_cpufreq_notifier_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
if (!ret)
|
|
cpufreq_init = 1;
|
|
|
|
return ret;
|
|
}
|
|
|
|
core_initcall(cpufreq_tsc);
|
|
|
|
#endif
|
|
|
|
/* clock source code */
|
|
|
|
static unsigned long current_tsc_khz = 0;
|
|
static int tsc_update_callback(void);
|
|
|
|
static cycle_t read_tsc(void)
|
|
{
|
|
cycle_t ret;
|
|
|
|
rdtscll(ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct clocksource clocksource_tsc = {
|
|
.name = "tsc",
|
|
.rating = 300,
|
|
.read = read_tsc,
|
|
.mask = CLOCKSOURCE_MASK(64),
|
|
.mult = 0, /* to be set */
|
|
.shift = 22,
|
|
.update_callback = tsc_update_callback,
|
|
.is_continuous = 1,
|
|
};
|
|
|
|
static int tsc_update_callback(void)
|
|
{
|
|
int change = 0;
|
|
|
|
/* check to see if we should switch to the safe clocksource: */
|
|
if (clocksource_tsc.rating != 0 && check_tsc_unstable()) {
|
|
clocksource_tsc.rating = 0;
|
|
clocksource_reselect();
|
|
change = 1;
|
|
}
|
|
|
|
/* only update if tsc_khz has changed: */
|
|
if (current_tsc_khz != tsc_khz) {
|
|
current_tsc_khz = tsc_khz;
|
|
clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
|
|
clocksource_tsc.shift);
|
|
change = 1;
|
|
}
|
|
|
|
return change;
|
|
}
|
|
|
|
static int __init dmi_mark_tsc_unstable(struct dmi_system_id *d)
|
|
{
|
|
printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
|
|
d->ident);
|
|
mark_tsc_unstable();
|
|
return 0;
|
|
}
|
|
|
|
/* List of systems that have known TSC problems */
|
|
static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
|
|
{
|
|
.callback = dmi_mark_tsc_unstable,
|
|
.ident = "IBM Thinkpad 380XD",
|
|
.matches = {
|
|
DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
|
|
DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
|
|
},
|
|
},
|
|
{}
|
|
};
|
|
|
|
#define TSC_FREQ_CHECK_INTERVAL (10*MSEC_PER_SEC) /* 10sec in MS */
|
|
static struct timer_list verify_tsc_freq_timer;
|
|
|
|
/* XXX - Probably should add locking */
|
|
static void verify_tsc_freq(unsigned long unused)
|
|
{
|
|
static u64 last_tsc;
|
|
static unsigned long last_jiffies;
|
|
|
|
u64 now_tsc, interval_tsc;
|
|
unsigned long now_jiffies, interval_jiffies;
|
|
|
|
|
|
if (check_tsc_unstable())
|
|
return;
|
|
|
|
rdtscll(now_tsc);
|
|
now_jiffies = jiffies;
|
|
|
|
if (!last_jiffies) {
|
|
goto out;
|
|
}
|
|
|
|
interval_jiffies = now_jiffies - last_jiffies;
|
|
interval_tsc = now_tsc - last_tsc;
|
|
interval_tsc *= HZ;
|
|
do_div(interval_tsc, cpu_khz*1000);
|
|
|
|
if (interval_tsc < (interval_jiffies * 3 / 4)) {
|
|
printk("TSC appears to be running slowly. "
|
|
"Marking it as unstable\n");
|
|
mark_tsc_unstable();
|
|
return;
|
|
}
|
|
|
|
out:
|
|
last_tsc = now_tsc;
|
|
last_jiffies = now_jiffies;
|
|
/* set us up to go off on the next interval: */
|
|
mod_timer(&verify_tsc_freq_timer,
|
|
jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL));
|
|
}
|
|
|
|
/*
|
|
* Make an educated guess if the TSC is trustworthy and synchronized
|
|
* over all CPUs.
|
|
*/
|
|
static __init int unsynchronized_tsc(void)
|
|
{
|
|
/*
|
|
* Intel systems are normally all synchronized.
|
|
* Exceptions must mark TSC as unstable:
|
|
*/
|
|
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
|
|
return 0;
|
|
|
|
/* assume multi socket systems are not synchronized: */
|
|
return num_possible_cpus() > 1;
|
|
}
|
|
|
|
static int __init init_tsc_clocksource(void)
|
|
{
|
|
|
|
if (cpu_has_tsc && tsc_khz && !tsc_disable) {
|
|
/* check blacklist */
|
|
dmi_check_system(bad_tsc_dmi_table);
|
|
|
|
if (unsynchronized_tsc()) /* mark unstable if unsynced */
|
|
mark_tsc_unstable();
|
|
current_tsc_khz = tsc_khz;
|
|
clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
|
|
clocksource_tsc.shift);
|
|
/* lower the rating if we already know its unstable: */
|
|
if (check_tsc_unstable())
|
|
clocksource_tsc.rating = 0;
|
|
|
|
init_timer(&verify_tsc_freq_timer);
|
|
verify_tsc_freq_timer.function = verify_tsc_freq;
|
|
verify_tsc_freq_timer.expires =
|
|
jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL);
|
|
add_timer(&verify_tsc_freq_timer);
|
|
|
|
return clocksource_register(&clocksource_tsc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(init_tsc_clocksource);
|