651 lines
18 KiB
C
651 lines
18 KiB
C
/*
|
|
* Extensible Firmware Interface
|
|
*
|
|
* Based on Extensible Firmware Interface Specification version 1.0
|
|
*
|
|
* Copyright (C) 1999 VA Linux Systems
|
|
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
|
|
* Copyright (C) 1999-2002 Hewlett-Packard Co.
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
* Stephane Eranian <eranian@hpl.hp.com>
|
|
*
|
|
* All EFI Runtime Services are not implemented yet as EFI only
|
|
* supports physical mode addressing on SoftSDV. This is to be fixed
|
|
* in a future version. --drummond 1999-07-20
|
|
*
|
|
* Implemented EFI runtime services and virtual mode calls. --davidm
|
|
*
|
|
* Goutham Rao: <goutham.rao@intel.com>
|
|
* Skip non-WB memory and ignore empty memory ranges.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/types.h>
|
|
#include <linux/time.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/module.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/kexec.h>
|
|
|
|
#include <asm/setup.h>
|
|
#include <asm/io.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
#define EFI_DEBUG 0
|
|
#define PFX "EFI: "
|
|
|
|
extern efi_status_t asmlinkage efi_call_phys(void *, ...);
|
|
|
|
struct efi efi;
|
|
EXPORT_SYMBOL(efi);
|
|
static struct efi efi_phys;
|
|
struct efi_memory_map memmap;
|
|
|
|
/*
|
|
* We require an early boot_ioremap mapping mechanism initially
|
|
*/
|
|
extern void * boot_ioremap(unsigned long, unsigned long);
|
|
|
|
/*
|
|
* To make EFI call EFI runtime service in physical addressing mode we need
|
|
* prelog/epilog before/after the invocation to disable interrupt, to
|
|
* claim EFI runtime service handler exclusively and to duplicate a memory in
|
|
* low memory space say 0 - 3G.
|
|
*/
|
|
|
|
static unsigned long efi_rt_eflags;
|
|
static DEFINE_SPINLOCK(efi_rt_lock);
|
|
static pgd_t efi_bak_pg_dir_pointer[2];
|
|
|
|
static void efi_call_phys_prelog(void) __acquires(efi_rt_lock)
|
|
{
|
|
unsigned long cr4;
|
|
unsigned long temp;
|
|
struct Xgt_desc_struct *cpu_gdt_descr;
|
|
|
|
spin_lock(&efi_rt_lock);
|
|
local_irq_save(efi_rt_eflags);
|
|
|
|
cpu_gdt_descr = &per_cpu(cpu_gdt_descr, 0);
|
|
|
|
/*
|
|
* If I don't have PSE, I should just duplicate two entries in page
|
|
* directory. If I have PSE, I just need to duplicate one entry in
|
|
* page directory.
|
|
*/
|
|
cr4 = read_cr4();
|
|
|
|
if (cr4 & X86_CR4_PSE) {
|
|
efi_bak_pg_dir_pointer[0].pgd =
|
|
swapper_pg_dir[pgd_index(0)].pgd;
|
|
swapper_pg_dir[0].pgd =
|
|
swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
|
|
} else {
|
|
efi_bak_pg_dir_pointer[0].pgd =
|
|
swapper_pg_dir[pgd_index(0)].pgd;
|
|
efi_bak_pg_dir_pointer[1].pgd =
|
|
swapper_pg_dir[pgd_index(0x400000)].pgd;
|
|
swapper_pg_dir[pgd_index(0)].pgd =
|
|
swapper_pg_dir[pgd_index(PAGE_OFFSET)].pgd;
|
|
temp = PAGE_OFFSET + 0x400000;
|
|
swapper_pg_dir[pgd_index(0x400000)].pgd =
|
|
swapper_pg_dir[pgd_index(temp)].pgd;
|
|
}
|
|
|
|
/*
|
|
* After the lock is released, the original page table is restored.
|
|
*/
|
|
local_flush_tlb();
|
|
|
|
cpu_gdt_descr->address = __pa(cpu_gdt_descr->address);
|
|
load_gdt(cpu_gdt_descr);
|
|
}
|
|
|
|
static void efi_call_phys_epilog(void) __releases(efi_rt_lock)
|
|
{
|
|
unsigned long cr4;
|
|
struct Xgt_desc_struct *cpu_gdt_descr = &per_cpu(cpu_gdt_descr, 0);
|
|
|
|
cpu_gdt_descr->address = (unsigned long)__va(cpu_gdt_descr->address);
|
|
load_gdt(cpu_gdt_descr);
|
|
|
|
cr4 = read_cr4();
|
|
|
|
if (cr4 & X86_CR4_PSE) {
|
|
swapper_pg_dir[pgd_index(0)].pgd =
|
|
efi_bak_pg_dir_pointer[0].pgd;
|
|
} else {
|
|
swapper_pg_dir[pgd_index(0)].pgd =
|
|
efi_bak_pg_dir_pointer[0].pgd;
|
|
swapper_pg_dir[pgd_index(0x400000)].pgd =
|
|
efi_bak_pg_dir_pointer[1].pgd;
|
|
}
|
|
|
|
/*
|
|
* After the lock is released, the original page table is restored.
|
|
*/
|
|
local_flush_tlb();
|
|
|
|
local_irq_restore(efi_rt_eflags);
|
|
spin_unlock(&efi_rt_lock);
|
|
}
|
|
|
|
static efi_status_t
|
|
phys_efi_set_virtual_address_map(unsigned long memory_map_size,
|
|
unsigned long descriptor_size,
|
|
u32 descriptor_version,
|
|
efi_memory_desc_t *virtual_map)
|
|
{
|
|
efi_status_t status;
|
|
|
|
efi_call_phys_prelog();
|
|
status = efi_call_phys(efi_phys.set_virtual_address_map,
|
|
memory_map_size, descriptor_size,
|
|
descriptor_version, virtual_map);
|
|
efi_call_phys_epilog();
|
|
return status;
|
|
}
|
|
|
|
static efi_status_t
|
|
phys_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
|
|
{
|
|
efi_status_t status;
|
|
|
|
efi_call_phys_prelog();
|
|
status = efi_call_phys(efi_phys.get_time, tm, tc);
|
|
efi_call_phys_epilog();
|
|
return status;
|
|
}
|
|
|
|
inline int efi_set_rtc_mmss(unsigned long nowtime)
|
|
{
|
|
int real_seconds, real_minutes;
|
|
efi_status_t status;
|
|
efi_time_t eft;
|
|
efi_time_cap_t cap;
|
|
|
|
spin_lock(&efi_rt_lock);
|
|
status = efi.get_time(&eft, &cap);
|
|
spin_unlock(&efi_rt_lock);
|
|
if (status != EFI_SUCCESS)
|
|
panic("Ooops, efitime: can't read time!\n");
|
|
real_seconds = nowtime % 60;
|
|
real_minutes = nowtime / 60;
|
|
|
|
if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
|
|
real_minutes += 30;
|
|
real_minutes %= 60;
|
|
|
|
eft.minute = real_minutes;
|
|
eft.second = real_seconds;
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
printk("Ooops: efitime: can't read time!\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
/*
|
|
* This should only be used during kernel init and before runtime
|
|
* services have been remapped, therefore, we'll need to call in physical
|
|
* mode. Note, this call isn't used later, so mark it __init.
|
|
*/
|
|
inline unsigned long __init efi_get_time(void)
|
|
{
|
|
efi_status_t status;
|
|
efi_time_t eft;
|
|
efi_time_cap_t cap;
|
|
|
|
status = phys_efi_get_time(&eft, &cap);
|
|
if (status != EFI_SUCCESS)
|
|
printk("Oops: efitime: can't read time status: 0x%lx\n",status);
|
|
|
|
return mktime(eft.year, eft.month, eft.day, eft.hour,
|
|
eft.minute, eft.second);
|
|
}
|
|
|
|
int is_available_memory(efi_memory_desc_t * md)
|
|
{
|
|
if (!(md->attribute & EFI_MEMORY_WB))
|
|
return 0;
|
|
|
|
switch (md->type) {
|
|
case EFI_LOADER_CODE:
|
|
case EFI_LOADER_DATA:
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We need to map the EFI memory map again after paging_init().
|
|
*/
|
|
void __init efi_map_memmap(void)
|
|
{
|
|
memmap.map = NULL;
|
|
|
|
memmap.map = bt_ioremap((unsigned long) memmap.phys_map,
|
|
(memmap.nr_map * memmap.desc_size));
|
|
if (memmap.map == NULL)
|
|
printk(KERN_ERR PFX "Could not remap the EFI memmap!\n");
|
|
|
|
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
|
|
}
|
|
|
|
#if EFI_DEBUG
|
|
static void __init print_efi_memmap(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
int i;
|
|
|
|
for (p = memmap.map, i = 0; p < memmap.map_end; p += memmap.desc_size, i++) {
|
|
md = p;
|
|
printk(KERN_INFO "mem%02u: type=%u, attr=0x%llx, "
|
|
"range=[0x%016llx-0x%016llx) (%lluMB)\n",
|
|
i, md->type, md->attribute, md->phys_addr,
|
|
md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
|
|
(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
|
|
}
|
|
}
|
|
#endif /* EFI_DEBUG */
|
|
|
|
/*
|
|
* Walks the EFI memory map and calls CALLBACK once for each EFI
|
|
* memory descriptor that has memory that is available for kernel use.
|
|
*/
|
|
void efi_memmap_walk(efi_freemem_callback_t callback, void *arg)
|
|
{
|
|
int prev_valid = 0;
|
|
struct range {
|
|
unsigned long start;
|
|
unsigned long end;
|
|
} prev, curr;
|
|
efi_memory_desc_t *md;
|
|
unsigned long start, end;
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
|
|
if ((md->num_pages == 0) || (!is_available_memory(md)))
|
|
continue;
|
|
|
|
curr.start = md->phys_addr;
|
|
curr.end = curr.start + (md->num_pages << EFI_PAGE_SHIFT);
|
|
|
|
if (!prev_valid) {
|
|
prev = curr;
|
|
prev_valid = 1;
|
|
} else {
|
|
if (curr.start < prev.start)
|
|
printk(KERN_INFO PFX "Unordered memory map\n");
|
|
if (prev.end == curr.start)
|
|
prev.end = curr.end;
|
|
else {
|
|
start =
|
|
(unsigned long) (PAGE_ALIGN(prev.start));
|
|
end = (unsigned long) (prev.end & PAGE_MASK);
|
|
if ((end > start)
|
|
&& (*callback) (start, end, arg) < 0)
|
|
return;
|
|
prev = curr;
|
|
}
|
|
}
|
|
}
|
|
if (prev_valid) {
|
|
start = (unsigned long) PAGE_ALIGN(prev.start);
|
|
end = (unsigned long) (prev.end & PAGE_MASK);
|
|
if (end > start)
|
|
(*callback) (start, end, arg);
|
|
}
|
|
}
|
|
|
|
void __init efi_init(void)
|
|
{
|
|
efi_config_table_t *config_tables;
|
|
efi_runtime_services_t *runtime;
|
|
efi_char16_t *c16;
|
|
char vendor[100] = "unknown";
|
|
unsigned long num_config_tables;
|
|
int i = 0;
|
|
|
|
memset(&efi, 0, sizeof(efi) );
|
|
memset(&efi_phys, 0, sizeof(efi_phys));
|
|
|
|
efi_phys.systab = EFI_SYSTAB;
|
|
memmap.phys_map = EFI_MEMMAP;
|
|
memmap.nr_map = EFI_MEMMAP_SIZE/EFI_MEMDESC_SIZE;
|
|
memmap.desc_version = EFI_MEMDESC_VERSION;
|
|
memmap.desc_size = EFI_MEMDESC_SIZE;
|
|
|
|
efi.systab = (efi_system_table_t *)
|
|
boot_ioremap((unsigned long) efi_phys.systab,
|
|
sizeof(efi_system_table_t));
|
|
/*
|
|
* Verify the EFI Table
|
|
*/
|
|
if (efi.systab == NULL)
|
|
printk(KERN_ERR PFX "Woah! Couldn't map the EFI system table.\n");
|
|
if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
|
printk(KERN_ERR PFX "Woah! EFI system table signature incorrect\n");
|
|
if ((efi.systab->hdr.revision ^ EFI_SYSTEM_TABLE_REVISION) >> 16 != 0)
|
|
printk(KERN_ERR PFX
|
|
"Warning: EFI system table major version mismatch: "
|
|
"got %d.%02d, expected %d.%02d\n",
|
|
efi.systab->hdr.revision >> 16,
|
|
efi.systab->hdr.revision & 0xffff,
|
|
EFI_SYSTEM_TABLE_REVISION >> 16,
|
|
EFI_SYSTEM_TABLE_REVISION & 0xffff);
|
|
/*
|
|
* Grab some details from the system table
|
|
*/
|
|
num_config_tables = efi.systab->nr_tables;
|
|
config_tables = (efi_config_table_t *)efi.systab->tables;
|
|
runtime = efi.systab->runtime;
|
|
|
|
/*
|
|
* Show what we know for posterity
|
|
*/
|
|
c16 = (efi_char16_t *) boot_ioremap(efi.systab->fw_vendor, 2);
|
|
if (c16) {
|
|
for (i = 0; i < (sizeof(vendor) - 1) && *c16; ++i)
|
|
vendor[i] = *c16++;
|
|
vendor[i] = '\0';
|
|
} else
|
|
printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
|
|
|
|
printk(KERN_INFO PFX "EFI v%u.%.02u by %s \n",
|
|
efi.systab->hdr.revision >> 16,
|
|
efi.systab->hdr.revision & 0xffff, vendor);
|
|
|
|
/*
|
|
* Let's see what config tables the firmware passed to us.
|
|
*/
|
|
config_tables = (efi_config_table_t *)
|
|
boot_ioremap((unsigned long) config_tables,
|
|
num_config_tables * sizeof(efi_config_table_t));
|
|
|
|
if (config_tables == NULL)
|
|
printk(KERN_ERR PFX "Could not map EFI Configuration Table!\n");
|
|
|
|
efi.mps = EFI_INVALID_TABLE_ADDR;
|
|
efi.acpi = EFI_INVALID_TABLE_ADDR;
|
|
efi.acpi20 = EFI_INVALID_TABLE_ADDR;
|
|
efi.smbios = EFI_INVALID_TABLE_ADDR;
|
|
efi.sal_systab = EFI_INVALID_TABLE_ADDR;
|
|
efi.boot_info = EFI_INVALID_TABLE_ADDR;
|
|
efi.hcdp = EFI_INVALID_TABLE_ADDR;
|
|
efi.uga = EFI_INVALID_TABLE_ADDR;
|
|
|
|
for (i = 0; i < num_config_tables; i++) {
|
|
if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
|
|
efi.mps = config_tables[i].table;
|
|
printk(KERN_INFO " MPS=0x%lx ", config_tables[i].table);
|
|
} else
|
|
if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
|
|
efi.acpi20 = config_tables[i].table;
|
|
printk(KERN_INFO " ACPI 2.0=0x%lx ", config_tables[i].table);
|
|
} else
|
|
if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
|
|
efi.acpi = config_tables[i].table;
|
|
printk(KERN_INFO " ACPI=0x%lx ", config_tables[i].table);
|
|
} else
|
|
if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
|
|
efi.smbios = config_tables[i].table;
|
|
printk(KERN_INFO " SMBIOS=0x%lx ", config_tables[i].table);
|
|
} else
|
|
if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
|
|
efi.hcdp = config_tables[i].table;
|
|
printk(KERN_INFO " HCDP=0x%lx ", config_tables[i].table);
|
|
} else
|
|
if (efi_guidcmp(config_tables[i].guid, UGA_IO_PROTOCOL_GUID) == 0) {
|
|
efi.uga = config_tables[i].table;
|
|
printk(KERN_INFO " UGA=0x%lx ", config_tables[i].table);
|
|
}
|
|
}
|
|
printk("\n");
|
|
|
|
/*
|
|
* Check out the runtime services table. We need to map
|
|
* the runtime services table so that we can grab the physical
|
|
* address of several of the EFI runtime functions, needed to
|
|
* set the firmware into virtual mode.
|
|
*/
|
|
|
|
runtime = (efi_runtime_services_t *) boot_ioremap((unsigned long)
|
|
runtime,
|
|
sizeof(efi_runtime_services_t));
|
|
if (runtime != NULL) {
|
|
/*
|
|
* We will only need *early* access to the following
|
|
* two EFI runtime services before set_virtual_address_map
|
|
* is invoked.
|
|
*/
|
|
efi_phys.get_time = (efi_get_time_t *) runtime->get_time;
|
|
efi_phys.set_virtual_address_map =
|
|
(efi_set_virtual_address_map_t *)
|
|
runtime->set_virtual_address_map;
|
|
} else
|
|
printk(KERN_ERR PFX "Could not map the runtime service table!\n");
|
|
|
|
/* Map the EFI memory map for use until paging_init() */
|
|
memmap.map = boot_ioremap((unsigned long) EFI_MEMMAP, EFI_MEMMAP_SIZE);
|
|
if (memmap.map == NULL)
|
|
printk(KERN_ERR PFX "Could not map the EFI memory map!\n");
|
|
|
|
memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
|
|
|
|
#if EFI_DEBUG
|
|
print_efi_memmap();
|
|
#endif
|
|
}
|
|
|
|
static inline void __init check_range_for_systab(efi_memory_desc_t *md)
|
|
{
|
|
if (((unsigned long)md->phys_addr <= (unsigned long)efi_phys.systab) &&
|
|
((unsigned long)efi_phys.systab < md->phys_addr +
|
|
((unsigned long)md->num_pages << EFI_PAGE_SHIFT))) {
|
|
unsigned long addr;
|
|
|
|
addr = md->virt_addr - md->phys_addr +
|
|
(unsigned long)efi_phys.systab;
|
|
efi.systab = (efi_system_table_t *)addr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function will switch the EFI runtime services to virtual mode.
|
|
* Essentially, look through the EFI memmap and map every region that
|
|
* has the runtime attribute bit set in its memory descriptor and update
|
|
* that memory descriptor with the virtual address obtained from ioremap().
|
|
* This enables the runtime services to be called without having to
|
|
* thunk back into physical mode for every invocation.
|
|
*/
|
|
|
|
void __init efi_enter_virtual_mode(void)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
efi_status_t status;
|
|
void *p;
|
|
|
|
efi.systab = NULL;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
|
|
if (!(md->attribute & EFI_MEMORY_RUNTIME))
|
|
continue;
|
|
|
|
md->virt_addr = (unsigned long)ioremap(md->phys_addr,
|
|
md->num_pages << EFI_PAGE_SHIFT);
|
|
if (!(unsigned long)md->virt_addr) {
|
|
printk(KERN_ERR PFX "ioremap of 0x%lX failed\n",
|
|
(unsigned long)md->phys_addr);
|
|
}
|
|
/* update the virtual address of the EFI system table */
|
|
check_range_for_systab(md);
|
|
}
|
|
|
|
BUG_ON(!efi.systab);
|
|
|
|
status = phys_efi_set_virtual_address_map(
|
|
memmap.desc_size * memmap.nr_map,
|
|
memmap.desc_size,
|
|
memmap.desc_version,
|
|
memmap.phys_map);
|
|
|
|
if (status != EFI_SUCCESS) {
|
|
printk (KERN_ALERT "You are screwed! "
|
|
"Unable to switch EFI into virtual mode "
|
|
"(status=%lx)\n", status);
|
|
panic("EFI call to SetVirtualAddressMap() failed!");
|
|
}
|
|
|
|
/*
|
|
* Now that EFI is in virtual mode, update the function
|
|
* pointers in the runtime service table to the new virtual addresses.
|
|
*/
|
|
|
|
efi.get_time = (efi_get_time_t *) efi.systab->runtime->get_time;
|
|
efi.set_time = (efi_set_time_t *) efi.systab->runtime->set_time;
|
|
efi.get_wakeup_time = (efi_get_wakeup_time_t *)
|
|
efi.systab->runtime->get_wakeup_time;
|
|
efi.set_wakeup_time = (efi_set_wakeup_time_t *)
|
|
efi.systab->runtime->set_wakeup_time;
|
|
efi.get_variable = (efi_get_variable_t *)
|
|
efi.systab->runtime->get_variable;
|
|
efi.get_next_variable = (efi_get_next_variable_t *)
|
|
efi.systab->runtime->get_next_variable;
|
|
efi.set_variable = (efi_set_variable_t *)
|
|
efi.systab->runtime->set_variable;
|
|
efi.get_next_high_mono_count = (efi_get_next_high_mono_count_t *)
|
|
efi.systab->runtime->get_next_high_mono_count;
|
|
efi.reset_system = (efi_reset_system_t *)
|
|
efi.systab->runtime->reset_system;
|
|
}
|
|
|
|
void __init
|
|
efi_initialize_iomem_resources(struct resource *code_resource,
|
|
struct resource *data_resource)
|
|
{
|
|
struct resource *res;
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
|
|
if ((md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >
|
|
0x100000000ULL)
|
|
continue;
|
|
res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
|
|
switch (md->type) {
|
|
case EFI_RESERVED_TYPE:
|
|
res->name = "Reserved Memory";
|
|
break;
|
|
case EFI_LOADER_CODE:
|
|
res->name = "Loader Code";
|
|
break;
|
|
case EFI_LOADER_DATA:
|
|
res->name = "Loader Data";
|
|
break;
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
res->name = "BootServices Data";
|
|
break;
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
res->name = "BootServices Code";
|
|
break;
|
|
case EFI_RUNTIME_SERVICES_CODE:
|
|
res->name = "Runtime Service Code";
|
|
break;
|
|
case EFI_RUNTIME_SERVICES_DATA:
|
|
res->name = "Runtime Service Data";
|
|
break;
|
|
case EFI_CONVENTIONAL_MEMORY:
|
|
res->name = "Conventional Memory";
|
|
break;
|
|
case EFI_UNUSABLE_MEMORY:
|
|
res->name = "Unusable Memory";
|
|
break;
|
|
case EFI_ACPI_RECLAIM_MEMORY:
|
|
res->name = "ACPI Reclaim";
|
|
break;
|
|
case EFI_ACPI_MEMORY_NVS:
|
|
res->name = "ACPI NVS";
|
|
break;
|
|
case EFI_MEMORY_MAPPED_IO:
|
|
res->name = "Memory Mapped IO";
|
|
break;
|
|
case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
|
|
res->name = "Memory Mapped IO Port Space";
|
|
break;
|
|
default:
|
|
res->name = "Reserved";
|
|
break;
|
|
}
|
|
res->start = md->phys_addr;
|
|
res->end = res->start + ((md->num_pages << EFI_PAGE_SHIFT) - 1);
|
|
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
if (request_resource(&iomem_resource, res) < 0)
|
|
printk(KERN_ERR PFX "Failed to allocate res %s : "
|
|
"0x%llx-0x%llx\n", res->name,
|
|
(unsigned long long)res->start,
|
|
(unsigned long long)res->end);
|
|
/*
|
|
* We don't know which region contains kernel data so we try
|
|
* it repeatedly and let the resource manager test it.
|
|
*/
|
|
if (md->type == EFI_CONVENTIONAL_MEMORY) {
|
|
request_resource(res, code_resource);
|
|
request_resource(res, data_resource);
|
|
#ifdef CONFIG_KEXEC
|
|
request_resource(res, &crashk_res);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convenience functions to obtain memory types and attributes
|
|
*/
|
|
|
|
u32 efi_mem_type(unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
if ((md->phys_addr <= phys_addr) && (phys_addr <
|
|
(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
|
|
return md->type;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
u64 efi_mem_attributes(unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
void *p;
|
|
|
|
for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
|
|
md = p;
|
|
if ((md->phys_addr <= phys_addr) && (phys_addr <
|
|
(md->phys_addr + (md-> num_pages << EFI_PAGE_SHIFT)) ))
|
|
return md->attribute;
|
|
}
|
|
return 0;
|
|
}
|