OpenCloudOS-Kernel/drivers/net/a2065.c

806 lines
20 KiB
C

/*
* Amiga Linux/68k A2065 Ethernet Driver
*
* (C) Copyright 1995-2003 by Geert Uytterhoeven <geert@linux-m68k.org>
*
* Fixes and tips by:
* - Janos Farkas (CHEXUM@sparta.banki.hu)
* - Jes Degn Soerensen (jds@kom.auc.dk)
* - Matt Domsch (Matt_Domsch@dell.com)
*
* ----------------------------------------------------------------------------
*
* This program is based on
*
* ariadne.?: Amiga Linux/68k Ariadne Ethernet Driver
* (C) Copyright 1995 by Geert Uytterhoeven,
* Peter De Schrijver
*
* lance.c: An AMD LANCE ethernet driver for linux.
* Written 1993-94 by Donald Becker.
*
* Am79C960: PCnet(tm)-ISA Single-Chip Ethernet Controller
* Advanced Micro Devices
* Publication #16907, Rev. B, Amendment/0, May 1994
*
* ----------------------------------------------------------------------------
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*
* ----------------------------------------------------------------------------
*
* The A2065 is a Zorro-II board made by Commodore/Ameristar. It contains:
*
* - an Am7990 Local Area Network Controller for Ethernet (LANCE) with
* both 10BASE-2 (thin coax) and AUI (DB-15) connectors
*/
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/module.h>
#include <linux/stddef.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/skbuff.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/crc32.h>
#include <linux/zorro.h>
#include <linux/bitops.h>
#include <asm/irq.h>
#include <asm/amigaints.h>
#include <asm/amigahw.h>
#include "a2065.h"
/*
* Transmit/Receive Ring Definitions
*/
#define LANCE_LOG_TX_BUFFERS (2)
#define LANCE_LOG_RX_BUFFERS (4)
#define TX_RING_SIZE (1<<LANCE_LOG_TX_BUFFERS)
#define RX_RING_SIZE (1<<LANCE_LOG_RX_BUFFERS)
#define TX_RING_MOD_MASK (TX_RING_SIZE-1)
#define RX_RING_MOD_MASK (RX_RING_SIZE-1)
#define PKT_BUF_SIZE (1544)
#define RX_BUFF_SIZE PKT_BUF_SIZE
#define TX_BUFF_SIZE PKT_BUF_SIZE
/*
* Layout of the Lance's RAM Buffer
*/
struct lance_init_block {
unsigned short mode; /* Pre-set mode (reg. 15) */
unsigned char phys_addr[6]; /* Physical ethernet address */
unsigned filter[2]; /* Multicast filter. */
/* Receive and transmit ring base, along with extra bits. */
unsigned short rx_ptr; /* receive descriptor addr */
unsigned short rx_len; /* receive len and high addr */
unsigned short tx_ptr; /* transmit descriptor addr */
unsigned short tx_len; /* transmit len and high addr */
/* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
struct lance_rx_desc brx_ring[RX_RING_SIZE];
struct lance_tx_desc btx_ring[TX_RING_SIZE];
char rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
char tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
};
/*
* Private Device Data
*/
struct lance_private {
char *name;
volatile struct lance_regs *ll;
volatile struct lance_init_block *init_block; /* Hosts view */
volatile struct lance_init_block *lance_init_block; /* Lance view */
int rx_new, tx_new;
int rx_old, tx_old;
int lance_log_rx_bufs, lance_log_tx_bufs;
int rx_ring_mod_mask, tx_ring_mod_mask;
int tpe; /* cable-selection is TPE */
int auto_select; /* cable-selection by carrier */
unsigned short busmaster_regval;
#ifdef CONFIG_SUNLANCE
struct Linux_SBus_DMA *ledma; /* if set this points to ledma and arch=4m */
int burst_sizes; /* ledma SBus burst sizes */
#endif
struct timer_list multicast_timer;
};
#define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
lp->tx_old+lp->tx_ring_mod_mask-lp->tx_new:\
lp->tx_old - lp->tx_new-1)
#define LANCE_ADDR(x) ((int)(x) & ~0xff000000)
/* Load the CSR registers */
static void load_csrs (struct lance_private *lp)
{
volatile struct lance_regs *ll = lp->ll;
volatile struct lance_init_block *aib = lp->lance_init_block;
int leptr;
leptr = LANCE_ADDR (aib);
ll->rap = LE_CSR1;
ll->rdp = (leptr & 0xFFFF);
ll->rap = LE_CSR2;
ll->rdp = leptr >> 16;
ll->rap = LE_CSR3;
ll->rdp = lp->busmaster_regval;
/* Point back to csr0 */
ll->rap = LE_CSR0;
}
#define ZERO 0
/* Setup the Lance Rx and Tx rings */
static void lance_init_ring (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_init_block *ib = lp->init_block;
volatile struct lance_init_block *aib; /* for LANCE_ADDR computations */
int leptr;
int i;
aib = lp->lance_init_block;
/* Lock out other processes while setting up hardware */
netif_stop_queue(dev);
lp->rx_new = lp->tx_new = 0;
lp->rx_old = lp->tx_old = 0;
ib->mode = 0;
/* Copy the ethernet address to the lance init block
* Note that on the sparc you need to swap the ethernet address.
*/
ib->phys_addr [0] = dev->dev_addr [1];
ib->phys_addr [1] = dev->dev_addr [0];
ib->phys_addr [2] = dev->dev_addr [3];
ib->phys_addr [3] = dev->dev_addr [2];
ib->phys_addr [4] = dev->dev_addr [5];
ib->phys_addr [5] = dev->dev_addr [4];
if (ZERO)
printk(KERN_DEBUG "TX rings:\n");
/* Setup the Tx ring entries */
for (i = 0; i <= (1<<lp->lance_log_tx_bufs); i++) {
leptr = LANCE_ADDR(&aib->tx_buf[i][0]);
ib->btx_ring [i].tmd0 = leptr;
ib->btx_ring [i].tmd1_hadr = leptr >> 16;
ib->btx_ring [i].tmd1_bits = 0;
ib->btx_ring [i].length = 0xf000; /* The ones required by tmd2 */
ib->btx_ring [i].misc = 0;
if (i < 3 && ZERO)
printk(KERN_DEBUG "%d: 0x%8.8x\n", i, leptr);
}
/* Setup the Rx ring entries */
if (ZERO)
printk(KERN_DEBUG "RX rings:\n");
for (i = 0; i < (1<<lp->lance_log_rx_bufs); i++) {
leptr = LANCE_ADDR(&aib->rx_buf[i][0]);
ib->brx_ring [i].rmd0 = leptr;
ib->brx_ring [i].rmd1_hadr = leptr >> 16;
ib->brx_ring [i].rmd1_bits = LE_R1_OWN;
ib->brx_ring [i].length = -RX_BUFF_SIZE | 0xf000;
ib->brx_ring [i].mblength = 0;
if (i < 3 && ZERO)
printk(KERN_DEBUG "%d: 0x%8.8x\n", i, leptr);
}
/* Setup the initialization block */
/* Setup rx descriptor pointer */
leptr = LANCE_ADDR(&aib->brx_ring);
ib->rx_len = (lp->lance_log_rx_bufs << 13) | (leptr >> 16);
ib->rx_ptr = leptr;
if (ZERO)
printk(KERN_DEBUG "RX ptr: %8.8x\n", leptr);
/* Setup tx descriptor pointer */
leptr = LANCE_ADDR(&aib->btx_ring);
ib->tx_len = (lp->lance_log_tx_bufs << 13) | (leptr >> 16);
ib->tx_ptr = leptr;
if (ZERO)
printk(KERN_DEBUG "TX ptr: %8.8x\n", leptr);
/* Clear the multicast filter */
ib->filter [0] = 0;
ib->filter [1] = 0;
}
static int init_restart_lance (struct lance_private *lp)
{
volatile struct lance_regs *ll = lp->ll;
int i;
ll->rap = LE_CSR0;
ll->rdp = LE_C0_INIT;
/* Wait for the lance to complete initialization */
for (i = 0; (i < 100) && !(ll->rdp & (LE_C0_ERR | LE_C0_IDON)); i++)
barrier();
if ((i == 100) || (ll->rdp & LE_C0_ERR)) {
printk(KERN_ERR "LANCE unopened after %d ticks, csr0=%4.4x.\n",
i, ll->rdp);
return -EIO;
}
/* Clear IDON by writing a "1", enable interrupts and start lance */
ll->rdp = LE_C0_IDON;
ll->rdp = LE_C0_INEA | LE_C0_STRT;
return 0;
}
static int lance_rx (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_init_block *ib = lp->init_block;
volatile struct lance_regs *ll = lp->ll;
volatile struct lance_rx_desc *rd;
unsigned char bits;
#ifdef TEST_HITS
int i;
printk(KERN_DEBUG "[");
for (i = 0; i < RX_RING_SIZE; i++) {
if (i == lp->rx_new)
printk ("%s",
ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "_" : "X");
else
printk ("%s",
ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "." : "1");
}
printk ("]\n");
#endif
ll->rdp = LE_C0_RINT|LE_C0_INEA;
for (rd = &ib->brx_ring [lp->rx_new];
!((bits = rd->rmd1_bits) & LE_R1_OWN);
rd = &ib->brx_ring [lp->rx_new]) {
/* We got an incomplete frame? */
if ((bits & LE_R1_POK) != LE_R1_POK) {
dev->stats.rx_over_errors++;
dev->stats.rx_errors++;
continue;
} else if (bits & LE_R1_ERR) {
/* Count only the end frame as a rx error,
* not the beginning
*/
if (bits & LE_R1_BUF) dev->stats.rx_fifo_errors++;
if (bits & LE_R1_CRC) dev->stats.rx_crc_errors++;
if (bits & LE_R1_OFL) dev->stats.rx_over_errors++;
if (bits & LE_R1_FRA) dev->stats.rx_frame_errors++;
if (bits & LE_R1_EOP) dev->stats.rx_errors++;
} else {
int len = (rd->mblength & 0xfff) - 4;
struct sk_buff *skb = dev_alloc_skb (len+2);
if (!skb) {
printk(KERN_WARNING "%s: Memory squeeze, "
"deferring packet.\n", dev->name);
dev->stats.rx_dropped++;
rd->mblength = 0;
rd->rmd1_bits = LE_R1_OWN;
lp->rx_new = (lp->rx_new + 1) & lp->rx_ring_mod_mask;
return 0;
}
skb_reserve (skb, 2); /* 16 byte align */
skb_put (skb, len); /* make room */
skb_copy_to_linear_data(skb,
(unsigned char *)&(ib->rx_buf [lp->rx_new][0]),
len);
skb->protocol = eth_type_trans (skb, dev);
netif_rx (skb);
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
}
/* Return the packet to the pool */
rd->mblength = 0;
rd->rmd1_bits = LE_R1_OWN;
lp->rx_new = (lp->rx_new + 1) & lp->rx_ring_mod_mask;
}
return 0;
}
static int lance_tx (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_init_block *ib = lp->init_block;
volatile struct lance_regs *ll = lp->ll;
volatile struct lance_tx_desc *td;
int i, j;
int status;
/* csr0 is 2f3 */
ll->rdp = LE_C0_TINT | LE_C0_INEA;
/* csr0 is 73 */
j = lp->tx_old;
for (i = j; i != lp->tx_new; i = j) {
td = &ib->btx_ring [i];
/* If we hit a packet not owned by us, stop */
if (td->tmd1_bits & LE_T1_OWN)
break;
if (td->tmd1_bits & LE_T1_ERR) {
status = td->misc;
dev->stats.tx_errors++;
if (status & LE_T3_RTY) dev->stats.tx_aborted_errors++;
if (status & LE_T3_LCOL) dev->stats.tx_window_errors++;
if (status & LE_T3_CLOS) {
dev->stats.tx_carrier_errors++;
if (lp->auto_select) {
lp->tpe = 1 - lp->tpe;
printk(KERN_ERR "%s: Carrier Lost, "
"trying %s\n", dev->name,
lp->tpe?"TPE":"AUI");
/* Stop the lance */
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
lance_init_ring (dev);
load_csrs (lp);
init_restart_lance (lp);
return 0;
}
}
/* buffer errors and underflows turn off the transmitter */
/* Restart the adapter */
if (status & (LE_T3_BUF|LE_T3_UFL)) {
dev->stats.tx_fifo_errors++;
printk(KERN_ERR "%s: Tx: ERR_BUF|ERR_UFL, "
"restarting\n", dev->name);
/* Stop the lance */
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
lance_init_ring (dev);
load_csrs (lp);
init_restart_lance (lp);
return 0;
}
} else if ((td->tmd1_bits & LE_T1_POK) == LE_T1_POK) {
/*
* So we don't count the packet more than once.
*/
td->tmd1_bits &= ~(LE_T1_POK);
/* One collision before packet was sent. */
if (td->tmd1_bits & LE_T1_EONE)
dev->stats.collisions++;
/* More than one collision, be optimistic. */
if (td->tmd1_bits & LE_T1_EMORE)
dev->stats.collisions += 2;
dev->stats.tx_packets++;
}
j = (j + 1) & lp->tx_ring_mod_mask;
}
lp->tx_old = j;
ll->rdp = LE_C0_TINT | LE_C0_INEA;
return 0;
}
static irqreturn_t lance_interrupt (int irq, void *dev_id)
{
struct net_device *dev;
struct lance_private *lp;
volatile struct lance_regs *ll;
int csr0;
dev = (struct net_device *) dev_id;
lp = netdev_priv(dev);
ll = lp->ll;
ll->rap = LE_CSR0; /* LANCE Controller Status */
csr0 = ll->rdp;
if (!(csr0 & LE_C0_INTR)) /* Check if any interrupt has */
return IRQ_NONE; /* been generated by the Lance. */
/* Acknowledge all the interrupt sources ASAP */
ll->rdp = csr0 & ~(LE_C0_INEA|LE_C0_TDMD|LE_C0_STOP|LE_C0_STRT|
LE_C0_INIT);
if ((csr0 & LE_C0_ERR)) {
/* Clear the error condition */
ll->rdp = LE_C0_BABL|LE_C0_ERR|LE_C0_MISS|LE_C0_INEA;
}
if (csr0 & LE_C0_RINT)
lance_rx (dev);
if (csr0 & LE_C0_TINT)
lance_tx (dev);
/* Log misc errors. */
if (csr0 & LE_C0_BABL)
dev->stats.tx_errors++; /* Tx babble. */
if (csr0 & LE_C0_MISS)
dev->stats.rx_errors++; /* Missed a Rx frame. */
if (csr0 & LE_C0_MERR) {
printk(KERN_ERR "%s: Bus master arbitration failure, status "
"%4.4x.\n", dev->name, csr0);
/* Restart the chip. */
ll->rdp = LE_C0_STRT;
}
if (netif_queue_stopped(dev) && TX_BUFFS_AVAIL > 0)
netif_wake_queue(dev);
ll->rap = LE_CSR0;
ll->rdp = LE_C0_BABL|LE_C0_CERR|LE_C0_MISS|LE_C0_MERR|
LE_C0_IDON|LE_C0_INEA;
return IRQ_HANDLED;
}
static int lance_open (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
int ret;
/* Stop the Lance */
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
/* Install the Interrupt handler */
ret = request_irq(IRQ_AMIGA_PORTS, lance_interrupt, IRQF_SHARED,
dev->name, dev);
if (ret) return ret;
load_csrs (lp);
lance_init_ring (dev);
netif_start_queue(dev);
return init_restart_lance (lp);
}
static int lance_close (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
netif_stop_queue(dev);
del_timer_sync(&lp->multicast_timer);
/* Stop the card */
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
free_irq(IRQ_AMIGA_PORTS, dev);
return 0;
}
static inline int lance_reset (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
int status;
/* Stop the lance */
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
load_csrs (lp);
lance_init_ring (dev);
dev->trans_start = jiffies; /* prevent tx timeout */
netif_start_queue(dev);
status = init_restart_lance (lp);
#ifdef DEBUG_DRIVER
printk(KERN_DEBUG "Lance restart=%d\n", status);
#endif
return status;
}
static void lance_tx_timeout(struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
printk(KERN_ERR "%s: transmit timed out, status %04x, reset\n",
dev->name, ll->rdp);
lance_reset(dev);
netif_wake_queue(dev);
}
static netdev_tx_t lance_start_xmit (struct sk_buff *skb,
struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_regs *ll = lp->ll;
volatile struct lance_init_block *ib = lp->init_block;
int entry, skblen;
int status = NETDEV_TX_OK;
unsigned long flags;
if (skb_padto(skb, ETH_ZLEN))
return NETDEV_TX_OK;
skblen = max_t(unsigned, skb->len, ETH_ZLEN);
local_irq_save(flags);
if (!TX_BUFFS_AVAIL){
local_irq_restore(flags);
return NETDEV_TX_LOCKED;
}
#ifdef DEBUG_DRIVER
/* dump the packet */
print_hex_dump(KERN_DEBUG, "skb->data: ", DUMP_PREFIX_NONE,
16, 1, skb->data, 64, true);
#endif
entry = lp->tx_new & lp->tx_ring_mod_mask;
ib->btx_ring [entry].length = (-skblen) | 0xf000;
ib->btx_ring [entry].misc = 0;
skb_copy_from_linear_data(skb, (void *)&ib->tx_buf [entry][0], skblen);
/* Now, give the packet to the lance */
ib->btx_ring [entry].tmd1_bits = (LE_T1_POK|LE_T1_OWN);
lp->tx_new = (lp->tx_new+1) & lp->tx_ring_mod_mask;
dev->stats.tx_bytes += skblen;
if (TX_BUFFS_AVAIL <= 0)
netif_stop_queue(dev);
/* Kick the lance: transmit now */
ll->rdp = LE_C0_INEA | LE_C0_TDMD;
dev_kfree_skb (skb);
local_irq_restore(flags);
return status;
}
/* taken from the depca driver */
static void lance_load_multicast (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_init_block *ib = lp->init_block;
volatile u16 *mcast_table = (u16 *)&ib->filter;
struct netdev_hw_addr *ha;
char *addrs;
u32 crc;
/* set all multicast bits */
if (dev->flags & IFF_ALLMULTI){
ib->filter [0] = 0xffffffff;
ib->filter [1] = 0xffffffff;
return;
}
/* clear the multicast filter */
ib->filter [0] = 0;
ib->filter [1] = 0;
/* Add addresses */
netdev_for_each_mc_addr(ha, dev) {
addrs = ha->addr;
/* multicast address? */
if (!(*addrs & 1))
continue;
crc = ether_crc_le(6, addrs);
crc = crc >> 26;
mcast_table [crc >> 4] |= 1 << (crc & 0xf);
}
}
static void lance_set_multicast (struct net_device *dev)
{
struct lance_private *lp = netdev_priv(dev);
volatile struct lance_init_block *ib = lp->init_block;
volatile struct lance_regs *ll = lp->ll;
if (!netif_running(dev))
return;
if (lp->tx_old != lp->tx_new) {
mod_timer(&lp->multicast_timer, jiffies + 4);
netif_wake_queue(dev);
return;
}
netif_stop_queue(dev);
ll->rap = LE_CSR0;
ll->rdp = LE_C0_STOP;
lance_init_ring (dev);
if (dev->flags & IFF_PROMISC) {
ib->mode |= LE_MO_PROM;
} else {
ib->mode &= ~LE_MO_PROM;
lance_load_multicast (dev);
}
load_csrs (lp);
init_restart_lance (lp);
netif_wake_queue(dev);
}
static int __devinit a2065_init_one(struct zorro_dev *z,
const struct zorro_device_id *ent);
static void __devexit a2065_remove_one(struct zorro_dev *z);
static struct zorro_device_id a2065_zorro_tbl[] __devinitdata = {
{ ZORRO_PROD_CBM_A2065_1 },
{ ZORRO_PROD_CBM_A2065_2 },
{ ZORRO_PROD_AMERISTAR_A2065 },
{ 0 }
};
MODULE_DEVICE_TABLE(zorro, a2065_zorro_tbl);
static struct zorro_driver a2065_driver = {
.name = "a2065",
.id_table = a2065_zorro_tbl,
.probe = a2065_init_one,
.remove = __devexit_p(a2065_remove_one),
};
static const struct net_device_ops lance_netdev_ops = {
.ndo_open = lance_open,
.ndo_stop = lance_close,
.ndo_start_xmit = lance_start_xmit,
.ndo_tx_timeout = lance_tx_timeout,
.ndo_set_multicast_list = lance_set_multicast,
.ndo_validate_addr = eth_validate_addr,
.ndo_change_mtu = eth_change_mtu,
.ndo_set_mac_address = eth_mac_addr,
};
static int __devinit a2065_init_one(struct zorro_dev *z,
const struct zorro_device_id *ent)
{
struct net_device *dev;
struct lance_private *priv;
unsigned long board, base_addr, mem_start;
struct resource *r1, *r2;
int err;
board = z->resource.start;
base_addr = board+A2065_LANCE;
mem_start = board+A2065_RAM;
r1 = request_mem_region(base_addr, sizeof(struct lance_regs),
"Am7990");
if (!r1)
return -EBUSY;
r2 = request_mem_region(mem_start, A2065_RAM_SIZE, "RAM");
if (!r2) {
release_mem_region(base_addr, sizeof(struct lance_regs));
return -EBUSY;
}
dev = alloc_etherdev(sizeof(struct lance_private));
if (dev == NULL) {
release_mem_region(base_addr, sizeof(struct lance_regs));
release_mem_region(mem_start, A2065_RAM_SIZE);
return -ENOMEM;
}
priv = netdev_priv(dev);
r1->name = dev->name;
r2->name = dev->name;
dev->dev_addr[0] = 0x00;
if (z->id != ZORRO_PROD_AMERISTAR_A2065) { /* Commodore */
dev->dev_addr[1] = 0x80;
dev->dev_addr[2] = 0x10;
} else { /* Ameristar */
dev->dev_addr[1] = 0x00;
dev->dev_addr[2] = 0x9f;
}
dev->dev_addr[3] = (z->rom.er_SerialNumber>>16) & 0xff;
dev->dev_addr[4] = (z->rom.er_SerialNumber>>8) & 0xff;
dev->dev_addr[5] = z->rom.er_SerialNumber & 0xff;
dev->base_addr = ZTWO_VADDR(base_addr);
dev->mem_start = ZTWO_VADDR(mem_start);
dev->mem_end = dev->mem_start+A2065_RAM_SIZE;
priv->ll = (volatile struct lance_regs *)dev->base_addr;
priv->init_block = (struct lance_init_block *)dev->mem_start;
priv->lance_init_block = (struct lance_init_block *)A2065_RAM;
priv->auto_select = 0;
priv->busmaster_regval = LE_C3_BSWP;
priv->lance_log_rx_bufs = LANCE_LOG_RX_BUFFERS;
priv->lance_log_tx_bufs = LANCE_LOG_TX_BUFFERS;
priv->rx_ring_mod_mask = RX_RING_MOD_MASK;
priv->tx_ring_mod_mask = TX_RING_MOD_MASK;
dev->netdev_ops = &lance_netdev_ops;
dev->watchdog_timeo = 5*HZ;
dev->dma = 0;
init_timer(&priv->multicast_timer);
priv->multicast_timer.data = (unsigned long) dev;
priv->multicast_timer.function =
(void (*)(unsigned long)) &lance_set_multicast;
err = register_netdev(dev);
if (err) {
release_mem_region(base_addr, sizeof(struct lance_regs));
release_mem_region(mem_start, A2065_RAM_SIZE);
free_netdev(dev);
return err;
}
zorro_set_drvdata(z, dev);
printk(KERN_INFO "%s: A2065 at 0x%08lx, Ethernet Address "
"%pM\n", dev->name, board, dev->dev_addr);
return 0;
}
static void __devexit a2065_remove_one(struct zorro_dev *z)
{
struct net_device *dev = zorro_get_drvdata(z);
unregister_netdev(dev);
release_mem_region(ZTWO_PADDR(dev->base_addr),
sizeof(struct lance_regs));
release_mem_region(ZTWO_PADDR(dev->mem_start), A2065_RAM_SIZE);
free_netdev(dev);
}
static int __init a2065_init_module(void)
{
return zorro_register_driver(&a2065_driver);
}
static void __exit a2065_cleanup_module(void)
{
zorro_unregister_driver(&a2065_driver);
}
module_init(a2065_init_module);
module_exit(a2065_cleanup_module);
MODULE_LICENSE("GPL");