1316 lines
33 KiB
C
1316 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
#define pr_fmt(fmt) "SMP alternatives: " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/list.h>
|
|
#include <linux/stringify.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/sync_core.h>
|
|
#include <asm/text-patching.h>
|
|
#include <asm/alternative.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/nmi.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/io.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/paravirt.h>
|
|
|
|
int __read_mostly alternatives_patched;
|
|
|
|
EXPORT_SYMBOL_GPL(alternatives_patched);
|
|
|
|
#define MAX_PATCH_LEN (255-1)
|
|
|
|
static int __initdata_or_module debug_alternative;
|
|
|
|
static int __init debug_alt(char *str)
|
|
{
|
|
debug_alternative = 1;
|
|
return 1;
|
|
}
|
|
__setup("debug-alternative", debug_alt);
|
|
|
|
static int noreplace_smp;
|
|
|
|
static int __init setup_noreplace_smp(char *str)
|
|
{
|
|
noreplace_smp = 1;
|
|
return 1;
|
|
}
|
|
__setup("noreplace-smp", setup_noreplace_smp);
|
|
|
|
#define DPRINTK(fmt, args...) \
|
|
do { \
|
|
if (debug_alternative) \
|
|
printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args); \
|
|
} while (0)
|
|
|
|
#define DUMP_BYTES(buf, len, fmt, args...) \
|
|
do { \
|
|
if (unlikely(debug_alternative)) { \
|
|
int j; \
|
|
\
|
|
if (!(len)) \
|
|
break; \
|
|
\
|
|
printk(KERN_DEBUG pr_fmt(fmt), ##args); \
|
|
for (j = 0; j < (len) - 1; j++) \
|
|
printk(KERN_CONT "%02hhx ", buf[j]); \
|
|
printk(KERN_CONT "%02hhx\n", buf[j]); \
|
|
} \
|
|
} while (0)
|
|
|
|
static const unsigned char x86nops[] =
|
|
{
|
|
BYTES_NOP1,
|
|
BYTES_NOP2,
|
|
BYTES_NOP3,
|
|
BYTES_NOP4,
|
|
BYTES_NOP5,
|
|
BYTES_NOP6,
|
|
BYTES_NOP7,
|
|
BYTES_NOP8,
|
|
};
|
|
|
|
const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
|
|
{
|
|
NULL,
|
|
x86nops,
|
|
x86nops + 1,
|
|
x86nops + 1 + 2,
|
|
x86nops + 1 + 2 + 3,
|
|
x86nops + 1 + 2 + 3 + 4,
|
|
x86nops + 1 + 2 + 3 + 4 + 5,
|
|
x86nops + 1 + 2 + 3 + 4 + 5 + 6,
|
|
x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
|
|
};
|
|
|
|
/* Use this to add nops to a buffer, then text_poke the whole buffer. */
|
|
static void __init_or_module add_nops(void *insns, unsigned int len)
|
|
{
|
|
while (len > 0) {
|
|
unsigned int noplen = len;
|
|
if (noplen > ASM_NOP_MAX)
|
|
noplen = ASM_NOP_MAX;
|
|
memcpy(insns, x86_nops[noplen], noplen);
|
|
insns += noplen;
|
|
len -= noplen;
|
|
}
|
|
}
|
|
|
|
extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
|
|
extern s32 __smp_locks[], __smp_locks_end[];
|
|
void text_poke_early(void *addr, const void *opcode, size_t len);
|
|
|
|
/*
|
|
* Are we looking at a near JMP with a 1 or 4-byte displacement.
|
|
*/
|
|
static inline bool is_jmp(const u8 opcode)
|
|
{
|
|
return opcode == 0xeb || opcode == 0xe9;
|
|
}
|
|
|
|
static void __init_or_module
|
|
recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
|
|
{
|
|
u8 *next_rip, *tgt_rip;
|
|
s32 n_dspl, o_dspl;
|
|
int repl_len;
|
|
|
|
if (a->replacementlen != 5)
|
|
return;
|
|
|
|
o_dspl = *(s32 *)(insn_buff + 1);
|
|
|
|
/* next_rip of the replacement JMP */
|
|
next_rip = repl_insn + a->replacementlen;
|
|
/* target rip of the replacement JMP */
|
|
tgt_rip = next_rip + o_dspl;
|
|
n_dspl = tgt_rip - orig_insn;
|
|
|
|
DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
|
|
|
|
if (tgt_rip - orig_insn >= 0) {
|
|
if (n_dspl - 2 <= 127)
|
|
goto two_byte_jmp;
|
|
else
|
|
goto five_byte_jmp;
|
|
/* negative offset */
|
|
} else {
|
|
if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
|
|
goto two_byte_jmp;
|
|
else
|
|
goto five_byte_jmp;
|
|
}
|
|
|
|
two_byte_jmp:
|
|
n_dspl -= 2;
|
|
|
|
insn_buff[0] = 0xeb;
|
|
insn_buff[1] = (s8)n_dspl;
|
|
add_nops(insn_buff + 2, 3);
|
|
|
|
repl_len = 2;
|
|
goto done;
|
|
|
|
five_byte_jmp:
|
|
n_dspl -= 5;
|
|
|
|
insn_buff[0] = 0xe9;
|
|
*(s32 *)&insn_buff[1] = n_dspl;
|
|
|
|
repl_len = 5;
|
|
|
|
done:
|
|
|
|
DPRINTK("final displ: 0x%08x, JMP 0x%lx",
|
|
n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
|
|
}
|
|
|
|
/*
|
|
* optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
|
|
*
|
|
* @instr: instruction byte stream
|
|
* @instrlen: length of the above
|
|
* @off: offset within @instr where the first NOP has been detected
|
|
*
|
|
* Return: number of NOPs found (and replaced).
|
|
*/
|
|
static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
|
|
{
|
|
unsigned long flags;
|
|
int i = off, nnops;
|
|
|
|
while (i < instrlen) {
|
|
if (instr[i] != 0x90)
|
|
break;
|
|
|
|
i++;
|
|
}
|
|
|
|
nnops = i - off;
|
|
|
|
if (nnops <= 1)
|
|
return nnops;
|
|
|
|
local_irq_save(flags);
|
|
add_nops(instr + off, nnops);
|
|
local_irq_restore(flags);
|
|
|
|
DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
|
|
|
|
return nnops;
|
|
}
|
|
|
|
/*
|
|
* "noinline" to cause control flow change and thus invalidate I$ and
|
|
* cause refetch after modification.
|
|
*/
|
|
static void __init_or_module noinline optimize_nops(struct alt_instr *a, u8 *instr)
|
|
{
|
|
struct insn insn;
|
|
int i = 0;
|
|
|
|
/*
|
|
* Jump over the non-NOP insns and optimize single-byte NOPs into bigger
|
|
* ones.
|
|
*/
|
|
for (;;) {
|
|
if (insn_decode_kernel(&insn, &instr[i]))
|
|
return;
|
|
|
|
/*
|
|
* See if this and any potentially following NOPs can be
|
|
* optimized.
|
|
*/
|
|
if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
|
|
i += optimize_nops_range(instr, a->instrlen, i);
|
|
else
|
|
i += insn.length;
|
|
|
|
if (i >= a->instrlen)
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Replace instructions with better alternatives for this CPU type. This runs
|
|
* before SMP is initialized to avoid SMP problems with self modifying code.
|
|
* This implies that asymmetric systems where APs have less capabilities than
|
|
* the boot processor are not handled. Tough. Make sure you disable such
|
|
* features by hand.
|
|
*
|
|
* Marked "noinline" to cause control flow change and thus insn cache
|
|
* to refetch changed I$ lines.
|
|
*/
|
|
void __init_or_module noinline apply_alternatives(struct alt_instr *start,
|
|
struct alt_instr *end)
|
|
{
|
|
struct alt_instr *a;
|
|
u8 *instr, *replacement;
|
|
u8 insn_buff[MAX_PATCH_LEN];
|
|
|
|
DPRINTK("alt table %px, -> %px", start, end);
|
|
/*
|
|
* The scan order should be from start to end. A later scanned
|
|
* alternative code can overwrite previously scanned alternative code.
|
|
* Some kernel functions (e.g. memcpy, memset, etc) use this order to
|
|
* patch code.
|
|
*
|
|
* So be careful if you want to change the scan order to any other
|
|
* order.
|
|
*/
|
|
for (a = start; a < end; a++) {
|
|
int insn_buff_sz = 0;
|
|
/* Mask away "NOT" flag bit for feature to test. */
|
|
u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
|
|
|
|
instr = (u8 *)&a->instr_offset + a->instr_offset;
|
|
replacement = (u8 *)&a->repl_offset + a->repl_offset;
|
|
BUG_ON(a->instrlen > sizeof(insn_buff));
|
|
BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
|
|
|
|
/*
|
|
* Patch if either:
|
|
* - feature is present
|
|
* - feature not present but ALTINSTR_FLAG_INV is set to mean,
|
|
* patch if feature is *NOT* present.
|
|
*/
|
|
if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
|
|
goto next;
|
|
|
|
DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
|
|
(a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
|
|
feature >> 5,
|
|
feature & 0x1f,
|
|
instr, instr, a->instrlen,
|
|
replacement, a->replacementlen);
|
|
|
|
DUMP_BYTES(instr, a->instrlen, "%px: old_insn: ", instr);
|
|
DUMP_BYTES(replacement, a->replacementlen, "%px: rpl_insn: ", replacement);
|
|
|
|
memcpy(insn_buff, replacement, a->replacementlen);
|
|
insn_buff_sz = a->replacementlen;
|
|
|
|
/*
|
|
* 0xe8 is a relative jump; fix the offset.
|
|
*
|
|
* Instruction length is checked before the opcode to avoid
|
|
* accessing uninitialized bytes for zero-length replacements.
|
|
*/
|
|
if (a->replacementlen == 5 && *insn_buff == 0xe8) {
|
|
*(s32 *)(insn_buff + 1) += replacement - instr;
|
|
DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
|
|
*(s32 *)(insn_buff + 1),
|
|
(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
|
|
}
|
|
|
|
if (a->replacementlen && is_jmp(replacement[0]))
|
|
recompute_jump(a, instr, replacement, insn_buff);
|
|
|
|
for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
|
|
insn_buff[insn_buff_sz] = 0x90;
|
|
|
|
DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
|
|
|
|
text_poke_early(instr, insn_buff, insn_buff_sz);
|
|
|
|
next:
|
|
optimize_nops(a, instr);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void alternatives_smp_lock(const s32 *start, const s32 *end,
|
|
u8 *text, u8 *text_end)
|
|
{
|
|
const s32 *poff;
|
|
|
|
for (poff = start; poff < end; poff++) {
|
|
u8 *ptr = (u8 *)poff + *poff;
|
|
|
|
if (!*poff || ptr < text || ptr >= text_end)
|
|
continue;
|
|
/* turn DS segment override prefix into lock prefix */
|
|
if (*ptr == 0x3e)
|
|
text_poke(ptr, ((unsigned char []){0xf0}), 1);
|
|
}
|
|
}
|
|
|
|
static void alternatives_smp_unlock(const s32 *start, const s32 *end,
|
|
u8 *text, u8 *text_end)
|
|
{
|
|
const s32 *poff;
|
|
|
|
for (poff = start; poff < end; poff++) {
|
|
u8 *ptr = (u8 *)poff + *poff;
|
|
|
|
if (!*poff || ptr < text || ptr >= text_end)
|
|
continue;
|
|
/* turn lock prefix into DS segment override prefix */
|
|
if (*ptr == 0xf0)
|
|
text_poke(ptr, ((unsigned char []){0x3E}), 1);
|
|
}
|
|
}
|
|
|
|
struct smp_alt_module {
|
|
/* what is this ??? */
|
|
struct module *mod;
|
|
char *name;
|
|
|
|
/* ptrs to lock prefixes */
|
|
const s32 *locks;
|
|
const s32 *locks_end;
|
|
|
|
/* .text segment, needed to avoid patching init code ;) */
|
|
u8 *text;
|
|
u8 *text_end;
|
|
|
|
struct list_head next;
|
|
};
|
|
static LIST_HEAD(smp_alt_modules);
|
|
static bool uniproc_patched = false; /* protected by text_mutex */
|
|
|
|
void __init_or_module alternatives_smp_module_add(struct module *mod,
|
|
char *name,
|
|
void *locks, void *locks_end,
|
|
void *text, void *text_end)
|
|
{
|
|
struct smp_alt_module *smp;
|
|
|
|
mutex_lock(&text_mutex);
|
|
if (!uniproc_patched)
|
|
goto unlock;
|
|
|
|
if (num_possible_cpus() == 1)
|
|
/* Don't bother remembering, we'll never have to undo it. */
|
|
goto smp_unlock;
|
|
|
|
smp = kzalloc(sizeof(*smp), GFP_KERNEL);
|
|
if (NULL == smp)
|
|
/* we'll run the (safe but slow) SMP code then ... */
|
|
goto unlock;
|
|
|
|
smp->mod = mod;
|
|
smp->name = name;
|
|
smp->locks = locks;
|
|
smp->locks_end = locks_end;
|
|
smp->text = text;
|
|
smp->text_end = text_end;
|
|
DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
|
|
smp->locks, smp->locks_end,
|
|
smp->text, smp->text_end, smp->name);
|
|
|
|
list_add_tail(&smp->next, &smp_alt_modules);
|
|
smp_unlock:
|
|
alternatives_smp_unlock(locks, locks_end, text, text_end);
|
|
unlock:
|
|
mutex_unlock(&text_mutex);
|
|
}
|
|
|
|
void __init_or_module alternatives_smp_module_del(struct module *mod)
|
|
{
|
|
struct smp_alt_module *item;
|
|
|
|
mutex_lock(&text_mutex);
|
|
list_for_each_entry(item, &smp_alt_modules, next) {
|
|
if (mod != item->mod)
|
|
continue;
|
|
list_del(&item->next);
|
|
kfree(item);
|
|
break;
|
|
}
|
|
mutex_unlock(&text_mutex);
|
|
}
|
|
|
|
void alternatives_enable_smp(void)
|
|
{
|
|
struct smp_alt_module *mod;
|
|
|
|
/* Why bother if there are no other CPUs? */
|
|
BUG_ON(num_possible_cpus() == 1);
|
|
|
|
mutex_lock(&text_mutex);
|
|
|
|
if (uniproc_patched) {
|
|
pr_info("switching to SMP code\n");
|
|
BUG_ON(num_online_cpus() != 1);
|
|
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
|
|
clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
|
|
list_for_each_entry(mod, &smp_alt_modules, next)
|
|
alternatives_smp_lock(mod->locks, mod->locks_end,
|
|
mod->text, mod->text_end);
|
|
uniproc_patched = false;
|
|
}
|
|
mutex_unlock(&text_mutex);
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the address range is reserved for SMP-alternatives.
|
|
* Must hold text_mutex.
|
|
*/
|
|
int alternatives_text_reserved(void *start, void *end)
|
|
{
|
|
struct smp_alt_module *mod;
|
|
const s32 *poff;
|
|
u8 *text_start = start;
|
|
u8 *text_end = end;
|
|
|
|
lockdep_assert_held(&text_mutex);
|
|
|
|
list_for_each_entry(mod, &smp_alt_modules, next) {
|
|
if (mod->text > text_end || mod->text_end < text_start)
|
|
continue;
|
|
for (poff = mod->locks; poff < mod->locks_end; poff++) {
|
|
const u8 *ptr = (const u8 *)poff + *poff;
|
|
|
|
if (text_start <= ptr && text_end > ptr)
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
|
|
struct paravirt_patch_site *end)
|
|
{
|
|
struct paravirt_patch_site *p;
|
|
char insn_buff[MAX_PATCH_LEN];
|
|
|
|
for (p = start; p < end; p++) {
|
|
unsigned int used;
|
|
|
|
BUG_ON(p->len > MAX_PATCH_LEN);
|
|
/* prep the buffer with the original instructions */
|
|
memcpy(insn_buff, p->instr, p->len);
|
|
used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
|
|
|
|
BUG_ON(used > p->len);
|
|
|
|
/* Pad the rest with nops */
|
|
add_nops(insn_buff + used, p->len - used);
|
|
text_poke_early(p->instr, insn_buff, p->len);
|
|
}
|
|
}
|
|
extern struct paravirt_patch_site __start_parainstructions[],
|
|
__stop_parainstructions[];
|
|
#endif /* CONFIG_PARAVIRT */
|
|
|
|
/*
|
|
* Self-test for the INT3 based CALL emulation code.
|
|
*
|
|
* This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
|
|
* properly and that there is a stack gap between the INT3 frame and the
|
|
* previous context. Without this gap doing a virtual PUSH on the interrupted
|
|
* stack would corrupt the INT3 IRET frame.
|
|
*
|
|
* See entry_{32,64}.S for more details.
|
|
*/
|
|
|
|
/*
|
|
* We define the int3_magic() function in assembly to control the calling
|
|
* convention such that we can 'call' it from assembly.
|
|
*/
|
|
|
|
extern void int3_magic(unsigned int *ptr); /* defined in asm */
|
|
|
|
asm (
|
|
" .pushsection .init.text, \"ax\", @progbits\n"
|
|
" .type int3_magic, @function\n"
|
|
"int3_magic:\n"
|
|
" movl $1, (%" _ASM_ARG1 ")\n"
|
|
" ret\n"
|
|
" .size int3_magic, .-int3_magic\n"
|
|
" .popsection\n"
|
|
);
|
|
|
|
extern __initdata unsigned long int3_selftest_ip; /* defined in asm below */
|
|
|
|
static int __init
|
|
int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
|
|
{
|
|
struct die_args *args = data;
|
|
struct pt_regs *regs = args->regs;
|
|
|
|
if (!regs || user_mode(regs))
|
|
return NOTIFY_DONE;
|
|
|
|
if (val != DIE_INT3)
|
|
return NOTIFY_DONE;
|
|
|
|
if (regs->ip - INT3_INSN_SIZE != int3_selftest_ip)
|
|
return NOTIFY_DONE;
|
|
|
|
int3_emulate_call(regs, (unsigned long)&int3_magic);
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
static void __init int3_selftest(void)
|
|
{
|
|
static __initdata struct notifier_block int3_exception_nb = {
|
|
.notifier_call = int3_exception_notify,
|
|
.priority = INT_MAX-1, /* last */
|
|
};
|
|
unsigned int val = 0;
|
|
|
|
BUG_ON(register_die_notifier(&int3_exception_nb));
|
|
|
|
/*
|
|
* Basically: int3_magic(&val); but really complicated :-)
|
|
*
|
|
* Stick the address of the INT3 instruction into int3_selftest_ip,
|
|
* then trigger the INT3, padded with NOPs to match a CALL instruction
|
|
* length.
|
|
*/
|
|
asm volatile ("1: int3; nop; nop; nop; nop\n\t"
|
|
".pushsection .init.data,\"aw\"\n\t"
|
|
".align " __ASM_SEL(4, 8) "\n\t"
|
|
".type int3_selftest_ip, @object\n\t"
|
|
".size int3_selftest_ip, " __ASM_SEL(4, 8) "\n\t"
|
|
"int3_selftest_ip:\n\t"
|
|
__ASM_SEL(.long, .quad) " 1b\n\t"
|
|
".popsection\n\t"
|
|
: ASM_CALL_CONSTRAINT
|
|
: __ASM_SEL_RAW(a, D) (&val)
|
|
: "memory");
|
|
|
|
BUG_ON(val != 1);
|
|
|
|
unregister_die_notifier(&int3_exception_nb);
|
|
}
|
|
|
|
void __init alternative_instructions(void)
|
|
{
|
|
int3_selftest();
|
|
|
|
/*
|
|
* The patching is not fully atomic, so try to avoid local
|
|
* interruptions that might execute the to be patched code.
|
|
* Other CPUs are not running.
|
|
*/
|
|
stop_nmi();
|
|
|
|
/*
|
|
* Don't stop machine check exceptions while patching.
|
|
* MCEs only happen when something got corrupted and in this
|
|
* case we must do something about the corruption.
|
|
* Ignoring it is worse than an unlikely patching race.
|
|
* Also machine checks tend to be broadcast and if one CPU
|
|
* goes into machine check the others follow quickly, so we don't
|
|
* expect a machine check to cause undue problems during to code
|
|
* patching.
|
|
*/
|
|
|
|
/*
|
|
* Paravirt patching and alternative patching can be combined to
|
|
* replace a function call with a short direct code sequence (e.g.
|
|
* by setting a constant return value instead of doing that in an
|
|
* external function).
|
|
* In order to make this work the following sequence is required:
|
|
* 1. set (artificial) features depending on used paravirt
|
|
* functions which can later influence alternative patching
|
|
* 2. apply paravirt patching (generally replacing an indirect
|
|
* function call with a direct one)
|
|
* 3. apply alternative patching (e.g. replacing a direct function
|
|
* call with a custom code sequence)
|
|
* Doing paravirt patching after alternative patching would clobber
|
|
* the optimization of the custom code with a function call again.
|
|
*/
|
|
paravirt_set_cap();
|
|
|
|
/*
|
|
* First patch paravirt functions, such that we overwrite the indirect
|
|
* call with the direct call.
|
|
*/
|
|
apply_paravirt(__parainstructions, __parainstructions_end);
|
|
|
|
/*
|
|
* Then patch alternatives, such that those paravirt calls that are in
|
|
* alternatives can be overwritten by their immediate fragments.
|
|
*/
|
|
apply_alternatives(__alt_instructions, __alt_instructions_end);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Patch to UP if other cpus not imminent. */
|
|
if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
|
|
uniproc_patched = true;
|
|
alternatives_smp_module_add(NULL, "core kernel",
|
|
__smp_locks, __smp_locks_end,
|
|
_text, _etext);
|
|
}
|
|
|
|
if (!uniproc_patched || num_possible_cpus() == 1) {
|
|
free_init_pages("SMP alternatives",
|
|
(unsigned long)__smp_locks,
|
|
(unsigned long)__smp_locks_end);
|
|
}
|
|
#endif
|
|
|
|
restart_nmi();
|
|
alternatives_patched = 1;
|
|
}
|
|
|
|
/**
|
|
* text_poke_early - Update instructions on a live kernel at boot time
|
|
* @addr: address to modify
|
|
* @opcode: source of the copy
|
|
* @len: length to copy
|
|
*
|
|
* When you use this code to patch more than one byte of an instruction
|
|
* you need to make sure that other CPUs cannot execute this code in parallel.
|
|
* Also no thread must be currently preempted in the middle of these
|
|
* instructions. And on the local CPU you need to be protected against NMI or
|
|
* MCE handlers seeing an inconsistent instruction while you patch.
|
|
*/
|
|
void __init_or_module text_poke_early(void *addr, const void *opcode,
|
|
size_t len)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_NX) &&
|
|
is_module_text_address((unsigned long)addr)) {
|
|
/*
|
|
* Modules text is marked initially as non-executable, so the
|
|
* code cannot be running and speculative code-fetches are
|
|
* prevented. Just change the code.
|
|
*/
|
|
memcpy(addr, opcode, len);
|
|
} else {
|
|
local_irq_save(flags);
|
|
memcpy(addr, opcode, len);
|
|
local_irq_restore(flags);
|
|
sync_core();
|
|
|
|
/*
|
|
* Could also do a CLFLUSH here to speed up CPU recovery; but
|
|
* that causes hangs on some VIA CPUs.
|
|
*/
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
struct mm_struct *mm;
|
|
} temp_mm_state_t;
|
|
|
|
/*
|
|
* Using a temporary mm allows to set temporary mappings that are not accessible
|
|
* by other CPUs. Such mappings are needed to perform sensitive memory writes
|
|
* that override the kernel memory protections (e.g., W^X), without exposing the
|
|
* temporary page-table mappings that are required for these write operations to
|
|
* other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
|
|
* mapping is torn down.
|
|
*
|
|
* Context: The temporary mm needs to be used exclusively by a single core. To
|
|
* harden security IRQs must be disabled while the temporary mm is
|
|
* loaded, thereby preventing interrupt handler bugs from overriding
|
|
* the kernel memory protection.
|
|
*/
|
|
static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
|
|
{
|
|
temp_mm_state_t temp_state;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
/*
|
|
* Make sure not to be in TLB lazy mode, as otherwise we'll end up
|
|
* with a stale address space WITHOUT being in lazy mode after
|
|
* restoring the previous mm.
|
|
*/
|
|
if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
|
|
leave_mm(smp_processor_id());
|
|
|
|
temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
|
|
switch_mm_irqs_off(NULL, mm, current);
|
|
|
|
/*
|
|
* If breakpoints are enabled, disable them while the temporary mm is
|
|
* used. Userspace might set up watchpoints on addresses that are used
|
|
* in the temporary mm, which would lead to wrong signals being sent or
|
|
* crashes.
|
|
*
|
|
* Note that breakpoints are not disabled selectively, which also causes
|
|
* kernel breakpoints (e.g., perf's) to be disabled. This might be
|
|
* undesirable, but still seems reasonable as the code that runs in the
|
|
* temporary mm should be short.
|
|
*/
|
|
if (hw_breakpoint_active())
|
|
hw_breakpoint_disable();
|
|
|
|
return temp_state;
|
|
}
|
|
|
|
static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
|
|
{
|
|
lockdep_assert_irqs_disabled();
|
|
switch_mm_irqs_off(NULL, prev_state.mm, current);
|
|
|
|
/*
|
|
* Restore the breakpoints if they were disabled before the temporary mm
|
|
* was loaded.
|
|
*/
|
|
if (hw_breakpoint_active())
|
|
hw_breakpoint_restore();
|
|
}
|
|
|
|
__ro_after_init struct mm_struct *poking_mm;
|
|
__ro_after_init unsigned long poking_addr;
|
|
|
|
static void *__text_poke(void *addr, const void *opcode, size_t len)
|
|
{
|
|
bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
|
|
struct page *pages[2] = {NULL};
|
|
temp_mm_state_t prev;
|
|
unsigned long flags;
|
|
pte_t pte, *ptep;
|
|
spinlock_t *ptl;
|
|
pgprot_t pgprot;
|
|
|
|
/*
|
|
* While boot memory allocator is running we cannot use struct pages as
|
|
* they are not yet initialized. There is no way to recover.
|
|
*/
|
|
BUG_ON(!after_bootmem);
|
|
|
|
if (!core_kernel_text((unsigned long)addr)) {
|
|
pages[0] = vmalloc_to_page(addr);
|
|
if (cross_page_boundary)
|
|
pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
|
|
} else {
|
|
pages[0] = virt_to_page(addr);
|
|
WARN_ON(!PageReserved(pages[0]));
|
|
if (cross_page_boundary)
|
|
pages[1] = virt_to_page(addr + PAGE_SIZE);
|
|
}
|
|
/*
|
|
* If something went wrong, crash and burn since recovery paths are not
|
|
* implemented.
|
|
*/
|
|
BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
|
|
|
|
/*
|
|
* Map the page without the global bit, as TLB flushing is done with
|
|
* flush_tlb_mm_range(), which is intended for non-global PTEs.
|
|
*/
|
|
pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
|
|
|
|
/*
|
|
* The lock is not really needed, but this allows to avoid open-coding.
|
|
*/
|
|
ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
|
|
|
|
/*
|
|
* This must not fail; preallocated in poking_init().
|
|
*/
|
|
VM_BUG_ON(!ptep);
|
|
|
|
local_irq_save(flags);
|
|
|
|
pte = mk_pte(pages[0], pgprot);
|
|
set_pte_at(poking_mm, poking_addr, ptep, pte);
|
|
|
|
if (cross_page_boundary) {
|
|
pte = mk_pte(pages[1], pgprot);
|
|
set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
|
|
}
|
|
|
|
/*
|
|
* Loading the temporary mm behaves as a compiler barrier, which
|
|
* guarantees that the PTE will be set at the time memcpy() is done.
|
|
*/
|
|
prev = use_temporary_mm(poking_mm);
|
|
|
|
kasan_disable_current();
|
|
memcpy((u8 *)poking_addr + offset_in_page(addr), opcode, len);
|
|
kasan_enable_current();
|
|
|
|
/*
|
|
* Ensure that the PTE is only cleared after the instructions of memcpy
|
|
* were issued by using a compiler barrier.
|
|
*/
|
|
barrier();
|
|
|
|
pte_clear(poking_mm, poking_addr, ptep);
|
|
if (cross_page_boundary)
|
|
pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
|
|
|
|
/*
|
|
* Loading the previous page-table hierarchy requires a serializing
|
|
* instruction that already allows the core to see the updated version.
|
|
* Xen-PV is assumed to serialize execution in a similar manner.
|
|
*/
|
|
unuse_temporary_mm(prev);
|
|
|
|
/*
|
|
* Flushing the TLB might involve IPIs, which would require enabled
|
|
* IRQs, but not if the mm is not used, as it is in this point.
|
|
*/
|
|
flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
|
|
(cross_page_boundary ? 2 : 1) * PAGE_SIZE,
|
|
PAGE_SHIFT, false);
|
|
|
|
/*
|
|
* If the text does not match what we just wrote then something is
|
|
* fundamentally screwy; there's nothing we can really do about that.
|
|
*/
|
|
BUG_ON(memcmp(addr, opcode, len));
|
|
|
|
local_irq_restore(flags);
|
|
pte_unmap_unlock(ptep, ptl);
|
|
return addr;
|
|
}
|
|
|
|
/**
|
|
* text_poke - Update instructions on a live kernel
|
|
* @addr: address to modify
|
|
* @opcode: source of the copy
|
|
* @len: length to copy
|
|
*
|
|
* Only atomic text poke/set should be allowed when not doing early patching.
|
|
* It means the size must be writable atomically and the address must be aligned
|
|
* in a way that permits an atomic write. It also makes sure we fit on a single
|
|
* page.
|
|
*
|
|
* Note that the caller must ensure that if the modified code is part of a
|
|
* module, the module would not be removed during poking. This can be achieved
|
|
* by registering a module notifier, and ordering module removal and patching
|
|
* trough a mutex.
|
|
*/
|
|
void *text_poke(void *addr, const void *opcode, size_t len)
|
|
{
|
|
lockdep_assert_held(&text_mutex);
|
|
|
|
return __text_poke(addr, opcode, len);
|
|
}
|
|
|
|
/**
|
|
* text_poke_kgdb - Update instructions on a live kernel by kgdb
|
|
* @addr: address to modify
|
|
* @opcode: source of the copy
|
|
* @len: length to copy
|
|
*
|
|
* Only atomic text poke/set should be allowed when not doing early patching.
|
|
* It means the size must be writable atomically and the address must be aligned
|
|
* in a way that permits an atomic write. It also makes sure we fit on a single
|
|
* page.
|
|
*
|
|
* Context: should only be used by kgdb, which ensures no other core is running,
|
|
* despite the fact it does not hold the text_mutex.
|
|
*/
|
|
void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
|
|
{
|
|
return __text_poke(addr, opcode, len);
|
|
}
|
|
|
|
static void do_sync_core(void *info)
|
|
{
|
|
sync_core();
|
|
}
|
|
|
|
void text_poke_sync(void)
|
|
{
|
|
on_each_cpu(do_sync_core, NULL, 1);
|
|
}
|
|
|
|
struct text_poke_loc {
|
|
s32 rel_addr; /* addr := _stext + rel_addr */
|
|
s32 rel32;
|
|
u8 opcode;
|
|
const u8 text[POKE_MAX_OPCODE_SIZE];
|
|
u8 old;
|
|
};
|
|
|
|
struct bp_patching_desc {
|
|
struct text_poke_loc *vec;
|
|
int nr_entries;
|
|
atomic_t refs;
|
|
};
|
|
|
|
static struct bp_patching_desc *bp_desc;
|
|
|
|
static __always_inline
|
|
struct bp_patching_desc *try_get_desc(struct bp_patching_desc **descp)
|
|
{
|
|
struct bp_patching_desc *desc = __READ_ONCE(*descp); /* rcu_dereference */
|
|
|
|
if (!desc || !arch_atomic_inc_not_zero(&desc->refs))
|
|
return NULL;
|
|
|
|
return desc;
|
|
}
|
|
|
|
static __always_inline void put_desc(struct bp_patching_desc *desc)
|
|
{
|
|
smp_mb__before_atomic();
|
|
arch_atomic_dec(&desc->refs);
|
|
}
|
|
|
|
static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
|
|
{
|
|
return _stext + tp->rel_addr;
|
|
}
|
|
|
|
static __always_inline int patch_cmp(const void *key, const void *elt)
|
|
{
|
|
struct text_poke_loc *tp = (struct text_poke_loc *) elt;
|
|
|
|
if (key < text_poke_addr(tp))
|
|
return -1;
|
|
if (key > text_poke_addr(tp))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
noinstr int poke_int3_handler(struct pt_regs *regs)
|
|
{
|
|
struct bp_patching_desc *desc;
|
|
struct text_poke_loc *tp;
|
|
int len, ret = 0;
|
|
void *ip;
|
|
|
|
if (user_mode(regs))
|
|
return 0;
|
|
|
|
/*
|
|
* Having observed our INT3 instruction, we now must observe
|
|
* bp_desc:
|
|
*
|
|
* bp_desc = desc INT3
|
|
* WMB RMB
|
|
* write INT3 if (desc)
|
|
*/
|
|
smp_rmb();
|
|
|
|
desc = try_get_desc(&bp_desc);
|
|
if (!desc)
|
|
return 0;
|
|
|
|
/*
|
|
* Discount the INT3. See text_poke_bp_batch().
|
|
*/
|
|
ip = (void *) regs->ip - INT3_INSN_SIZE;
|
|
|
|
/*
|
|
* Skip the binary search if there is a single member in the vector.
|
|
*/
|
|
if (unlikely(desc->nr_entries > 1)) {
|
|
tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
|
|
sizeof(struct text_poke_loc),
|
|
patch_cmp);
|
|
if (!tp)
|
|
goto out_put;
|
|
} else {
|
|
tp = desc->vec;
|
|
if (text_poke_addr(tp) != ip)
|
|
goto out_put;
|
|
}
|
|
|
|
len = text_opcode_size(tp->opcode);
|
|
ip += len;
|
|
|
|
switch (tp->opcode) {
|
|
case INT3_INSN_OPCODE:
|
|
/*
|
|
* Someone poked an explicit INT3, they'll want to handle it,
|
|
* do not consume.
|
|
*/
|
|
goto out_put;
|
|
|
|
case RET_INSN_OPCODE:
|
|
int3_emulate_ret(regs);
|
|
break;
|
|
|
|
case CALL_INSN_OPCODE:
|
|
int3_emulate_call(regs, (long)ip + tp->rel32);
|
|
break;
|
|
|
|
case JMP32_INSN_OPCODE:
|
|
case JMP8_INSN_OPCODE:
|
|
int3_emulate_jmp(regs, (long)ip + tp->rel32);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
out_put:
|
|
put_desc(desc);
|
|
return ret;
|
|
}
|
|
|
|
#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
|
|
static struct text_poke_loc tp_vec[TP_VEC_MAX];
|
|
static int tp_vec_nr;
|
|
|
|
/**
|
|
* text_poke_bp_batch() -- update instructions on live kernel on SMP
|
|
* @tp: vector of instructions to patch
|
|
* @nr_entries: number of entries in the vector
|
|
*
|
|
* Modify multi-byte instruction by using int3 breakpoint on SMP.
|
|
* We completely avoid stop_machine() here, and achieve the
|
|
* synchronization using int3 breakpoint.
|
|
*
|
|
* The way it is done:
|
|
* - For each entry in the vector:
|
|
* - add a int3 trap to the address that will be patched
|
|
* - sync cores
|
|
* - For each entry in the vector:
|
|
* - update all but the first byte of the patched range
|
|
* - sync cores
|
|
* - For each entry in the vector:
|
|
* - replace the first byte (int3) by the first byte of
|
|
* replacing opcode
|
|
* - sync cores
|
|
*/
|
|
static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
|
|
{
|
|
struct bp_patching_desc desc = {
|
|
.vec = tp,
|
|
.nr_entries = nr_entries,
|
|
.refs = ATOMIC_INIT(1),
|
|
};
|
|
unsigned char int3 = INT3_INSN_OPCODE;
|
|
unsigned int i;
|
|
int do_sync;
|
|
|
|
lockdep_assert_held(&text_mutex);
|
|
|
|
smp_store_release(&bp_desc, &desc); /* rcu_assign_pointer */
|
|
|
|
/*
|
|
* Corresponding read barrier in int3 notifier for making sure the
|
|
* nr_entries and handler are correctly ordered wrt. patching.
|
|
*/
|
|
smp_wmb();
|
|
|
|
/*
|
|
* First step: add a int3 trap to the address that will be patched.
|
|
*/
|
|
for (i = 0; i < nr_entries; i++) {
|
|
tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
|
|
text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
|
|
}
|
|
|
|
text_poke_sync();
|
|
|
|
/*
|
|
* Second step: update all but the first byte of the patched range.
|
|
*/
|
|
for (do_sync = 0, i = 0; i < nr_entries; i++) {
|
|
u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
|
|
int len = text_opcode_size(tp[i].opcode);
|
|
|
|
if (len - INT3_INSN_SIZE > 0) {
|
|
memcpy(old + INT3_INSN_SIZE,
|
|
text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
|
|
len - INT3_INSN_SIZE);
|
|
text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
|
|
(const char *)tp[i].text + INT3_INSN_SIZE,
|
|
len - INT3_INSN_SIZE);
|
|
do_sync++;
|
|
}
|
|
|
|
/*
|
|
* Emit a perf event to record the text poke, primarily to
|
|
* support Intel PT decoding which must walk the executable code
|
|
* to reconstruct the trace. The flow up to here is:
|
|
* - write INT3 byte
|
|
* - IPI-SYNC
|
|
* - write instruction tail
|
|
* At this point the actual control flow will be through the
|
|
* INT3 and handler and not hit the old or new instruction.
|
|
* Intel PT outputs FUP/TIP packets for the INT3, so the flow
|
|
* can still be decoded. Subsequently:
|
|
* - emit RECORD_TEXT_POKE with the new instruction
|
|
* - IPI-SYNC
|
|
* - write first byte
|
|
* - IPI-SYNC
|
|
* So before the text poke event timestamp, the decoder will see
|
|
* either the old instruction flow or FUP/TIP of INT3. After the
|
|
* text poke event timestamp, the decoder will see either the
|
|
* new instruction flow or FUP/TIP of INT3. Thus decoders can
|
|
* use the timestamp as the point at which to modify the
|
|
* executable code.
|
|
* The old instruction is recorded so that the event can be
|
|
* processed forwards or backwards.
|
|
*/
|
|
perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
|
|
tp[i].text, len);
|
|
}
|
|
|
|
if (do_sync) {
|
|
/*
|
|
* According to Intel, this core syncing is very likely
|
|
* not necessary and we'd be safe even without it. But
|
|
* better safe than sorry (plus there's not only Intel).
|
|
*/
|
|
text_poke_sync();
|
|
}
|
|
|
|
/*
|
|
* Third step: replace the first byte (int3) by the first byte of
|
|
* replacing opcode.
|
|
*/
|
|
for (do_sync = 0, i = 0; i < nr_entries; i++) {
|
|
if (tp[i].text[0] == INT3_INSN_OPCODE)
|
|
continue;
|
|
|
|
text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
|
|
do_sync++;
|
|
}
|
|
|
|
if (do_sync)
|
|
text_poke_sync();
|
|
|
|
/*
|
|
* Remove and synchronize_rcu(), except we have a very primitive
|
|
* refcount based completion.
|
|
*/
|
|
WRITE_ONCE(bp_desc, NULL); /* RCU_INIT_POINTER */
|
|
if (!atomic_dec_and_test(&desc.refs))
|
|
atomic_cond_read_acquire(&desc.refs, !VAL);
|
|
}
|
|
|
|
static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
|
|
const void *opcode, size_t len, const void *emulate)
|
|
{
|
|
struct insn insn;
|
|
int ret;
|
|
|
|
memcpy((void *)tp->text, opcode, len);
|
|
if (!emulate)
|
|
emulate = opcode;
|
|
|
|
ret = insn_decode_kernel(&insn, emulate);
|
|
|
|
BUG_ON(ret < 0);
|
|
BUG_ON(len != insn.length);
|
|
|
|
tp->rel_addr = addr - (void *)_stext;
|
|
tp->opcode = insn.opcode.bytes[0];
|
|
|
|
switch (tp->opcode) {
|
|
case INT3_INSN_OPCODE:
|
|
case RET_INSN_OPCODE:
|
|
break;
|
|
|
|
case CALL_INSN_OPCODE:
|
|
case JMP32_INSN_OPCODE:
|
|
case JMP8_INSN_OPCODE:
|
|
tp->rel32 = insn.immediate.value;
|
|
break;
|
|
|
|
default: /* assume NOP */
|
|
switch (len) {
|
|
case 2: /* NOP2 -- emulate as JMP8+0 */
|
|
BUG_ON(memcmp(emulate, x86_nops[len], len));
|
|
tp->opcode = JMP8_INSN_OPCODE;
|
|
tp->rel32 = 0;
|
|
break;
|
|
|
|
case 5: /* NOP5 -- emulate as JMP32+0 */
|
|
BUG_ON(memcmp(emulate, x86_nops[len], len));
|
|
tp->opcode = JMP32_INSN_OPCODE;
|
|
tp->rel32 = 0;
|
|
break;
|
|
|
|
default: /* unknown instruction */
|
|
BUG();
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We hard rely on the tp_vec being ordered; ensure this is so by flushing
|
|
* early if needed.
|
|
*/
|
|
static bool tp_order_fail(void *addr)
|
|
{
|
|
struct text_poke_loc *tp;
|
|
|
|
if (!tp_vec_nr)
|
|
return false;
|
|
|
|
if (!addr) /* force */
|
|
return true;
|
|
|
|
tp = &tp_vec[tp_vec_nr - 1];
|
|
if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void text_poke_flush(void *addr)
|
|
{
|
|
if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
|
|
text_poke_bp_batch(tp_vec, tp_vec_nr);
|
|
tp_vec_nr = 0;
|
|
}
|
|
}
|
|
|
|
void text_poke_finish(void)
|
|
{
|
|
text_poke_flush(NULL);
|
|
}
|
|
|
|
void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
|
|
{
|
|
struct text_poke_loc *tp;
|
|
|
|
if (unlikely(system_state == SYSTEM_BOOTING)) {
|
|
text_poke_early(addr, opcode, len);
|
|
return;
|
|
}
|
|
|
|
text_poke_flush(addr);
|
|
|
|
tp = &tp_vec[tp_vec_nr++];
|
|
text_poke_loc_init(tp, addr, opcode, len, emulate);
|
|
}
|
|
|
|
/**
|
|
* text_poke_bp() -- update instructions on live kernel on SMP
|
|
* @addr: address to patch
|
|
* @opcode: opcode of new instruction
|
|
* @len: length to copy
|
|
* @emulate: instruction to be emulated
|
|
*
|
|
* Update a single instruction with the vector in the stack, avoiding
|
|
* dynamically allocated memory. This function should be used when it is
|
|
* not possible to allocate memory.
|
|
*/
|
|
void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
|
|
{
|
|
struct text_poke_loc tp;
|
|
|
|
if (unlikely(system_state == SYSTEM_BOOTING)) {
|
|
text_poke_early(addr, opcode, len);
|
|
return;
|
|
}
|
|
|
|
text_poke_loc_init(&tp, addr, opcode, len, emulate);
|
|
text_poke_bp_batch(&tp, 1);
|
|
}
|