OpenCloudOS-Kernel/drivers/mmc/host/mtk-sd.c

3023 lines
86 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014-2015, 2022 MediaTek Inc.
* Author: Chaotian.Jing <chaotian.jing@mediatek.com>
*/
#include <linux/module.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/of_gpio.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/pm_wakeirq.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/reset.h>
#include <linux/mmc/card.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sd.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include "cqhci.h"
#define MAX_BD_NUM 1024
#define MSDC_NR_CLOCKS 3
/*--------------------------------------------------------------------------*/
/* Common Definition */
/*--------------------------------------------------------------------------*/
#define MSDC_BUS_1BITS 0x0
#define MSDC_BUS_4BITS 0x1
#define MSDC_BUS_8BITS 0x2
#define MSDC_BURST_64B 0x6
/*--------------------------------------------------------------------------*/
/* Register Offset */
/*--------------------------------------------------------------------------*/
#define MSDC_CFG 0x0
#define MSDC_IOCON 0x04
#define MSDC_PS 0x08
#define MSDC_INT 0x0c
#define MSDC_INTEN 0x10
#define MSDC_FIFOCS 0x14
#define SDC_CFG 0x30
#define SDC_CMD 0x34
#define SDC_ARG 0x38
#define SDC_STS 0x3c
#define SDC_RESP0 0x40
#define SDC_RESP1 0x44
#define SDC_RESP2 0x48
#define SDC_RESP3 0x4c
#define SDC_BLK_NUM 0x50
#define SDC_ADV_CFG0 0x64
#define EMMC_IOCON 0x7c
#define SDC_ACMD_RESP 0x80
#define DMA_SA_H4BIT 0x8c
#define MSDC_DMA_SA 0x90
#define MSDC_DMA_CTRL 0x98
#define MSDC_DMA_CFG 0x9c
#define MSDC_PATCH_BIT 0xb0
#define MSDC_PATCH_BIT1 0xb4
#define MSDC_PATCH_BIT2 0xb8
#define MSDC_PAD_TUNE 0xec
#define MSDC_PAD_TUNE0 0xf0
#define PAD_DS_TUNE 0x188
#define PAD_CMD_TUNE 0x18c
#define EMMC51_CFG0 0x204
#define EMMC50_CFG0 0x208
#define EMMC50_CFG1 0x20c
#define EMMC50_CFG3 0x220
#define SDC_FIFO_CFG 0x228
#define CQHCI_SETTING 0x7fc
/*--------------------------------------------------------------------------*/
/* Top Pad Register Offset */
/*--------------------------------------------------------------------------*/
#define EMMC_TOP_CONTROL 0x00
#define EMMC_TOP_CMD 0x04
#define EMMC50_PAD_DS_TUNE 0x0c
/*--------------------------------------------------------------------------*/
/* Register Mask */
/*--------------------------------------------------------------------------*/
/* MSDC_CFG mask */
#define MSDC_CFG_MODE BIT(0) /* RW */
#define MSDC_CFG_CKPDN BIT(1) /* RW */
#define MSDC_CFG_RST BIT(2) /* RW */
#define MSDC_CFG_PIO BIT(3) /* RW */
#define MSDC_CFG_CKDRVEN BIT(4) /* RW */
#define MSDC_CFG_BV18SDT BIT(5) /* RW */
#define MSDC_CFG_BV18PSS BIT(6) /* R */
#define MSDC_CFG_CKSTB BIT(7) /* R */
#define MSDC_CFG_CKDIV GENMASK(15, 8) /* RW */
#define MSDC_CFG_CKMOD GENMASK(17, 16) /* RW */
#define MSDC_CFG_HS400_CK_MODE BIT(18) /* RW */
#define MSDC_CFG_HS400_CK_MODE_EXTRA BIT(22) /* RW */
#define MSDC_CFG_CKDIV_EXTRA GENMASK(19, 8) /* RW */
#define MSDC_CFG_CKMOD_EXTRA GENMASK(21, 20) /* RW */
/* MSDC_IOCON mask */
#define MSDC_IOCON_SDR104CKS BIT(0) /* RW */
#define MSDC_IOCON_RSPL BIT(1) /* RW */
#define MSDC_IOCON_DSPL BIT(2) /* RW */
#define MSDC_IOCON_DDLSEL BIT(3) /* RW */
#define MSDC_IOCON_DDR50CKD BIT(4) /* RW */
#define MSDC_IOCON_DSPLSEL BIT(5) /* RW */
#define MSDC_IOCON_W_DSPL BIT(8) /* RW */
#define MSDC_IOCON_D0SPL BIT(16) /* RW */
#define MSDC_IOCON_D1SPL BIT(17) /* RW */
#define MSDC_IOCON_D2SPL BIT(18) /* RW */
#define MSDC_IOCON_D3SPL BIT(19) /* RW */
#define MSDC_IOCON_D4SPL BIT(20) /* RW */
#define MSDC_IOCON_D5SPL BIT(21) /* RW */
#define MSDC_IOCON_D6SPL BIT(22) /* RW */
#define MSDC_IOCON_D7SPL BIT(23) /* RW */
#define MSDC_IOCON_RISCSZ GENMASK(25, 24) /* RW */
/* MSDC_PS mask */
#define MSDC_PS_CDEN BIT(0) /* RW */
#define MSDC_PS_CDSTS BIT(1) /* R */
#define MSDC_PS_CDDEBOUNCE GENMASK(15, 12) /* RW */
#define MSDC_PS_DAT GENMASK(23, 16) /* R */
#define MSDC_PS_DATA1 BIT(17) /* R */
#define MSDC_PS_CMD BIT(24) /* R */
#define MSDC_PS_WP BIT(31) /* R */
/* MSDC_INT mask */
#define MSDC_INT_MMCIRQ BIT(0) /* W1C */
#define MSDC_INT_CDSC BIT(1) /* W1C */
#define MSDC_INT_ACMDRDY BIT(3) /* W1C */
#define MSDC_INT_ACMDTMO BIT(4) /* W1C */
#define MSDC_INT_ACMDCRCERR BIT(5) /* W1C */
#define MSDC_INT_DMAQ_EMPTY BIT(6) /* W1C */
#define MSDC_INT_SDIOIRQ BIT(7) /* W1C */
#define MSDC_INT_CMDRDY BIT(8) /* W1C */
#define MSDC_INT_CMDTMO BIT(9) /* W1C */
#define MSDC_INT_RSPCRCERR BIT(10) /* W1C */
#define MSDC_INT_CSTA BIT(11) /* R */
#define MSDC_INT_XFER_COMPL BIT(12) /* W1C */
#define MSDC_INT_DXFER_DONE BIT(13) /* W1C */
#define MSDC_INT_DATTMO BIT(14) /* W1C */
#define MSDC_INT_DATCRCERR BIT(15) /* W1C */
#define MSDC_INT_ACMD19_DONE BIT(16) /* W1C */
#define MSDC_INT_DMA_BDCSERR BIT(17) /* W1C */
#define MSDC_INT_DMA_GPDCSERR BIT(18) /* W1C */
#define MSDC_INT_DMA_PROTECT BIT(19) /* W1C */
#define MSDC_INT_CMDQ BIT(28) /* W1C */
/* MSDC_INTEN mask */
#define MSDC_INTEN_MMCIRQ BIT(0) /* RW */
#define MSDC_INTEN_CDSC BIT(1) /* RW */
#define MSDC_INTEN_ACMDRDY BIT(3) /* RW */
#define MSDC_INTEN_ACMDTMO BIT(4) /* RW */
#define MSDC_INTEN_ACMDCRCERR BIT(5) /* RW */
#define MSDC_INTEN_DMAQ_EMPTY BIT(6) /* RW */
#define MSDC_INTEN_SDIOIRQ BIT(7) /* RW */
#define MSDC_INTEN_CMDRDY BIT(8) /* RW */
#define MSDC_INTEN_CMDTMO BIT(9) /* RW */
#define MSDC_INTEN_RSPCRCERR BIT(10) /* RW */
#define MSDC_INTEN_CSTA BIT(11) /* RW */
#define MSDC_INTEN_XFER_COMPL BIT(12) /* RW */
#define MSDC_INTEN_DXFER_DONE BIT(13) /* RW */
#define MSDC_INTEN_DATTMO BIT(14) /* RW */
#define MSDC_INTEN_DATCRCERR BIT(15) /* RW */
#define MSDC_INTEN_ACMD19_DONE BIT(16) /* RW */
#define MSDC_INTEN_DMA_BDCSERR BIT(17) /* RW */
#define MSDC_INTEN_DMA_GPDCSERR BIT(18) /* RW */
#define MSDC_INTEN_DMA_PROTECT BIT(19) /* RW */
/* MSDC_FIFOCS mask */
#define MSDC_FIFOCS_RXCNT GENMASK(7, 0) /* R */
#define MSDC_FIFOCS_TXCNT GENMASK(23, 16) /* R */
#define MSDC_FIFOCS_CLR BIT(31) /* RW */
/* SDC_CFG mask */
#define SDC_CFG_SDIOINTWKUP BIT(0) /* RW */
#define SDC_CFG_INSWKUP BIT(1) /* RW */
#define SDC_CFG_WRDTOC GENMASK(14, 2) /* RW */
#define SDC_CFG_BUSWIDTH GENMASK(17, 16) /* RW */
#define SDC_CFG_SDIO BIT(19) /* RW */
#define SDC_CFG_SDIOIDE BIT(20) /* RW */
#define SDC_CFG_INTATGAP BIT(21) /* RW */
#define SDC_CFG_DTOC GENMASK(31, 24) /* RW */
/* SDC_STS mask */
#define SDC_STS_SDCBUSY BIT(0) /* RW */
#define SDC_STS_CMDBUSY BIT(1) /* RW */
#define SDC_STS_SWR_COMPL BIT(31) /* RW */
#define SDC_DAT1_IRQ_TRIGGER BIT(19) /* RW */
/* SDC_ADV_CFG0 mask */
#define SDC_RX_ENHANCE_EN BIT(20) /* RW */
/* DMA_SA_H4BIT mask */
#define DMA_ADDR_HIGH_4BIT GENMASK(3, 0) /* RW */
/* MSDC_DMA_CTRL mask */
#define MSDC_DMA_CTRL_START BIT(0) /* W */
#define MSDC_DMA_CTRL_STOP BIT(1) /* W */
#define MSDC_DMA_CTRL_RESUME BIT(2) /* W */
#define MSDC_DMA_CTRL_MODE BIT(8) /* RW */
#define MSDC_DMA_CTRL_LASTBUF BIT(10) /* RW */
#define MSDC_DMA_CTRL_BRUSTSZ GENMASK(14, 12) /* RW */
/* MSDC_DMA_CFG mask */
#define MSDC_DMA_CFG_STS BIT(0) /* R */
#define MSDC_DMA_CFG_DECSEN BIT(1) /* RW */
#define MSDC_DMA_CFG_AHBHPROT2 BIT(9) /* RW */
#define MSDC_DMA_CFG_ACTIVEEN BIT(13) /* RW */
#define MSDC_DMA_CFG_CS12B16B BIT(16) /* RW */
/* MSDC_PATCH_BIT mask */
#define MSDC_PATCH_BIT_ODDSUPP BIT(1) /* RW */
#define MSDC_INT_DAT_LATCH_CK_SEL GENMASK(9, 7)
#define MSDC_CKGEN_MSDC_DLY_SEL GENMASK(14, 10)
#define MSDC_PATCH_BIT_IODSSEL BIT(16) /* RW */
#define MSDC_PATCH_BIT_IOINTSEL BIT(17) /* RW */
#define MSDC_PATCH_BIT_BUSYDLY GENMASK(21, 18) /* RW */
#define MSDC_PATCH_BIT_WDOD GENMASK(25, 22) /* RW */
#define MSDC_PATCH_BIT_IDRTSEL BIT(26) /* RW */
#define MSDC_PATCH_BIT_CMDFSEL BIT(27) /* RW */
#define MSDC_PATCH_BIT_INTDLSEL BIT(28) /* RW */
#define MSDC_PATCH_BIT_SPCPUSH BIT(29) /* RW */
#define MSDC_PATCH_BIT_DECRCTMO BIT(30) /* RW */
#define MSDC_PATCH_BIT1_CMDTA GENMASK(5, 3) /* RW */
#define MSDC_PB1_BUSY_CHECK_SEL BIT(7) /* RW */
#define MSDC_PATCH_BIT1_STOP_DLY GENMASK(11, 8) /* RW */
#define MSDC_PATCH_BIT2_CFGRESP BIT(15) /* RW */
#define MSDC_PATCH_BIT2_CFGCRCSTS BIT(28) /* RW */
#define MSDC_PB2_SUPPORT_64G BIT(1) /* RW */
#define MSDC_PB2_RESPWAIT GENMASK(3, 2) /* RW */
#define MSDC_PB2_RESPSTSENSEL GENMASK(18, 16) /* RW */
#define MSDC_PB2_CRCSTSENSEL GENMASK(31, 29) /* RW */
#define MSDC_PAD_TUNE_DATWRDLY GENMASK(4, 0) /* RW */
#define MSDC_PAD_TUNE_DATRRDLY GENMASK(12, 8) /* RW */
#define MSDC_PAD_TUNE_CMDRDLY GENMASK(20, 16) /* RW */
#define MSDC_PAD_TUNE_CMDRRDLY GENMASK(26, 22) /* RW */
#define MSDC_PAD_TUNE_CLKTDLY GENMASK(31, 27) /* RW */
#define MSDC_PAD_TUNE_RXDLYSEL BIT(15) /* RW */
#define MSDC_PAD_TUNE_RD_SEL BIT(13) /* RW */
#define MSDC_PAD_TUNE_CMD_SEL BIT(21) /* RW */
#define PAD_DS_TUNE_DLY_SEL BIT(0) /* RW */
#define PAD_DS_TUNE_DLY1 GENMASK(6, 2) /* RW */
#define PAD_DS_TUNE_DLY2 GENMASK(11, 7) /* RW */
#define PAD_DS_TUNE_DLY3 GENMASK(16, 12) /* RW */
#define PAD_CMD_TUNE_RX_DLY3 GENMASK(5, 1) /* RW */
/* EMMC51_CFG0 mask */
#define CMDQ_RDAT_CNT GENMASK(21, 12) /* RW */
#define EMMC50_CFG_PADCMD_LATCHCK BIT(0) /* RW */
#define EMMC50_CFG_CRCSTS_EDGE BIT(3) /* RW */
#define EMMC50_CFG_CFCSTS_SEL BIT(4) /* RW */
#define EMMC50_CFG_CMD_RESP_SEL BIT(9) /* RW */
/* EMMC50_CFG1 mask */
#define EMMC50_CFG1_DS_CFG BIT(28) /* RW */
#define EMMC50_CFG3_OUTS_WR GENMASK(4, 0) /* RW */
#define SDC_FIFO_CFG_WRVALIDSEL BIT(24) /* RW */
#define SDC_FIFO_CFG_RDVALIDSEL BIT(25) /* RW */
/* CQHCI_SETTING */
#define CQHCI_RD_CMD_WND_SEL BIT(14) /* RW */
#define CQHCI_WR_CMD_WND_SEL BIT(15) /* RW */
/* EMMC_TOP_CONTROL mask */
#define PAD_RXDLY_SEL BIT(0) /* RW */
#define DELAY_EN BIT(1) /* RW */
#define PAD_DAT_RD_RXDLY2 GENMASK(6, 2) /* RW */
#define PAD_DAT_RD_RXDLY GENMASK(11, 7) /* RW */
#define PAD_DAT_RD_RXDLY2_SEL BIT(12) /* RW */
#define PAD_DAT_RD_RXDLY_SEL BIT(13) /* RW */
#define DATA_K_VALUE_SEL BIT(14) /* RW */
#define SDC_RX_ENH_EN BIT(15) /* TW */
/* EMMC_TOP_CMD mask */
#define PAD_CMD_RXDLY2 GENMASK(4, 0) /* RW */
#define PAD_CMD_RXDLY GENMASK(9, 5) /* RW */
#define PAD_CMD_RD_RXDLY2_SEL BIT(10) /* RW */
#define PAD_CMD_RD_RXDLY_SEL BIT(11) /* RW */
#define PAD_CMD_TX_DLY GENMASK(16, 12) /* RW */
/* EMMC50_PAD_DS_TUNE mask */
#define PAD_DS_DLY_SEL BIT(16) /* RW */
#define PAD_DS_DLY1 GENMASK(14, 10) /* RW */
#define PAD_DS_DLY3 GENMASK(4, 0) /* RW */
#define REQ_CMD_EIO BIT(0)
#define REQ_CMD_TMO BIT(1)
#define REQ_DAT_ERR BIT(2)
#define REQ_STOP_EIO BIT(3)
#define REQ_STOP_TMO BIT(4)
#define REQ_CMD_BUSY BIT(5)
#define MSDC_PREPARE_FLAG BIT(0)
#define MSDC_ASYNC_FLAG BIT(1)
#define MSDC_MMAP_FLAG BIT(2)
#define MTK_MMC_AUTOSUSPEND_DELAY 50
#define CMD_TIMEOUT (HZ/10 * 5) /* 100ms x5 */
#define DAT_TIMEOUT (HZ * 5) /* 1000ms x5 */
#define DEFAULT_DEBOUNCE (8) /* 8 cycles CD debounce */
#define PAD_DELAY_MAX 32 /* PAD delay cells */
/*--------------------------------------------------------------------------*/
/* Descriptor Structure */
/*--------------------------------------------------------------------------*/
struct mt_gpdma_desc {
u32 gpd_info;
#define GPDMA_DESC_HWO BIT(0)
#define GPDMA_DESC_BDP BIT(1)
#define GPDMA_DESC_CHECKSUM GENMASK(15, 8)
#define GPDMA_DESC_INT BIT(16)
#define GPDMA_DESC_NEXT_H4 GENMASK(27, 24)
#define GPDMA_DESC_PTR_H4 GENMASK(31, 28)
u32 next;
u32 ptr;
u32 gpd_data_len;
#define GPDMA_DESC_BUFLEN GENMASK(15, 0)
#define GPDMA_DESC_EXTLEN GENMASK(23, 16)
u32 arg;
u32 blknum;
u32 cmd;
};
struct mt_bdma_desc {
u32 bd_info;
#define BDMA_DESC_EOL BIT(0)
#define BDMA_DESC_CHECKSUM GENMASK(15, 8)
#define BDMA_DESC_BLKPAD BIT(17)
#define BDMA_DESC_DWPAD BIT(18)
#define BDMA_DESC_NEXT_H4 GENMASK(27, 24)
#define BDMA_DESC_PTR_H4 GENMASK(31, 28)
u32 next;
u32 ptr;
u32 bd_data_len;
#define BDMA_DESC_BUFLEN GENMASK(15, 0)
#define BDMA_DESC_BUFLEN_EXT GENMASK(23, 0)
};
struct msdc_dma {
struct scatterlist *sg; /* I/O scatter list */
struct mt_gpdma_desc *gpd; /* pointer to gpd array */
struct mt_bdma_desc *bd; /* pointer to bd array */
dma_addr_t gpd_addr; /* the physical address of gpd array */
dma_addr_t bd_addr; /* the physical address of bd array */
};
struct msdc_save_para {
u32 msdc_cfg;
u32 iocon;
u32 sdc_cfg;
u32 pad_tune;
u32 patch_bit0;
u32 patch_bit1;
u32 patch_bit2;
u32 pad_ds_tune;
u32 pad_cmd_tune;
u32 emmc50_cfg0;
u32 emmc50_cfg3;
u32 sdc_fifo_cfg;
u32 emmc_top_control;
u32 emmc_top_cmd;
u32 emmc50_pad_ds_tune;
};
struct mtk_mmc_compatible {
u8 clk_div_bits;
bool recheck_sdio_irq;
bool hs400_tune; /* only used for MT8173 */
u32 pad_tune_reg;
bool async_fifo;
bool data_tune;
bool busy_check;
bool stop_clk_fix;
bool enhance_rx;
bool support_64g;
bool use_internal_cd;
};
struct msdc_tune_para {
u32 iocon;
u32 pad_tune;
u32 pad_cmd_tune;
u32 emmc_top_control;
u32 emmc_top_cmd;
};
struct msdc_delay_phase {
u8 maxlen;
u8 start;
u8 final_phase;
};
struct msdc_host {
struct device *dev;
const struct mtk_mmc_compatible *dev_comp;
int cmd_rsp;
spinlock_t lock;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
int error;
void __iomem *base; /* host base address */
void __iomem *top_base; /* host top register base address */
struct msdc_dma dma; /* dma channel */
u64 dma_mask;
u32 timeout_ns; /* data timeout ns */
u32 timeout_clks; /* data timeout clks */
struct pinctrl *pinctrl;
struct pinctrl_state *pins_default;
struct pinctrl_state *pins_uhs;
struct pinctrl_state *pins_eint;
struct delayed_work req_timeout;
int irq; /* host interrupt */
int eint_irq; /* interrupt from sdio device for waking up system */
struct reset_control *reset;
struct clk *src_clk; /* msdc source clock */
struct clk *h_clk; /* msdc h_clk */
struct clk *bus_clk; /* bus clock which used to access register */
struct clk *src_clk_cg; /* msdc source clock control gate */
struct clk *sys_clk_cg; /* msdc subsys clock control gate */
struct clk *crypto_clk; /* msdc crypto clock control gate */
struct clk_bulk_data bulk_clks[MSDC_NR_CLOCKS];
u32 mclk; /* mmc subsystem clock frequency */
u32 src_clk_freq; /* source clock frequency */
unsigned char timing;
bool vqmmc_enabled;
u32 latch_ck;
u32 hs400_ds_delay;
u32 hs400_ds_dly3;
u32 hs200_cmd_int_delay; /* cmd internal delay for HS200/SDR104 */
u32 hs400_cmd_int_delay; /* cmd internal delay for HS400 */
bool hs400_cmd_resp_sel_rising;
/* cmd response sample selection for HS400 */
bool hs400_mode; /* current eMMC will run at hs400 mode */
bool hs400_tuning; /* hs400 mode online tuning */
bool internal_cd; /* Use internal card-detect logic */
bool cqhci; /* support eMMC hw cmdq */
struct msdc_save_para save_para; /* used when gate HCLK */
struct msdc_tune_para def_tune_para; /* default tune setting */
struct msdc_tune_para saved_tune_para; /* tune result of CMD21/CMD19 */
struct cqhci_host *cq_host;
};
static const struct mtk_mmc_compatible mt2701_compat = {
.clk_div_bits = 12,
.recheck_sdio_irq = true,
.hs400_tune = false,
.pad_tune_reg = MSDC_PAD_TUNE0,
.async_fifo = true,
.data_tune = true,
.busy_check = false,
.stop_clk_fix = false,
.enhance_rx = false,
.support_64g = false,
};
static const struct mtk_mmc_compatible mt2712_compat = {
.clk_div_bits = 12,
.recheck_sdio_irq = false,
.hs400_tune = false,
.pad_tune_reg = MSDC_PAD_TUNE0,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
.enhance_rx = true,
.support_64g = true,
};
static const struct mtk_mmc_compatible mt6779_compat = {
.clk_div_bits = 12,
.recheck_sdio_irq = false,
.hs400_tune = false,
.pad_tune_reg = MSDC_PAD_TUNE0,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
.enhance_rx = true,
.support_64g = true,
};
static const struct mtk_mmc_compatible mt6795_compat = {
.clk_div_bits = 8,
.recheck_sdio_irq = false,
.hs400_tune = true,
.pad_tune_reg = MSDC_PAD_TUNE,
.async_fifo = false,
.data_tune = false,
.busy_check = false,
.stop_clk_fix = false,
.enhance_rx = false,
.support_64g = false,
};
static const struct mtk_mmc_compatible mt7620_compat = {
.clk_div_bits = 8,
.recheck_sdio_irq = true,
.hs400_tune = false,
.pad_tune_reg = MSDC_PAD_TUNE,
.async_fifo = false,
.data_tune = false,
.busy_check = false,
.stop_clk_fix = false,
.enhance_rx = false,
.use_internal_cd = true,
};
static const struct mtk_mmc_compatible mt7622_compat = {
.clk_div_bits = 12,
.recheck_sdio_irq = true,
.hs400_tune = false,
.pad_tune_reg = MSDC_PAD_TUNE0,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
.enhance_rx = true,
.support_64g = false,
};
static const struct mtk_mmc_compatible mt7986_compat = {
.clk_div_bits = 12,
.recheck_sdio_irq = true,
.hs400_tune = false,
.pad_tune_reg = MSDC_PAD_TUNE0,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
.enhance_rx = true,
.support_64g = true,
};
static const struct mtk_mmc_compatible mt8135_compat = {
.clk_div_bits = 8,
.recheck_sdio_irq = true,
.hs400_tune = false,
.pad_tune_reg = MSDC_PAD_TUNE,
.async_fifo = false,
.data_tune = false,
.busy_check = false,
.stop_clk_fix = false,
.enhance_rx = false,
.support_64g = false,
};
static const struct mtk_mmc_compatible mt8173_compat = {
.clk_div_bits = 8,
.recheck_sdio_irq = true,
.hs400_tune = true,
.pad_tune_reg = MSDC_PAD_TUNE,
.async_fifo = false,
.data_tune = false,
.busy_check = false,
.stop_clk_fix = false,
.enhance_rx = false,
.support_64g = false,
};
static const struct mtk_mmc_compatible mt8183_compat = {
.clk_div_bits = 12,
.recheck_sdio_irq = false,
.hs400_tune = false,
.pad_tune_reg = MSDC_PAD_TUNE0,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
.enhance_rx = true,
.support_64g = true,
};
static const struct mtk_mmc_compatible mt8516_compat = {
.clk_div_bits = 12,
.recheck_sdio_irq = true,
.hs400_tune = false,
.pad_tune_reg = MSDC_PAD_TUNE0,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
};
static const struct of_device_id msdc_of_ids[] = {
{ .compatible = "mediatek,mt2701-mmc", .data = &mt2701_compat},
{ .compatible = "mediatek,mt2712-mmc", .data = &mt2712_compat},
{ .compatible = "mediatek,mt6779-mmc", .data = &mt6779_compat},
{ .compatible = "mediatek,mt6795-mmc", .data = &mt6795_compat},
{ .compatible = "mediatek,mt7620-mmc", .data = &mt7620_compat},
{ .compatible = "mediatek,mt7622-mmc", .data = &mt7622_compat},
{ .compatible = "mediatek,mt7986-mmc", .data = &mt7986_compat},
{ .compatible = "mediatek,mt8135-mmc", .data = &mt8135_compat},
{ .compatible = "mediatek,mt8173-mmc", .data = &mt8173_compat},
{ .compatible = "mediatek,mt8183-mmc", .data = &mt8183_compat},
{ .compatible = "mediatek,mt8516-mmc", .data = &mt8516_compat},
{}
};
MODULE_DEVICE_TABLE(of, msdc_of_ids);
static void sdr_set_bits(void __iomem *reg, u32 bs)
{
u32 val = readl(reg);
val |= bs;
writel(val, reg);
}
static void sdr_clr_bits(void __iomem *reg, u32 bs)
{
u32 val = readl(reg);
val &= ~bs;
writel(val, reg);
}
static void sdr_set_field(void __iomem *reg, u32 field, u32 val)
{
unsigned int tv = readl(reg);
tv &= ~field;
tv |= ((val) << (ffs((unsigned int)field) - 1));
writel(tv, reg);
}
static void sdr_get_field(void __iomem *reg, u32 field, u32 *val)
{
unsigned int tv = readl(reg);
*val = ((tv & field) >> (ffs((unsigned int)field) - 1));
}
static void msdc_reset_hw(struct msdc_host *host)
{
u32 val;
sdr_set_bits(host->base + MSDC_CFG, MSDC_CFG_RST);
readl_poll_timeout(host->base + MSDC_CFG, val, !(val & MSDC_CFG_RST), 0, 0);
sdr_set_bits(host->base + MSDC_FIFOCS, MSDC_FIFOCS_CLR);
readl_poll_timeout(host->base + MSDC_FIFOCS, val,
!(val & MSDC_FIFOCS_CLR), 0, 0);
val = readl(host->base + MSDC_INT);
writel(val, host->base + MSDC_INT);
}
static void msdc_cmd_next(struct msdc_host *host,
struct mmc_request *mrq, struct mmc_command *cmd);
static void __msdc_enable_sdio_irq(struct msdc_host *host, int enb);
static const u32 cmd_ints_mask = MSDC_INTEN_CMDRDY | MSDC_INTEN_RSPCRCERR |
MSDC_INTEN_CMDTMO | MSDC_INTEN_ACMDRDY |
MSDC_INTEN_ACMDCRCERR | MSDC_INTEN_ACMDTMO;
static const u32 data_ints_mask = MSDC_INTEN_XFER_COMPL | MSDC_INTEN_DATTMO |
MSDC_INTEN_DATCRCERR | MSDC_INTEN_DMA_BDCSERR |
MSDC_INTEN_DMA_GPDCSERR | MSDC_INTEN_DMA_PROTECT;
static u8 msdc_dma_calcs(u8 *buf, u32 len)
{
u32 i, sum = 0;
for (i = 0; i < len; i++)
sum += buf[i];
return 0xff - (u8) sum;
}
static inline void msdc_dma_setup(struct msdc_host *host, struct msdc_dma *dma,
struct mmc_data *data)
{
unsigned int j, dma_len;
dma_addr_t dma_address;
u32 dma_ctrl;
struct scatterlist *sg;
struct mt_gpdma_desc *gpd;
struct mt_bdma_desc *bd;
sg = data->sg;
gpd = dma->gpd;
bd = dma->bd;
/* modify gpd */
gpd->gpd_info |= GPDMA_DESC_HWO;
gpd->gpd_info |= GPDMA_DESC_BDP;
/* need to clear first. use these bits to calc checksum */
gpd->gpd_info &= ~GPDMA_DESC_CHECKSUM;
gpd->gpd_info |= msdc_dma_calcs((u8 *) gpd, 16) << 8;
/* modify bd */
for_each_sg(data->sg, sg, data->sg_count, j) {
dma_address = sg_dma_address(sg);
dma_len = sg_dma_len(sg);
/* init bd */
bd[j].bd_info &= ~BDMA_DESC_BLKPAD;
bd[j].bd_info &= ~BDMA_DESC_DWPAD;
bd[j].ptr = lower_32_bits(dma_address);
if (host->dev_comp->support_64g) {
bd[j].bd_info &= ~BDMA_DESC_PTR_H4;
bd[j].bd_info |= (upper_32_bits(dma_address) & 0xf)
<< 28;
}
if (host->dev_comp->support_64g) {
bd[j].bd_data_len &= ~BDMA_DESC_BUFLEN_EXT;
bd[j].bd_data_len |= (dma_len & BDMA_DESC_BUFLEN_EXT);
} else {
bd[j].bd_data_len &= ~BDMA_DESC_BUFLEN;
bd[j].bd_data_len |= (dma_len & BDMA_DESC_BUFLEN);
}
if (j == data->sg_count - 1) /* the last bd */
bd[j].bd_info |= BDMA_DESC_EOL;
else
bd[j].bd_info &= ~BDMA_DESC_EOL;
/* checksum need to clear first */
bd[j].bd_info &= ~BDMA_DESC_CHECKSUM;
bd[j].bd_info |= msdc_dma_calcs((u8 *)(&bd[j]), 16) << 8;
}
sdr_set_field(host->base + MSDC_DMA_CFG, MSDC_DMA_CFG_DECSEN, 1);
dma_ctrl = readl_relaxed(host->base + MSDC_DMA_CTRL);
dma_ctrl &= ~(MSDC_DMA_CTRL_BRUSTSZ | MSDC_DMA_CTRL_MODE);
dma_ctrl |= (MSDC_BURST_64B << 12 | BIT(8));
writel_relaxed(dma_ctrl, host->base + MSDC_DMA_CTRL);
if (host->dev_comp->support_64g)
sdr_set_field(host->base + DMA_SA_H4BIT, DMA_ADDR_HIGH_4BIT,
upper_32_bits(dma->gpd_addr) & 0xf);
writel(lower_32_bits(dma->gpd_addr), host->base + MSDC_DMA_SA);
}
static void msdc_prepare_data(struct msdc_host *host, struct mmc_data *data)
{
if (!(data->host_cookie & MSDC_PREPARE_FLAG)) {
data->host_cookie |= MSDC_PREPARE_FLAG;
data->sg_count = dma_map_sg(host->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
}
static void msdc_unprepare_data(struct msdc_host *host, struct mmc_data *data)
{
if (data->host_cookie & MSDC_ASYNC_FLAG)
return;
if (data->host_cookie & MSDC_PREPARE_FLAG) {
dma_unmap_sg(host->dev, data->sg, data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie &= ~MSDC_PREPARE_FLAG;
}
}
static u64 msdc_timeout_cal(struct msdc_host *host, u64 ns, u64 clks)
{
struct mmc_host *mmc = mmc_from_priv(host);
u64 timeout, clk_ns;
u32 mode = 0;
if (mmc->actual_clock == 0) {
timeout = 0;
} else {
clk_ns = 1000000000ULL;
do_div(clk_ns, mmc->actual_clock);
timeout = ns + clk_ns - 1;
do_div(timeout, clk_ns);
timeout += clks;
/* in 1048576 sclk cycle unit */
timeout = DIV_ROUND_UP(timeout, BIT(20));
if (host->dev_comp->clk_div_bits == 8)
sdr_get_field(host->base + MSDC_CFG,
MSDC_CFG_CKMOD, &mode);
else
sdr_get_field(host->base + MSDC_CFG,
MSDC_CFG_CKMOD_EXTRA, &mode);
/*DDR mode will double the clk cycles for data timeout */
timeout = mode >= 2 ? timeout * 2 : timeout;
timeout = timeout > 1 ? timeout - 1 : 0;
}
return timeout;
}
/* clock control primitives */
static void msdc_set_timeout(struct msdc_host *host, u64 ns, u64 clks)
{
u64 timeout;
host->timeout_ns = ns;
host->timeout_clks = clks;
timeout = msdc_timeout_cal(host, ns, clks);
sdr_set_field(host->base + SDC_CFG, SDC_CFG_DTOC,
(u32)(timeout > 255 ? 255 : timeout));
}
static void msdc_set_busy_timeout(struct msdc_host *host, u64 ns, u64 clks)
{
u64 timeout;
timeout = msdc_timeout_cal(host, ns, clks);
sdr_set_field(host->base + SDC_CFG, SDC_CFG_WRDTOC,
(u32)(timeout > 8191 ? 8191 : timeout));
}
static void msdc_gate_clock(struct msdc_host *host)
{
clk_bulk_disable_unprepare(MSDC_NR_CLOCKS, host->bulk_clks);
clk_disable_unprepare(host->crypto_clk);
clk_disable_unprepare(host->src_clk_cg);
clk_disable_unprepare(host->src_clk);
clk_disable_unprepare(host->bus_clk);
clk_disable_unprepare(host->h_clk);
}
static int msdc_ungate_clock(struct msdc_host *host)
{
u32 val;
int ret;
clk_prepare_enable(host->h_clk);
clk_prepare_enable(host->bus_clk);
clk_prepare_enable(host->src_clk);
clk_prepare_enable(host->src_clk_cg);
clk_prepare_enable(host->crypto_clk);
ret = clk_bulk_prepare_enable(MSDC_NR_CLOCKS, host->bulk_clks);
if (ret) {
dev_err(host->dev, "Cannot enable pclk/axi/ahb clock gates\n");
return ret;
}
return readl_poll_timeout(host->base + MSDC_CFG, val,
(val & MSDC_CFG_CKSTB), 1, 20000);
}
static void msdc_set_mclk(struct msdc_host *host, unsigned char timing, u32 hz)
{
struct mmc_host *mmc = mmc_from_priv(host);
u32 mode;
u32 flags;
u32 div;
u32 sclk;
u32 tune_reg = host->dev_comp->pad_tune_reg;
u32 val;
if (!hz) {
dev_dbg(host->dev, "set mclk to 0\n");
host->mclk = 0;
mmc->actual_clock = 0;
sdr_clr_bits(host->base + MSDC_CFG, MSDC_CFG_CKPDN);
return;
}
flags = readl(host->base + MSDC_INTEN);
sdr_clr_bits(host->base + MSDC_INTEN, flags);
if (host->dev_comp->clk_div_bits == 8)
sdr_clr_bits(host->base + MSDC_CFG, MSDC_CFG_HS400_CK_MODE);
else
sdr_clr_bits(host->base + MSDC_CFG,
MSDC_CFG_HS400_CK_MODE_EXTRA);
if (timing == MMC_TIMING_UHS_DDR50 ||
timing == MMC_TIMING_MMC_DDR52 ||
timing == MMC_TIMING_MMC_HS400) {
if (timing == MMC_TIMING_MMC_HS400)
mode = 0x3;
else
mode = 0x2; /* ddr mode and use divisor */
if (hz >= (host->src_clk_freq >> 2)) {
div = 0; /* mean div = 1/4 */
sclk = host->src_clk_freq >> 2; /* sclk = clk / 4 */
} else {
div = (host->src_clk_freq + ((hz << 2) - 1)) / (hz << 2);
sclk = (host->src_clk_freq >> 2) / div;
div = (div >> 1);
}
if (timing == MMC_TIMING_MMC_HS400 &&
hz >= (host->src_clk_freq >> 1)) {
if (host->dev_comp->clk_div_bits == 8)
sdr_set_bits(host->base + MSDC_CFG,
MSDC_CFG_HS400_CK_MODE);
else
sdr_set_bits(host->base + MSDC_CFG,
MSDC_CFG_HS400_CK_MODE_EXTRA);
sclk = host->src_clk_freq >> 1;
div = 0; /* div is ignore when bit18 is set */
}
} else if (hz >= host->src_clk_freq) {
mode = 0x1; /* no divisor */
div = 0;
sclk = host->src_clk_freq;
} else {
mode = 0x0; /* use divisor */
if (hz >= (host->src_clk_freq >> 1)) {
div = 0; /* mean div = 1/2 */
sclk = host->src_clk_freq >> 1; /* sclk = clk / 2 */
} else {
div = (host->src_clk_freq + ((hz << 2) - 1)) / (hz << 2);
sclk = (host->src_clk_freq >> 2) / div;
}
}
sdr_clr_bits(host->base + MSDC_CFG, MSDC_CFG_CKPDN);
clk_disable_unprepare(host->src_clk_cg);
if (host->dev_comp->clk_div_bits == 8)
sdr_set_field(host->base + MSDC_CFG,
MSDC_CFG_CKMOD | MSDC_CFG_CKDIV,
(mode << 8) | div);
else
sdr_set_field(host->base + MSDC_CFG,
MSDC_CFG_CKMOD_EXTRA | MSDC_CFG_CKDIV_EXTRA,
(mode << 12) | div);
clk_prepare_enable(host->src_clk_cg);
readl_poll_timeout(host->base + MSDC_CFG, val, (val & MSDC_CFG_CKSTB), 0, 0);
sdr_set_bits(host->base + MSDC_CFG, MSDC_CFG_CKPDN);
mmc->actual_clock = sclk;
host->mclk = hz;
host->timing = timing;
/* need because clk changed. */
msdc_set_timeout(host, host->timeout_ns, host->timeout_clks);
sdr_set_bits(host->base + MSDC_INTEN, flags);
/*
* mmc_select_hs400() will drop to 50Mhz and High speed mode,
* tune result of hs200/200Mhz is not suitable for 50Mhz
*/
if (mmc->actual_clock <= 52000000) {
writel(host->def_tune_para.iocon, host->base + MSDC_IOCON);
if (host->top_base) {
writel(host->def_tune_para.emmc_top_control,
host->top_base + EMMC_TOP_CONTROL);
writel(host->def_tune_para.emmc_top_cmd,
host->top_base + EMMC_TOP_CMD);
} else {
writel(host->def_tune_para.pad_tune,
host->base + tune_reg);
}
} else {
writel(host->saved_tune_para.iocon, host->base + MSDC_IOCON);
writel(host->saved_tune_para.pad_cmd_tune,
host->base + PAD_CMD_TUNE);
if (host->top_base) {
writel(host->saved_tune_para.emmc_top_control,
host->top_base + EMMC_TOP_CONTROL);
writel(host->saved_tune_para.emmc_top_cmd,
host->top_base + EMMC_TOP_CMD);
} else {
writel(host->saved_tune_para.pad_tune,
host->base + tune_reg);
}
}
if (timing == MMC_TIMING_MMC_HS400 &&
host->dev_comp->hs400_tune)
sdr_set_field(host->base + tune_reg,
MSDC_PAD_TUNE_CMDRRDLY,
host->hs400_cmd_int_delay);
dev_dbg(host->dev, "sclk: %d, timing: %d\n", mmc->actual_clock,
timing);
}
static inline u32 msdc_cmd_find_resp(struct msdc_host *host,
struct mmc_command *cmd)
{
u32 resp;
switch (mmc_resp_type(cmd)) {
/* Actually, R1, R5, R6, R7 are the same */
case MMC_RSP_R1:
resp = 0x1;
break;
case MMC_RSP_R1B:
resp = 0x7;
break;
case MMC_RSP_R2:
resp = 0x2;
break;
case MMC_RSP_R3:
resp = 0x3;
break;
case MMC_RSP_NONE:
default:
resp = 0x0;
break;
}
return resp;
}
static inline u32 msdc_cmd_prepare_raw_cmd(struct msdc_host *host,
struct mmc_request *mrq, struct mmc_command *cmd)
{
struct mmc_host *mmc = mmc_from_priv(host);
/* rawcmd :
* vol_swt << 30 | auto_cmd << 28 | blklen << 16 | go_irq << 15 |
* stop << 14 | rw << 13 | dtype << 11 | rsptyp << 7 | brk << 6 | opcode
*/
u32 opcode = cmd->opcode;
u32 resp = msdc_cmd_find_resp(host, cmd);
u32 rawcmd = (opcode & 0x3f) | ((resp & 0x7) << 7);
host->cmd_rsp = resp;
if ((opcode == SD_IO_RW_DIRECT && cmd->flags == (unsigned int) -1) ||
opcode == MMC_STOP_TRANSMISSION)
rawcmd |= BIT(14);
else if (opcode == SD_SWITCH_VOLTAGE)
rawcmd |= BIT(30);
else if (opcode == SD_APP_SEND_SCR ||
opcode == SD_APP_SEND_NUM_WR_BLKS ||
(opcode == SD_SWITCH && mmc_cmd_type(cmd) == MMC_CMD_ADTC) ||
(opcode == SD_APP_SD_STATUS && mmc_cmd_type(cmd) == MMC_CMD_ADTC) ||
(opcode == MMC_SEND_EXT_CSD && mmc_cmd_type(cmd) == MMC_CMD_ADTC))
rawcmd |= BIT(11);
if (cmd->data) {
struct mmc_data *data = cmd->data;
if (mmc_op_multi(opcode)) {
if (mmc_card_mmc(mmc->card) && mrq->sbc &&
!(mrq->sbc->arg & 0xFFFF0000))
rawcmd |= BIT(29); /* AutoCMD23 */
}
rawcmd |= ((data->blksz & 0xFFF) << 16);
if (data->flags & MMC_DATA_WRITE)
rawcmd |= BIT(13);
if (data->blocks > 1)
rawcmd |= BIT(12);
else
rawcmd |= BIT(11);
/* Always use dma mode */
sdr_clr_bits(host->base + MSDC_CFG, MSDC_CFG_PIO);
if (host->timeout_ns != data->timeout_ns ||
host->timeout_clks != data->timeout_clks)
msdc_set_timeout(host, data->timeout_ns,
data->timeout_clks);
writel(data->blocks, host->base + SDC_BLK_NUM);
}
return rawcmd;
}
static void msdc_start_data(struct msdc_host *host, struct mmc_command *cmd,
struct mmc_data *data)
{
bool read;
WARN_ON(host->data);
host->data = data;
read = data->flags & MMC_DATA_READ;
mod_delayed_work(system_wq, &host->req_timeout, DAT_TIMEOUT);
msdc_dma_setup(host, &host->dma, data);
sdr_set_bits(host->base + MSDC_INTEN, data_ints_mask);
sdr_set_field(host->base + MSDC_DMA_CTRL, MSDC_DMA_CTRL_START, 1);
dev_dbg(host->dev, "DMA start\n");
dev_dbg(host->dev, "%s: cmd=%d DMA data: %d blocks; read=%d\n",
__func__, cmd->opcode, data->blocks, read);
}
static int msdc_auto_cmd_done(struct msdc_host *host, int events,
struct mmc_command *cmd)
{
u32 *rsp = cmd->resp;
rsp[0] = readl(host->base + SDC_ACMD_RESP);
if (events & MSDC_INT_ACMDRDY) {
cmd->error = 0;
} else {
msdc_reset_hw(host);
if (events & MSDC_INT_ACMDCRCERR) {
cmd->error = -EILSEQ;
host->error |= REQ_STOP_EIO;
} else if (events & MSDC_INT_ACMDTMO) {
cmd->error = -ETIMEDOUT;
host->error |= REQ_STOP_TMO;
}
dev_err(host->dev,
"%s: AUTO_CMD%d arg=%08X; rsp %08X; cmd_error=%d\n",
__func__, cmd->opcode, cmd->arg, rsp[0], cmd->error);
}
return cmd->error;
}
/*
* msdc_recheck_sdio_irq - recheck whether the SDIO irq is lost
*
* Host controller may lost interrupt in some special case.
* Add SDIO irq recheck mechanism to make sure all interrupts
* can be processed immediately
*/
static void msdc_recheck_sdio_irq(struct msdc_host *host)
{
struct mmc_host *mmc = mmc_from_priv(host);
u32 reg_int, reg_inten, reg_ps;
if (mmc->caps & MMC_CAP_SDIO_IRQ) {
reg_inten = readl(host->base + MSDC_INTEN);
if (reg_inten & MSDC_INTEN_SDIOIRQ) {
reg_int = readl(host->base + MSDC_INT);
reg_ps = readl(host->base + MSDC_PS);
if (!(reg_int & MSDC_INT_SDIOIRQ ||
reg_ps & MSDC_PS_DATA1)) {
__msdc_enable_sdio_irq(host, 0);
sdio_signal_irq(mmc);
}
}
}
}
static void msdc_track_cmd_data(struct msdc_host *host, struct mmc_command *cmd)
{
if (host->error)
dev_dbg(host->dev, "%s: cmd=%d arg=%08X; host->error=0x%08X\n",
__func__, cmd->opcode, cmd->arg, host->error);
}
static void msdc_request_done(struct msdc_host *host, struct mmc_request *mrq)
{
unsigned long flags;
/*
* No need check the return value of cancel_delayed_work, as only ONE
* path will go here!
*/
cancel_delayed_work(&host->req_timeout);
spin_lock_irqsave(&host->lock, flags);
host->mrq = NULL;
spin_unlock_irqrestore(&host->lock, flags);
msdc_track_cmd_data(host, mrq->cmd);
if (mrq->data)
msdc_unprepare_data(host, mrq->data);
if (host->error)
msdc_reset_hw(host);
mmc_request_done(mmc_from_priv(host), mrq);
if (host->dev_comp->recheck_sdio_irq)
msdc_recheck_sdio_irq(host);
}
/* returns true if command is fully handled; returns false otherwise */
static bool msdc_cmd_done(struct msdc_host *host, int events,
struct mmc_request *mrq, struct mmc_command *cmd)
{
bool done = false;
bool sbc_error;
unsigned long flags;
u32 *rsp;
if (mrq->sbc && cmd == mrq->cmd &&
(events & (MSDC_INT_ACMDRDY | MSDC_INT_ACMDCRCERR
| MSDC_INT_ACMDTMO)))
msdc_auto_cmd_done(host, events, mrq->sbc);
sbc_error = mrq->sbc && mrq->sbc->error;
if (!sbc_error && !(events & (MSDC_INT_CMDRDY
| MSDC_INT_RSPCRCERR
| MSDC_INT_CMDTMO)))
return done;
spin_lock_irqsave(&host->lock, flags);
done = !host->cmd;
host->cmd = NULL;
spin_unlock_irqrestore(&host->lock, flags);
if (done)
return true;
rsp = cmd->resp;
sdr_clr_bits(host->base + MSDC_INTEN, cmd_ints_mask);
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
rsp[0] = readl(host->base + SDC_RESP3);
rsp[1] = readl(host->base + SDC_RESP2);
rsp[2] = readl(host->base + SDC_RESP1);
rsp[3] = readl(host->base + SDC_RESP0);
} else {
rsp[0] = readl(host->base + SDC_RESP0);
}
}
if (!sbc_error && !(events & MSDC_INT_CMDRDY)) {
if (events & MSDC_INT_CMDTMO ||
(!mmc_op_tuning(cmd->opcode) && !host->hs400_tuning))
/*
* should not clear fifo/interrupt as the tune data
* may have already come when cmd19/cmd21 gets response
* CRC error.
*/
msdc_reset_hw(host);
if (events & MSDC_INT_RSPCRCERR) {
cmd->error = -EILSEQ;
host->error |= REQ_CMD_EIO;
} else if (events & MSDC_INT_CMDTMO) {
cmd->error = -ETIMEDOUT;
host->error |= REQ_CMD_TMO;
}
}
if (cmd->error)
dev_dbg(host->dev,
"%s: cmd=%d arg=%08X; rsp %08X; cmd_error=%d\n",
__func__, cmd->opcode, cmd->arg, rsp[0],
cmd->error);
msdc_cmd_next(host, mrq, cmd);
return true;
}
/* It is the core layer's responsibility to ensure card status
* is correct before issue a request. but host design do below
* checks recommended.
*/
static inline bool msdc_cmd_is_ready(struct msdc_host *host,
struct mmc_request *mrq, struct mmc_command *cmd)
{
u32 val;
int ret;
/* The max busy time we can endure is 20ms */
ret = readl_poll_timeout_atomic(host->base + SDC_STS, val,
!(val & SDC_STS_CMDBUSY), 1, 20000);
if (ret) {
dev_err(host->dev, "CMD bus busy detected\n");
host->error |= REQ_CMD_BUSY;
msdc_cmd_done(host, MSDC_INT_CMDTMO, mrq, cmd);
return false;
}
if (mmc_resp_type(cmd) == MMC_RSP_R1B || cmd->data) {
/* R1B or with data, should check SDCBUSY */
ret = readl_poll_timeout_atomic(host->base + SDC_STS, val,
!(val & SDC_STS_SDCBUSY), 1, 20000);
if (ret) {
dev_err(host->dev, "Controller busy detected\n");
host->error |= REQ_CMD_BUSY;
msdc_cmd_done(host, MSDC_INT_CMDTMO, mrq, cmd);
return false;
}
}
return true;
}
static void msdc_start_command(struct msdc_host *host,
struct mmc_request *mrq, struct mmc_command *cmd)
{
u32 rawcmd;
unsigned long flags;
WARN_ON(host->cmd);
host->cmd = cmd;
mod_delayed_work(system_wq, &host->req_timeout, DAT_TIMEOUT);
if (!msdc_cmd_is_ready(host, mrq, cmd))
return;
if ((readl(host->base + MSDC_FIFOCS) & MSDC_FIFOCS_TXCNT) >> 16 ||
readl(host->base + MSDC_FIFOCS) & MSDC_FIFOCS_RXCNT) {
dev_err(host->dev, "TX/RX FIFO non-empty before start of IO. Reset\n");
msdc_reset_hw(host);
}
cmd->error = 0;
rawcmd = msdc_cmd_prepare_raw_cmd(host, mrq, cmd);
spin_lock_irqsave(&host->lock, flags);
sdr_set_bits(host->base + MSDC_INTEN, cmd_ints_mask);
spin_unlock_irqrestore(&host->lock, flags);
writel(cmd->arg, host->base + SDC_ARG);
writel(rawcmd, host->base + SDC_CMD);
}
static void msdc_cmd_next(struct msdc_host *host,
struct mmc_request *mrq, struct mmc_command *cmd)
{
if ((cmd->error &&
!(cmd->error == -EILSEQ &&
(mmc_op_tuning(cmd->opcode) || host->hs400_tuning))) ||
(mrq->sbc && mrq->sbc->error))
msdc_request_done(host, mrq);
else if (cmd == mrq->sbc)
msdc_start_command(host, mrq, mrq->cmd);
else if (!cmd->data)
msdc_request_done(host, mrq);
else
msdc_start_data(host, cmd, cmd->data);
}
static void msdc_ops_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct msdc_host *host = mmc_priv(mmc);
host->error = 0;
WARN_ON(host->mrq);
host->mrq = mrq;
if (mrq->data)
msdc_prepare_data(host, mrq->data);
/* if SBC is required, we have HW option and SW option.
* if HW option is enabled, and SBC does not have "special" flags,
* use HW option, otherwise use SW option
*/
if (mrq->sbc && (!mmc_card_mmc(mmc->card) ||
(mrq->sbc->arg & 0xFFFF0000)))
msdc_start_command(host, mrq, mrq->sbc);
else
msdc_start_command(host, mrq, mrq->cmd);
}
static void msdc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct msdc_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!data)
return;
msdc_prepare_data(host, data);
data->host_cookie |= MSDC_ASYNC_FLAG;
}
static void msdc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct msdc_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (!data)
return;
if (data->host_cookie) {
data->host_cookie &= ~MSDC_ASYNC_FLAG;
msdc_unprepare_data(host, data);
}
}
static void msdc_data_xfer_next(struct msdc_host *host, struct mmc_request *mrq)
{
if (mmc_op_multi(mrq->cmd->opcode) && mrq->stop && !mrq->stop->error &&
!mrq->sbc)
msdc_start_command(host, mrq, mrq->stop);
else
msdc_request_done(host, mrq);
}
static void msdc_data_xfer_done(struct msdc_host *host, u32 events,
struct mmc_request *mrq, struct mmc_data *data)
{
struct mmc_command *stop;
unsigned long flags;
bool done;
unsigned int check_data = events &
(MSDC_INT_XFER_COMPL | MSDC_INT_DATCRCERR | MSDC_INT_DATTMO
| MSDC_INT_DMA_BDCSERR | MSDC_INT_DMA_GPDCSERR
| MSDC_INT_DMA_PROTECT);
u32 val;
int ret;
spin_lock_irqsave(&host->lock, flags);
done = !host->data;
if (check_data)
host->data = NULL;
spin_unlock_irqrestore(&host->lock, flags);
if (done)
return;
stop = data->stop;
if (check_data || (stop && stop->error)) {
dev_dbg(host->dev, "DMA status: 0x%8X\n",
readl(host->base + MSDC_DMA_CFG));
sdr_set_field(host->base + MSDC_DMA_CTRL, MSDC_DMA_CTRL_STOP,
1);
ret = readl_poll_timeout_atomic(host->base + MSDC_DMA_CTRL, val,
!(val & MSDC_DMA_CTRL_STOP), 1, 20000);
if (ret)
dev_dbg(host->dev, "DMA stop timed out\n");
ret = readl_poll_timeout_atomic(host->base + MSDC_DMA_CFG, val,
!(val & MSDC_DMA_CFG_STS), 1, 20000);
if (ret)
dev_dbg(host->dev, "DMA inactive timed out\n");
sdr_clr_bits(host->base + MSDC_INTEN, data_ints_mask);
dev_dbg(host->dev, "DMA stop\n");
if ((events & MSDC_INT_XFER_COMPL) && (!stop || !stop->error)) {
data->bytes_xfered = data->blocks * data->blksz;
} else {
dev_dbg(host->dev, "interrupt events: %x\n", events);
msdc_reset_hw(host);
host->error |= REQ_DAT_ERR;
data->bytes_xfered = 0;
if (events & MSDC_INT_DATTMO)
data->error = -ETIMEDOUT;
else if (events & MSDC_INT_DATCRCERR)
data->error = -EILSEQ;
dev_dbg(host->dev, "%s: cmd=%d; blocks=%d",
__func__, mrq->cmd->opcode, data->blocks);
dev_dbg(host->dev, "data_error=%d xfer_size=%d\n",
(int)data->error, data->bytes_xfered);
}
msdc_data_xfer_next(host, mrq);
}
}
static void msdc_set_buswidth(struct msdc_host *host, u32 width)
{
u32 val = readl(host->base + SDC_CFG);
val &= ~SDC_CFG_BUSWIDTH;
switch (width) {
default:
case MMC_BUS_WIDTH_1:
val |= (MSDC_BUS_1BITS << 16);
break;
case MMC_BUS_WIDTH_4:
val |= (MSDC_BUS_4BITS << 16);
break;
case MMC_BUS_WIDTH_8:
val |= (MSDC_BUS_8BITS << 16);
break;
}
writel(val, host->base + SDC_CFG);
dev_dbg(host->dev, "Bus Width = %d", width);
}
static int msdc_ops_switch_volt(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct msdc_host *host = mmc_priv(mmc);
int ret;
if (!IS_ERR(mmc->supply.vqmmc)) {
if (ios->signal_voltage != MMC_SIGNAL_VOLTAGE_330 &&
ios->signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
dev_err(host->dev, "Unsupported signal voltage!\n");
return -EINVAL;
}
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret < 0) {
dev_dbg(host->dev, "Regulator set error %d (%d)\n",
ret, ios->signal_voltage);
return ret;
}
/* Apply different pinctrl settings for different signal voltage */
if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180)
pinctrl_select_state(host->pinctrl, host->pins_uhs);
else
pinctrl_select_state(host->pinctrl, host->pins_default);
}
return 0;
}
static int msdc_card_busy(struct mmc_host *mmc)
{
struct msdc_host *host = mmc_priv(mmc);
u32 status = readl(host->base + MSDC_PS);
/* only check if data0 is low */
return !(status & BIT(16));
}
static void msdc_request_timeout(struct work_struct *work)
{
struct msdc_host *host = container_of(work, struct msdc_host,
req_timeout.work);
/* simulate HW timeout status */
dev_err(host->dev, "%s: aborting cmd/data/mrq\n", __func__);
if (host->mrq) {
dev_err(host->dev, "%s: aborting mrq=%p cmd=%d\n", __func__,
host->mrq, host->mrq->cmd->opcode);
if (host->cmd) {
dev_err(host->dev, "%s: aborting cmd=%d\n",
__func__, host->cmd->opcode);
msdc_cmd_done(host, MSDC_INT_CMDTMO, host->mrq,
host->cmd);
} else if (host->data) {
dev_err(host->dev, "%s: abort data: cmd%d; %d blocks\n",
__func__, host->mrq->cmd->opcode,
host->data->blocks);
msdc_data_xfer_done(host, MSDC_INT_DATTMO, host->mrq,
host->data);
}
}
}
static void __msdc_enable_sdio_irq(struct msdc_host *host, int enb)
{
if (enb) {
sdr_set_bits(host->base + MSDC_INTEN, MSDC_INTEN_SDIOIRQ);
sdr_set_bits(host->base + SDC_CFG, SDC_CFG_SDIOIDE);
if (host->dev_comp->recheck_sdio_irq)
msdc_recheck_sdio_irq(host);
} else {
sdr_clr_bits(host->base + MSDC_INTEN, MSDC_INTEN_SDIOIRQ);
sdr_clr_bits(host->base + SDC_CFG, SDC_CFG_SDIOIDE);
}
}
static void msdc_enable_sdio_irq(struct mmc_host *mmc, int enb)
{
struct msdc_host *host = mmc_priv(mmc);
unsigned long flags;
int ret;
spin_lock_irqsave(&host->lock, flags);
__msdc_enable_sdio_irq(host, enb);
spin_unlock_irqrestore(&host->lock, flags);
if (mmc_card_enable_async_irq(mmc->card) && host->pins_eint) {
if (enb) {
/*
* In dev_pm_set_dedicated_wake_irq_reverse(), eint pin will be set to
* GPIO mode. We need to restore it to SDIO DAT1 mode after that.
* Since the current pinstate is pins_uhs, to ensure pinctrl select take
* affect successfully, we change the pinstate to pins_eint firstly.
*/
pinctrl_select_state(host->pinctrl, host->pins_eint);
ret = dev_pm_set_dedicated_wake_irq_reverse(host->dev, host->eint_irq);
if (ret) {
dev_err(host->dev, "Failed to register SDIO wakeup irq!\n");
host->pins_eint = NULL;
pm_runtime_get_noresume(host->dev);
} else {
dev_dbg(host->dev, "SDIO eint irq: %d!\n", host->eint_irq);
}
pinctrl_select_state(host->pinctrl, host->pins_uhs);
} else {
dev_pm_clear_wake_irq(host->dev);
}
} else {
if (enb) {
/* Ensure host->pins_eint is NULL */
host->pins_eint = NULL;
pm_runtime_get_noresume(host->dev);
} else {
pm_runtime_put_noidle(host->dev);
}
}
}
static irqreturn_t msdc_cmdq_irq(struct msdc_host *host, u32 intsts)
{
struct mmc_host *mmc = mmc_from_priv(host);
int cmd_err = 0, dat_err = 0;
if (intsts & MSDC_INT_RSPCRCERR) {
cmd_err = -EILSEQ;
dev_err(host->dev, "%s: CMD CRC ERR", __func__);
} else if (intsts & MSDC_INT_CMDTMO) {
cmd_err = -ETIMEDOUT;
dev_err(host->dev, "%s: CMD TIMEOUT ERR", __func__);
}
if (intsts & MSDC_INT_DATCRCERR) {
dat_err = -EILSEQ;
dev_err(host->dev, "%s: DATA CRC ERR", __func__);
} else if (intsts & MSDC_INT_DATTMO) {
dat_err = -ETIMEDOUT;
dev_err(host->dev, "%s: DATA TIMEOUT ERR", __func__);
}
if (cmd_err || dat_err) {
dev_err(host->dev, "cmd_err = %d, dat_err =%d, intsts = 0x%x",
cmd_err, dat_err, intsts);
}
return cqhci_irq(mmc, 0, cmd_err, dat_err);
}
static irqreturn_t msdc_irq(int irq, void *dev_id)
{
struct msdc_host *host = (struct msdc_host *) dev_id;
struct mmc_host *mmc = mmc_from_priv(host);
while (true) {
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
u32 events, event_mask;
spin_lock(&host->lock);
events = readl(host->base + MSDC_INT);
event_mask = readl(host->base + MSDC_INTEN);
if ((events & event_mask) & MSDC_INT_SDIOIRQ)
__msdc_enable_sdio_irq(host, 0);
/* clear interrupts */
writel(events & event_mask, host->base + MSDC_INT);
mrq = host->mrq;
cmd = host->cmd;
data = host->data;
spin_unlock(&host->lock);
if ((events & event_mask) & MSDC_INT_SDIOIRQ)
sdio_signal_irq(mmc);
if ((events & event_mask) & MSDC_INT_CDSC) {
if (host->internal_cd)
mmc_detect_change(mmc, msecs_to_jiffies(20));
events &= ~MSDC_INT_CDSC;
}
if (!(events & (event_mask & ~MSDC_INT_SDIOIRQ)))
break;
if ((mmc->caps2 & MMC_CAP2_CQE) &&
(events & MSDC_INT_CMDQ)) {
msdc_cmdq_irq(host, events);
/* clear interrupts */
writel(events, host->base + MSDC_INT);
return IRQ_HANDLED;
}
if (!mrq) {
dev_err(host->dev,
"%s: MRQ=NULL; events=%08X; event_mask=%08X\n",
__func__, events, event_mask);
WARN_ON(1);
break;
}
dev_dbg(host->dev, "%s: events=%08X\n", __func__, events);
if (cmd)
msdc_cmd_done(host, events, mrq, cmd);
else if (data)
msdc_data_xfer_done(host, events, mrq, data);
}
return IRQ_HANDLED;
}
static void msdc_init_hw(struct msdc_host *host)
{
u32 val;
u32 tune_reg = host->dev_comp->pad_tune_reg;
struct mmc_host *mmc = mmc_from_priv(host);
if (host->reset) {
reset_control_assert(host->reset);
usleep_range(10, 50);
reset_control_deassert(host->reset);
}
/* Configure to MMC/SD mode, clock free running */
sdr_set_bits(host->base + MSDC_CFG, MSDC_CFG_MODE | MSDC_CFG_CKPDN);
/* Reset */
msdc_reset_hw(host);
/* Disable and clear all interrupts */
writel(0, host->base + MSDC_INTEN);
val = readl(host->base + MSDC_INT);
writel(val, host->base + MSDC_INT);
/* Configure card detection */
if (host->internal_cd) {
sdr_set_field(host->base + MSDC_PS, MSDC_PS_CDDEBOUNCE,
DEFAULT_DEBOUNCE);
sdr_set_bits(host->base + MSDC_PS, MSDC_PS_CDEN);
sdr_set_bits(host->base + MSDC_INTEN, MSDC_INTEN_CDSC);
sdr_set_bits(host->base + SDC_CFG, SDC_CFG_INSWKUP);
} else {
sdr_clr_bits(host->base + SDC_CFG, SDC_CFG_INSWKUP);
sdr_clr_bits(host->base + MSDC_PS, MSDC_PS_CDEN);
sdr_clr_bits(host->base + MSDC_INTEN, MSDC_INTEN_CDSC);
}
if (host->top_base) {
writel(0, host->top_base + EMMC_TOP_CONTROL);
writel(0, host->top_base + EMMC_TOP_CMD);
} else {
writel(0, host->base + tune_reg);
}
writel(0, host->base + MSDC_IOCON);
sdr_set_field(host->base + MSDC_IOCON, MSDC_IOCON_DDLSEL, 0);
writel(0x403c0046, host->base + MSDC_PATCH_BIT);
sdr_set_field(host->base + MSDC_PATCH_BIT, MSDC_CKGEN_MSDC_DLY_SEL, 1);
writel(0xffff4089, host->base + MSDC_PATCH_BIT1);
sdr_set_bits(host->base + EMMC50_CFG0, EMMC50_CFG_CFCSTS_SEL);
if (host->dev_comp->stop_clk_fix) {
sdr_set_field(host->base + MSDC_PATCH_BIT1,
MSDC_PATCH_BIT1_STOP_DLY, 3);
sdr_clr_bits(host->base + SDC_FIFO_CFG,
SDC_FIFO_CFG_WRVALIDSEL);
sdr_clr_bits(host->base + SDC_FIFO_CFG,
SDC_FIFO_CFG_RDVALIDSEL);
}
if (host->dev_comp->busy_check)
sdr_clr_bits(host->base + MSDC_PATCH_BIT1, BIT(7));
if (host->dev_comp->async_fifo) {
sdr_set_field(host->base + MSDC_PATCH_BIT2,
MSDC_PB2_RESPWAIT, 3);
if (host->dev_comp->enhance_rx) {
if (host->top_base)
sdr_set_bits(host->top_base + EMMC_TOP_CONTROL,
SDC_RX_ENH_EN);
else
sdr_set_bits(host->base + SDC_ADV_CFG0,
SDC_RX_ENHANCE_EN);
} else {
sdr_set_field(host->base + MSDC_PATCH_BIT2,
MSDC_PB2_RESPSTSENSEL, 2);
sdr_set_field(host->base + MSDC_PATCH_BIT2,
MSDC_PB2_CRCSTSENSEL, 2);
}
/* use async fifo, then no need tune internal delay */
sdr_clr_bits(host->base + MSDC_PATCH_BIT2,
MSDC_PATCH_BIT2_CFGRESP);
sdr_set_bits(host->base + MSDC_PATCH_BIT2,
MSDC_PATCH_BIT2_CFGCRCSTS);
}
if (host->dev_comp->support_64g)
sdr_set_bits(host->base + MSDC_PATCH_BIT2,
MSDC_PB2_SUPPORT_64G);
if (host->dev_comp->data_tune) {
if (host->top_base) {
sdr_set_bits(host->top_base + EMMC_TOP_CONTROL,
PAD_DAT_RD_RXDLY_SEL);
sdr_clr_bits(host->top_base + EMMC_TOP_CONTROL,
DATA_K_VALUE_SEL);
sdr_set_bits(host->top_base + EMMC_TOP_CMD,
PAD_CMD_RD_RXDLY_SEL);
} else {
sdr_set_bits(host->base + tune_reg,
MSDC_PAD_TUNE_RD_SEL |
MSDC_PAD_TUNE_CMD_SEL);
}
} else {
/* choose clock tune */
if (host->top_base)
sdr_set_bits(host->top_base + EMMC_TOP_CONTROL,
PAD_RXDLY_SEL);
else
sdr_set_bits(host->base + tune_reg,
MSDC_PAD_TUNE_RXDLYSEL);
}
if (mmc->caps2 & MMC_CAP2_NO_SDIO) {
sdr_clr_bits(host->base + SDC_CFG, SDC_CFG_SDIO);
sdr_clr_bits(host->base + MSDC_INTEN, MSDC_INTEN_SDIOIRQ);
sdr_clr_bits(host->base + SDC_ADV_CFG0, SDC_DAT1_IRQ_TRIGGER);
} else {
/* Configure to enable SDIO mode, otherwise SDIO CMD5 fails */
sdr_set_bits(host->base + SDC_CFG, SDC_CFG_SDIO);
/* Config SDIO device detect interrupt function */
sdr_clr_bits(host->base + SDC_CFG, SDC_CFG_SDIOIDE);
sdr_set_bits(host->base + SDC_ADV_CFG0, SDC_DAT1_IRQ_TRIGGER);
}
/* Configure to default data timeout */
sdr_set_field(host->base + SDC_CFG, SDC_CFG_DTOC, 3);
host->def_tune_para.iocon = readl(host->base + MSDC_IOCON);
host->saved_tune_para.iocon = readl(host->base + MSDC_IOCON);
if (host->top_base) {
host->def_tune_para.emmc_top_control =
readl(host->top_base + EMMC_TOP_CONTROL);
host->def_tune_para.emmc_top_cmd =
readl(host->top_base + EMMC_TOP_CMD);
host->saved_tune_para.emmc_top_control =
readl(host->top_base + EMMC_TOP_CONTROL);
host->saved_tune_para.emmc_top_cmd =
readl(host->top_base + EMMC_TOP_CMD);
} else {
host->def_tune_para.pad_tune = readl(host->base + tune_reg);
host->saved_tune_para.pad_tune = readl(host->base + tune_reg);
}
dev_dbg(host->dev, "init hardware done!");
}
static void msdc_deinit_hw(struct msdc_host *host)
{
u32 val;
if (host->internal_cd) {
/* Disabled card-detect */
sdr_clr_bits(host->base + MSDC_PS, MSDC_PS_CDEN);
sdr_clr_bits(host->base + SDC_CFG, SDC_CFG_INSWKUP);
}
/* Disable and clear all interrupts */
writel(0, host->base + MSDC_INTEN);
val = readl(host->base + MSDC_INT);
writel(val, host->base + MSDC_INT);
}
/* init gpd and bd list in msdc_drv_probe */
static void msdc_init_gpd_bd(struct msdc_host *host, struct msdc_dma *dma)
{
struct mt_gpdma_desc *gpd = dma->gpd;
struct mt_bdma_desc *bd = dma->bd;
dma_addr_t dma_addr;
int i;
memset(gpd, 0, sizeof(struct mt_gpdma_desc) * 2);
dma_addr = dma->gpd_addr + sizeof(struct mt_gpdma_desc);
gpd->gpd_info = GPDMA_DESC_BDP; /* hwo, cs, bd pointer */
/* gpd->next is must set for desc DMA
* That's why must alloc 2 gpd structure.
*/
gpd->next = lower_32_bits(dma_addr);
if (host->dev_comp->support_64g)
gpd->gpd_info |= (upper_32_bits(dma_addr) & 0xf) << 24;
dma_addr = dma->bd_addr;
gpd->ptr = lower_32_bits(dma->bd_addr); /* physical address */
if (host->dev_comp->support_64g)
gpd->gpd_info |= (upper_32_bits(dma_addr) & 0xf) << 28;
memset(bd, 0, sizeof(struct mt_bdma_desc) * MAX_BD_NUM);
for (i = 0; i < (MAX_BD_NUM - 1); i++) {
dma_addr = dma->bd_addr + sizeof(*bd) * (i + 1);
bd[i].next = lower_32_bits(dma_addr);
if (host->dev_comp->support_64g)
bd[i].bd_info |= (upper_32_bits(dma_addr) & 0xf) << 24;
}
}
static void msdc_ops_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct msdc_host *host = mmc_priv(mmc);
int ret;
msdc_set_buswidth(host, ios->bus_width);
/* Suspend/Resume will do power off/on */
switch (ios->power_mode) {
case MMC_POWER_UP:
if (!IS_ERR(mmc->supply.vmmc)) {
msdc_init_hw(host);
ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
ios->vdd);
if (ret) {
dev_err(host->dev, "Failed to set vmmc power!\n");
return;
}
}
break;
case MMC_POWER_ON:
if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
ret = regulator_enable(mmc->supply.vqmmc);
if (ret)
dev_err(host->dev, "Failed to set vqmmc power!\n");
else
host->vqmmc_enabled = true;
}
break;
case MMC_POWER_OFF:
if (!IS_ERR(mmc->supply.vmmc))
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
regulator_disable(mmc->supply.vqmmc);
host->vqmmc_enabled = false;
}
break;
default:
break;
}
if (host->mclk != ios->clock || host->timing != ios->timing)
msdc_set_mclk(host, ios->timing, ios->clock);
}
static u32 test_delay_bit(u32 delay, u32 bit)
{
bit %= PAD_DELAY_MAX;
return delay & BIT(bit);
}
static int get_delay_len(u32 delay, u32 start_bit)
{
int i;
for (i = 0; i < (PAD_DELAY_MAX - start_bit); i++) {
if (test_delay_bit(delay, start_bit + i) == 0)
return i;
}
return PAD_DELAY_MAX - start_bit;
}
static struct msdc_delay_phase get_best_delay(struct msdc_host *host, u32 delay)
{
int start = 0, len = 0;
int start_final = 0, len_final = 0;
u8 final_phase = 0xff;
struct msdc_delay_phase delay_phase = { 0, };
if (delay == 0) {
dev_err(host->dev, "phase error: [map:%x]\n", delay);
delay_phase.final_phase = final_phase;
return delay_phase;
}
while (start < PAD_DELAY_MAX) {
len = get_delay_len(delay, start);
if (len_final < len) {
start_final = start;
len_final = len;
}
start += len ? len : 1;
if (len >= 12 && start_final < 4)
break;
}
/* The rule is that to find the smallest delay cell */
if (start_final == 0)
final_phase = (start_final + len_final / 3) % PAD_DELAY_MAX;
else
final_phase = (start_final + len_final / 2) % PAD_DELAY_MAX;
dev_dbg(host->dev, "phase: [map:%x] [maxlen:%d] [final:%d]\n",
delay, len_final, final_phase);
delay_phase.maxlen = len_final;
delay_phase.start = start_final;
delay_phase.final_phase = final_phase;
return delay_phase;
}
static inline void msdc_set_cmd_delay(struct msdc_host *host, u32 value)
{
u32 tune_reg = host->dev_comp->pad_tune_reg;
if (host->top_base)
sdr_set_field(host->top_base + EMMC_TOP_CMD, PAD_CMD_RXDLY,
value);
else
sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_CMDRDLY,
value);
}
static inline void msdc_set_data_delay(struct msdc_host *host, u32 value)
{
u32 tune_reg = host->dev_comp->pad_tune_reg;
if (host->top_base)
sdr_set_field(host->top_base + EMMC_TOP_CONTROL,
PAD_DAT_RD_RXDLY, value);
else
sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_DATRRDLY,
value);
}
static int msdc_tune_response(struct mmc_host *mmc, u32 opcode)
{
struct msdc_host *host = mmc_priv(mmc);
u32 rise_delay = 0, fall_delay = 0;
struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0,};
struct msdc_delay_phase internal_delay_phase;
u8 final_delay, final_maxlen;
u32 internal_delay = 0;
u32 tune_reg = host->dev_comp->pad_tune_reg;
int cmd_err;
int i, j;
if (mmc->ios.timing == MMC_TIMING_MMC_HS200 ||
mmc->ios.timing == MMC_TIMING_UHS_SDR104)
sdr_set_field(host->base + tune_reg,
MSDC_PAD_TUNE_CMDRRDLY,
host->hs200_cmd_int_delay);
sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL);
for (i = 0 ; i < PAD_DELAY_MAX; i++) {
msdc_set_cmd_delay(host, i);
/*
* Using the same parameters, it may sometimes pass the test,
* but sometimes it may fail. To make sure the parameters are
* more stable, we test each set of parameters 3 times.
*/
for (j = 0; j < 3; j++) {
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err) {
rise_delay |= BIT(i);
} else {
rise_delay &= ~BIT(i);
break;
}
}
}
final_rise_delay = get_best_delay(host, rise_delay);
/* if rising edge has enough margin, then do not scan falling edge */
if (final_rise_delay.maxlen >= 12 ||
(final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
goto skip_fall;
sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
msdc_set_cmd_delay(host, i);
/*
* Using the same parameters, it may sometimes pass the test,
* but sometimes it may fail. To make sure the parameters are
* more stable, we test each set of parameters 3 times.
*/
for (j = 0; j < 3; j++) {
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err) {
fall_delay |= BIT(i);
} else {
fall_delay &= ~BIT(i);
break;
}
}
}
final_fall_delay = get_best_delay(host, fall_delay);
skip_fall:
final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
if (final_fall_delay.maxlen >= 12 && final_fall_delay.start < 4)
final_maxlen = final_fall_delay.maxlen;
if (final_maxlen == final_rise_delay.maxlen) {
sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL);
final_delay = final_rise_delay.final_phase;
} else {
sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL);
final_delay = final_fall_delay.final_phase;
}
msdc_set_cmd_delay(host, final_delay);
if (host->dev_comp->async_fifo || host->hs200_cmd_int_delay)
goto skip_internal;
for (i = 0; i < PAD_DELAY_MAX; i++) {
sdr_set_field(host->base + tune_reg,
MSDC_PAD_TUNE_CMDRRDLY, i);
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err)
internal_delay |= BIT(i);
}
dev_dbg(host->dev, "Final internal delay: 0x%x\n", internal_delay);
internal_delay_phase = get_best_delay(host, internal_delay);
sdr_set_field(host->base + tune_reg, MSDC_PAD_TUNE_CMDRRDLY,
internal_delay_phase.final_phase);
skip_internal:
dev_dbg(host->dev, "Final cmd pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
static int hs400_tune_response(struct mmc_host *mmc, u32 opcode)
{
struct msdc_host *host = mmc_priv(mmc);
u32 cmd_delay = 0;
struct msdc_delay_phase final_cmd_delay = { 0,};
u8 final_delay;
int cmd_err;
int i, j;
/* select EMMC50 PAD CMD tune */
sdr_set_bits(host->base + PAD_CMD_TUNE, BIT(0));
sdr_set_field(host->base + MSDC_PATCH_BIT1, MSDC_PATCH_BIT1_CMDTA, 2);
if (mmc->ios.timing == MMC_TIMING_MMC_HS200 ||
mmc->ios.timing == MMC_TIMING_UHS_SDR104)
sdr_set_field(host->base + MSDC_PAD_TUNE,
MSDC_PAD_TUNE_CMDRRDLY,
host->hs200_cmd_int_delay);
if (host->hs400_cmd_resp_sel_rising)
sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL);
else
sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL);
for (i = 0 ; i < PAD_DELAY_MAX; i++) {
sdr_set_field(host->base + PAD_CMD_TUNE,
PAD_CMD_TUNE_RX_DLY3, i);
/*
* Using the same parameters, it may sometimes pass the test,
* but sometimes it may fail. To make sure the parameters are
* more stable, we test each set of parameters 3 times.
*/
for (j = 0; j < 3; j++) {
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err) {
cmd_delay |= BIT(i);
} else {
cmd_delay &= ~BIT(i);
break;
}
}
}
final_cmd_delay = get_best_delay(host, cmd_delay);
sdr_set_field(host->base + PAD_CMD_TUNE, PAD_CMD_TUNE_RX_DLY3,
final_cmd_delay.final_phase);
final_delay = final_cmd_delay.final_phase;
dev_dbg(host->dev, "Final cmd pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
static int msdc_tune_data(struct mmc_host *mmc, u32 opcode)
{
struct msdc_host *host = mmc_priv(mmc);
u32 rise_delay = 0, fall_delay = 0;
struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0,};
u8 final_delay, final_maxlen;
int i, ret;
sdr_set_field(host->base + MSDC_PATCH_BIT, MSDC_INT_DAT_LATCH_CK_SEL,
host->latch_ck);
sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_DSPL);
sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_W_DSPL);
for (i = 0 ; i < PAD_DELAY_MAX; i++) {
msdc_set_data_delay(host, i);
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret)
rise_delay |= BIT(i);
}
final_rise_delay = get_best_delay(host, rise_delay);
/* if rising edge has enough margin, then do not scan falling edge */
if (final_rise_delay.maxlen >= 12 ||
(final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
goto skip_fall;
sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_DSPL);
sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_W_DSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
msdc_set_data_delay(host, i);
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret)
fall_delay |= BIT(i);
}
final_fall_delay = get_best_delay(host, fall_delay);
skip_fall:
final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
if (final_maxlen == final_rise_delay.maxlen) {
sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_DSPL);
sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_W_DSPL);
final_delay = final_rise_delay.final_phase;
} else {
sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_DSPL);
sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_W_DSPL);
final_delay = final_fall_delay.final_phase;
}
msdc_set_data_delay(host, final_delay);
dev_dbg(host->dev, "Final data pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
/*
* MSDC IP which supports data tune + async fifo can do CMD/DAT tune
* together, which can save the tuning time.
*/
static int msdc_tune_together(struct mmc_host *mmc, u32 opcode)
{
struct msdc_host *host = mmc_priv(mmc);
u32 rise_delay = 0, fall_delay = 0;
struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0,};
u8 final_delay, final_maxlen;
int i, ret;
sdr_set_field(host->base + MSDC_PATCH_BIT, MSDC_INT_DAT_LATCH_CK_SEL,
host->latch_ck);
sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL);
sdr_clr_bits(host->base + MSDC_IOCON,
MSDC_IOCON_DSPL | MSDC_IOCON_W_DSPL);
for (i = 0 ; i < PAD_DELAY_MAX; i++) {
msdc_set_cmd_delay(host, i);
msdc_set_data_delay(host, i);
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret)
rise_delay |= BIT(i);
}
final_rise_delay = get_best_delay(host, rise_delay);
/* if rising edge has enough margin, then do not scan falling edge */
if (final_rise_delay.maxlen >= 12 ||
(final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
goto skip_fall;
sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL);
sdr_set_bits(host->base + MSDC_IOCON,
MSDC_IOCON_DSPL | MSDC_IOCON_W_DSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
msdc_set_cmd_delay(host, i);
msdc_set_data_delay(host, i);
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret)
fall_delay |= BIT(i);
}
final_fall_delay = get_best_delay(host, fall_delay);
skip_fall:
final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
if (final_maxlen == final_rise_delay.maxlen) {
sdr_clr_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL);
sdr_clr_bits(host->base + MSDC_IOCON,
MSDC_IOCON_DSPL | MSDC_IOCON_W_DSPL);
final_delay = final_rise_delay.final_phase;
} else {
sdr_set_bits(host->base + MSDC_IOCON, MSDC_IOCON_RSPL);
sdr_set_bits(host->base + MSDC_IOCON,
MSDC_IOCON_DSPL | MSDC_IOCON_W_DSPL);
final_delay = final_fall_delay.final_phase;
}
msdc_set_cmd_delay(host, final_delay);
msdc_set_data_delay(host, final_delay);
dev_dbg(host->dev, "Final pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
static int msdc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct msdc_host *host = mmc_priv(mmc);
int ret;
u32 tune_reg = host->dev_comp->pad_tune_reg;
if (host->dev_comp->data_tune && host->dev_comp->async_fifo) {
ret = msdc_tune_together(mmc, opcode);
if (host->hs400_mode) {
sdr_clr_bits(host->base + MSDC_IOCON,
MSDC_IOCON_DSPL | MSDC_IOCON_W_DSPL);
msdc_set_data_delay(host, 0);
}
goto tune_done;
}
if (host->hs400_mode &&
host->dev_comp->hs400_tune)
ret = hs400_tune_response(mmc, opcode);
else
ret = msdc_tune_response(mmc, opcode);
if (ret == -EIO) {
dev_err(host->dev, "Tune response fail!\n");
return ret;
}
if (host->hs400_mode == false) {
ret = msdc_tune_data(mmc, opcode);
if (ret == -EIO)
dev_err(host->dev, "Tune data fail!\n");
}
tune_done:
host->saved_tune_para.iocon = readl(host->base + MSDC_IOCON);
host->saved_tune_para.pad_tune = readl(host->base + tune_reg);
host->saved_tune_para.pad_cmd_tune = readl(host->base + PAD_CMD_TUNE);
if (host->top_base) {
host->saved_tune_para.emmc_top_control = readl(host->top_base +
EMMC_TOP_CONTROL);
host->saved_tune_para.emmc_top_cmd = readl(host->top_base +
EMMC_TOP_CMD);
}
return ret;
}
static int msdc_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct msdc_host *host = mmc_priv(mmc);
host->hs400_mode = true;
if (host->top_base)
writel(host->hs400_ds_delay,
host->top_base + EMMC50_PAD_DS_TUNE);
else
writel(host->hs400_ds_delay, host->base + PAD_DS_TUNE);
/* hs400 mode must set it to 0 */
sdr_clr_bits(host->base + MSDC_PATCH_BIT2, MSDC_PATCH_BIT2_CFGCRCSTS);
/* to improve read performance, set outstanding to 2 */
sdr_set_field(host->base + EMMC50_CFG3, EMMC50_CFG3_OUTS_WR, 2);
return 0;
}
static int msdc_execute_hs400_tuning(struct mmc_host *mmc, struct mmc_card *card)
{
struct msdc_host *host = mmc_priv(mmc);
struct msdc_delay_phase dly1_delay;
u32 val, result_dly1 = 0;
u8 *ext_csd;
int i, ret;
if (host->top_base) {
sdr_set_bits(host->top_base + EMMC50_PAD_DS_TUNE,
PAD_DS_DLY_SEL);
if (host->hs400_ds_dly3)
sdr_set_field(host->top_base + EMMC50_PAD_DS_TUNE,
PAD_DS_DLY3, host->hs400_ds_dly3);
} else {
sdr_set_bits(host->base + PAD_DS_TUNE, PAD_DS_TUNE_DLY_SEL);
if (host->hs400_ds_dly3)
sdr_set_field(host->base + PAD_DS_TUNE,
PAD_DS_TUNE_DLY3, host->hs400_ds_dly3);
}
host->hs400_tuning = true;
for (i = 0; i < PAD_DELAY_MAX; i++) {
if (host->top_base)
sdr_set_field(host->top_base + EMMC50_PAD_DS_TUNE,
PAD_DS_DLY1, i);
else
sdr_set_field(host->base + PAD_DS_TUNE,
PAD_DS_TUNE_DLY1, i);
ret = mmc_get_ext_csd(card, &ext_csd);
if (!ret) {
result_dly1 |= BIT(i);
kfree(ext_csd);
}
}
host->hs400_tuning = false;
dly1_delay = get_best_delay(host, result_dly1);
if (dly1_delay.maxlen == 0) {
dev_err(host->dev, "Failed to get DLY1 delay!\n");
goto fail;
}
if (host->top_base)
sdr_set_field(host->top_base + EMMC50_PAD_DS_TUNE,
PAD_DS_DLY1, dly1_delay.final_phase);
else
sdr_set_field(host->base + PAD_DS_TUNE,
PAD_DS_TUNE_DLY1, dly1_delay.final_phase);
if (host->top_base)
val = readl(host->top_base + EMMC50_PAD_DS_TUNE);
else
val = readl(host->base + PAD_DS_TUNE);
dev_info(host->dev, "Final PAD_DS_TUNE: 0x%x\n", val);
return 0;
fail:
dev_err(host->dev, "Failed to tuning DS pin delay!\n");
return -EIO;
}
static void msdc_hw_reset(struct mmc_host *mmc)
{
struct msdc_host *host = mmc_priv(mmc);
sdr_set_bits(host->base + EMMC_IOCON, 1);
udelay(10); /* 10us is enough */
sdr_clr_bits(host->base + EMMC_IOCON, 1);
}
static void msdc_ack_sdio_irq(struct mmc_host *mmc)
{
unsigned long flags;
struct msdc_host *host = mmc_priv(mmc);
spin_lock_irqsave(&host->lock, flags);
__msdc_enable_sdio_irq(host, 1);
spin_unlock_irqrestore(&host->lock, flags);
}
static int msdc_get_cd(struct mmc_host *mmc)
{
struct msdc_host *host = mmc_priv(mmc);
int val;
if (mmc->caps & MMC_CAP_NONREMOVABLE)
return 1;
if (!host->internal_cd)
return mmc_gpio_get_cd(mmc);
val = readl(host->base + MSDC_PS) & MSDC_PS_CDSTS;
if (mmc->caps2 & MMC_CAP2_CD_ACTIVE_HIGH)
return !!val;
else
return !val;
}
static void msdc_hs400_enhanced_strobe(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct msdc_host *host = mmc_priv(mmc);
if (ios->enhanced_strobe) {
msdc_prepare_hs400_tuning(mmc, ios);
sdr_set_field(host->base + EMMC50_CFG0, EMMC50_CFG_PADCMD_LATCHCK, 1);
sdr_set_field(host->base + EMMC50_CFG0, EMMC50_CFG_CMD_RESP_SEL, 1);
sdr_set_field(host->base + EMMC50_CFG1, EMMC50_CFG1_DS_CFG, 1);
sdr_clr_bits(host->base + CQHCI_SETTING, CQHCI_RD_CMD_WND_SEL);
sdr_clr_bits(host->base + CQHCI_SETTING, CQHCI_WR_CMD_WND_SEL);
sdr_clr_bits(host->base + EMMC51_CFG0, CMDQ_RDAT_CNT);
} else {
sdr_set_field(host->base + EMMC50_CFG0, EMMC50_CFG_PADCMD_LATCHCK, 0);
sdr_set_field(host->base + EMMC50_CFG0, EMMC50_CFG_CMD_RESP_SEL, 0);
sdr_set_field(host->base + EMMC50_CFG1, EMMC50_CFG1_DS_CFG, 0);
sdr_set_bits(host->base + CQHCI_SETTING, CQHCI_RD_CMD_WND_SEL);
sdr_set_bits(host->base + CQHCI_SETTING, CQHCI_WR_CMD_WND_SEL);
sdr_set_field(host->base + EMMC51_CFG0, CMDQ_RDAT_CNT, 0xb4);
}
}
static void msdc_cqe_enable(struct mmc_host *mmc)
{
struct msdc_host *host = mmc_priv(mmc);
/* enable cmdq irq */
writel(MSDC_INT_CMDQ, host->base + MSDC_INTEN);
/* enable busy check */
sdr_set_bits(host->base + MSDC_PATCH_BIT1, MSDC_PB1_BUSY_CHECK_SEL);
/* default write data / busy timeout 20s */
msdc_set_busy_timeout(host, 20 * 1000000000ULL, 0);
/* default read data timeout 1s */
msdc_set_timeout(host, 1000000000ULL, 0);
}
static void msdc_cqe_disable(struct mmc_host *mmc, bool recovery)
{
struct msdc_host *host = mmc_priv(mmc);
unsigned int val = 0;
/* disable cmdq irq */
sdr_clr_bits(host->base + MSDC_INTEN, MSDC_INT_CMDQ);
/* disable busy check */
sdr_clr_bits(host->base + MSDC_PATCH_BIT1, MSDC_PB1_BUSY_CHECK_SEL);
val = readl(host->base + MSDC_INT);
writel(val, host->base + MSDC_INT);
if (recovery) {
sdr_set_field(host->base + MSDC_DMA_CTRL,
MSDC_DMA_CTRL_STOP, 1);
if (WARN_ON(readl_poll_timeout(host->base + MSDC_DMA_CTRL, val,
!(val & MSDC_DMA_CTRL_STOP), 1, 3000)))
return;
if (WARN_ON(readl_poll_timeout(host->base + MSDC_DMA_CFG, val,
!(val & MSDC_DMA_CFG_STS), 1, 3000)))
return;
msdc_reset_hw(host);
}
}
static void msdc_cqe_pre_enable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
u32 reg;
reg = cqhci_readl(cq_host, CQHCI_CFG);
reg |= CQHCI_ENABLE;
cqhci_writel(cq_host, reg, CQHCI_CFG);
}
static void msdc_cqe_post_disable(struct mmc_host *mmc)
{
struct cqhci_host *cq_host = mmc->cqe_private;
u32 reg;
reg = cqhci_readl(cq_host, CQHCI_CFG);
reg &= ~CQHCI_ENABLE;
cqhci_writel(cq_host, reg, CQHCI_CFG);
}
static const struct mmc_host_ops mt_msdc_ops = {
.post_req = msdc_post_req,
.pre_req = msdc_pre_req,
.request = msdc_ops_request,
.set_ios = msdc_ops_set_ios,
.get_ro = mmc_gpio_get_ro,
.get_cd = msdc_get_cd,
.hs400_enhanced_strobe = msdc_hs400_enhanced_strobe,
.enable_sdio_irq = msdc_enable_sdio_irq,
.ack_sdio_irq = msdc_ack_sdio_irq,
.start_signal_voltage_switch = msdc_ops_switch_volt,
.card_busy = msdc_card_busy,
.execute_tuning = msdc_execute_tuning,
.prepare_hs400_tuning = msdc_prepare_hs400_tuning,
.execute_hs400_tuning = msdc_execute_hs400_tuning,
.card_hw_reset = msdc_hw_reset,
};
static const struct cqhci_host_ops msdc_cmdq_ops = {
.enable = msdc_cqe_enable,
.disable = msdc_cqe_disable,
.pre_enable = msdc_cqe_pre_enable,
.post_disable = msdc_cqe_post_disable,
};
static void msdc_of_property_parse(struct platform_device *pdev,
struct msdc_host *host)
{
of_property_read_u32(pdev->dev.of_node, "mediatek,latch-ck",
&host->latch_ck);
of_property_read_u32(pdev->dev.of_node, "hs400-ds-delay",
&host->hs400_ds_delay);
of_property_read_u32(pdev->dev.of_node, "mediatek,hs400-ds-dly3",
&host->hs400_ds_dly3);
of_property_read_u32(pdev->dev.of_node, "mediatek,hs200-cmd-int-delay",
&host->hs200_cmd_int_delay);
of_property_read_u32(pdev->dev.of_node, "mediatek,hs400-cmd-int-delay",
&host->hs400_cmd_int_delay);
if (of_property_read_bool(pdev->dev.of_node,
"mediatek,hs400-cmd-resp-sel-rising"))
host->hs400_cmd_resp_sel_rising = true;
else
host->hs400_cmd_resp_sel_rising = false;
if (of_property_read_bool(pdev->dev.of_node,
"supports-cqe"))
host->cqhci = true;
else
host->cqhci = false;
}
static int msdc_of_clock_parse(struct platform_device *pdev,
struct msdc_host *host)
{
int ret;
host->src_clk = devm_clk_get(&pdev->dev, "source");
if (IS_ERR(host->src_clk))
return PTR_ERR(host->src_clk);
host->h_clk = devm_clk_get(&pdev->dev, "hclk");
if (IS_ERR(host->h_clk))
return PTR_ERR(host->h_clk);
host->bus_clk = devm_clk_get_optional(&pdev->dev, "bus_clk");
if (IS_ERR(host->bus_clk))
host->bus_clk = NULL;
/*source clock control gate is optional clock*/
host->src_clk_cg = devm_clk_get_optional(&pdev->dev, "source_cg");
if (IS_ERR(host->src_clk_cg))
return PTR_ERR(host->src_clk_cg);
/*
* Fallback for legacy device-trees: src_clk and HCLK use the same
* bit to control gating but they are parented to a different mux,
* hence if our intention is to gate only the source, required
* during a clk mode switch to avoid hw hangs, we need to gate
* its parent (specified as a different clock only on new DTs).
*/
if (!host->src_clk_cg) {
host->src_clk_cg = clk_get_parent(host->src_clk);
if (IS_ERR(host->src_clk_cg))
return PTR_ERR(host->src_clk_cg);
}
/* If present, always enable for this clock gate */
host->sys_clk_cg = devm_clk_get_optional_enabled(&pdev->dev, "sys_cg");
if (IS_ERR(host->sys_clk_cg))
host->sys_clk_cg = NULL;
host->bulk_clks[0].id = "pclk_cg";
host->bulk_clks[1].id = "axi_cg";
host->bulk_clks[2].id = "ahb_cg";
ret = devm_clk_bulk_get_optional(&pdev->dev, MSDC_NR_CLOCKS,
host->bulk_clks);
if (ret) {
dev_err(&pdev->dev, "Cannot get pclk/axi/ahb clock gates\n");
return ret;
}
return 0;
}
static int msdc_drv_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct msdc_host *host;
struct resource *res;
int ret;
if (!pdev->dev.of_node) {
dev_err(&pdev->dev, "No DT found\n");
return -EINVAL;
}
/* Allocate MMC host for this device */
mmc = mmc_alloc_host(sizeof(struct msdc_host), &pdev->dev);
if (!mmc)
return -ENOMEM;
host = mmc_priv(mmc);
ret = mmc_of_parse(mmc);
if (ret)
goto host_free;
host->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(host->base)) {
ret = PTR_ERR(host->base);
goto host_free;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (res) {
host->top_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->top_base))
host->top_base = NULL;
}
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto host_free;
ret = msdc_of_clock_parse(pdev, host);
if (ret)
goto host_free;
host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev,
"hrst");
if (IS_ERR(host->reset)) {
ret = PTR_ERR(host->reset);
goto host_free;
}
/* only eMMC has crypto property */
if (!(mmc->caps2 & MMC_CAP2_NO_MMC)) {
host->crypto_clk = devm_clk_get_optional(&pdev->dev, "crypto");
if (IS_ERR(host->crypto_clk))
host->crypto_clk = NULL;
else
mmc->caps2 |= MMC_CAP2_CRYPTO;
}
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0) {
ret = -EINVAL;
goto host_free;
}
host->pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(host->pinctrl)) {
ret = PTR_ERR(host->pinctrl);
dev_err(&pdev->dev, "Cannot find pinctrl!\n");
goto host_free;
}
host->pins_default = pinctrl_lookup_state(host->pinctrl, "default");
if (IS_ERR(host->pins_default)) {
ret = PTR_ERR(host->pins_default);
dev_err(&pdev->dev, "Cannot find pinctrl default!\n");
goto host_free;
}
host->pins_uhs = pinctrl_lookup_state(host->pinctrl, "state_uhs");
if (IS_ERR(host->pins_uhs)) {
ret = PTR_ERR(host->pins_uhs);
dev_err(&pdev->dev, "Cannot find pinctrl uhs!\n");
goto host_free;
}
/* Support for SDIO eint irq ? */
if ((mmc->pm_caps & MMC_PM_WAKE_SDIO_IRQ) && (mmc->pm_caps & MMC_PM_KEEP_POWER)) {
host->eint_irq = platform_get_irq_byname(pdev, "sdio_wakeup");
if (host->eint_irq > 0) {
host->pins_eint = pinctrl_lookup_state(host->pinctrl, "state_eint");
if (IS_ERR(host->pins_eint)) {
dev_err(&pdev->dev, "Cannot find pinctrl eint!\n");
host->pins_eint = NULL;
} else {
device_init_wakeup(&pdev->dev, true);
}
}
}
msdc_of_property_parse(pdev, host);
host->dev = &pdev->dev;
host->dev_comp = of_device_get_match_data(&pdev->dev);
host->src_clk_freq = clk_get_rate(host->src_clk);
/* Set host parameters to mmc */
mmc->ops = &mt_msdc_ops;
if (host->dev_comp->clk_div_bits == 8)
mmc->f_min = DIV_ROUND_UP(host->src_clk_freq, 4 * 255);
else
mmc->f_min = DIV_ROUND_UP(host->src_clk_freq, 4 * 4095);
if (!(mmc->caps & MMC_CAP_NONREMOVABLE) &&
!mmc_can_gpio_cd(mmc) &&
host->dev_comp->use_internal_cd) {
/*
* Is removable but no GPIO declared, so
* use internal functionality.
*/
host->internal_cd = true;
}
if (mmc->caps & MMC_CAP_SDIO_IRQ)
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
mmc->caps |= MMC_CAP_CMD23;
if (host->cqhci)
mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
/* MMC core transfer sizes tunable parameters */
mmc->max_segs = MAX_BD_NUM;
if (host->dev_comp->support_64g)
mmc->max_seg_size = BDMA_DESC_BUFLEN_EXT;
else
mmc->max_seg_size = BDMA_DESC_BUFLEN;
mmc->max_blk_size = 2048;
mmc->max_req_size = 512 * 1024;
mmc->max_blk_count = mmc->max_req_size / 512;
if (host->dev_comp->support_64g)
host->dma_mask = DMA_BIT_MASK(36);
else
host->dma_mask = DMA_BIT_MASK(32);
mmc_dev(mmc)->dma_mask = &host->dma_mask;
host->timeout_clks = 3 * 1048576;
host->dma.gpd = dma_alloc_coherent(&pdev->dev,
2 * sizeof(struct mt_gpdma_desc),
&host->dma.gpd_addr, GFP_KERNEL);
host->dma.bd = dma_alloc_coherent(&pdev->dev,
MAX_BD_NUM * sizeof(struct mt_bdma_desc),
&host->dma.bd_addr, GFP_KERNEL);
if (!host->dma.gpd || !host->dma.bd) {
ret = -ENOMEM;
goto release_mem;
}
msdc_init_gpd_bd(host, &host->dma);
INIT_DELAYED_WORK(&host->req_timeout, msdc_request_timeout);
spin_lock_init(&host->lock);
platform_set_drvdata(pdev, mmc);
ret = msdc_ungate_clock(host);
if (ret) {
dev_err(&pdev->dev, "Cannot ungate clocks!\n");
goto release_mem;
}
msdc_init_hw(host);
if (mmc->caps2 & MMC_CAP2_CQE) {
host->cq_host = devm_kzalloc(mmc->parent,
sizeof(*host->cq_host),
GFP_KERNEL);
if (!host->cq_host) {
ret = -ENOMEM;
goto host_free;
}
host->cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
host->cq_host->mmio = host->base + 0x800;
host->cq_host->ops = &msdc_cmdq_ops;
ret = cqhci_init(host->cq_host, mmc, true);
if (ret)
goto host_free;
mmc->max_segs = 128;
/* cqhci 16bit length */
/* 0 size, means 65536 so we don't have to -1 here */
mmc->max_seg_size = 64 * 1024;
}
ret = devm_request_irq(&pdev->dev, host->irq, msdc_irq,
IRQF_TRIGGER_NONE, pdev->name, host);
if (ret)
goto release;
pm_runtime_set_active(host->dev);
pm_runtime_set_autosuspend_delay(host->dev, MTK_MMC_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(host->dev);
pm_runtime_enable(host->dev);
ret = mmc_add_host(mmc);
if (ret)
goto end;
return 0;
end:
pm_runtime_disable(host->dev);
release:
platform_set_drvdata(pdev, NULL);
msdc_deinit_hw(host);
msdc_gate_clock(host);
release_mem:
if (host->dma.gpd)
dma_free_coherent(&pdev->dev,
2 * sizeof(struct mt_gpdma_desc),
host->dma.gpd, host->dma.gpd_addr);
if (host->dma.bd)
dma_free_coherent(&pdev->dev,
MAX_BD_NUM * sizeof(struct mt_bdma_desc),
host->dma.bd, host->dma.bd_addr);
host_free:
mmc_free_host(mmc);
return ret;
}
static int msdc_drv_remove(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct msdc_host *host;
mmc = platform_get_drvdata(pdev);
host = mmc_priv(mmc);
pm_runtime_get_sync(host->dev);
platform_set_drvdata(pdev, NULL);
mmc_remove_host(mmc);
msdc_deinit_hw(host);
msdc_gate_clock(host);
pm_runtime_disable(host->dev);
pm_runtime_put_noidle(host->dev);
dma_free_coherent(&pdev->dev,
2 * sizeof(struct mt_gpdma_desc),
host->dma.gpd, host->dma.gpd_addr);
dma_free_coherent(&pdev->dev, MAX_BD_NUM * sizeof(struct mt_bdma_desc),
host->dma.bd, host->dma.bd_addr);
mmc_free_host(mmc);
return 0;
}
static void msdc_save_reg(struct msdc_host *host)
{
u32 tune_reg = host->dev_comp->pad_tune_reg;
host->save_para.msdc_cfg = readl(host->base + MSDC_CFG);
host->save_para.iocon = readl(host->base + MSDC_IOCON);
host->save_para.sdc_cfg = readl(host->base + SDC_CFG);
host->save_para.patch_bit0 = readl(host->base + MSDC_PATCH_BIT);
host->save_para.patch_bit1 = readl(host->base + MSDC_PATCH_BIT1);
host->save_para.patch_bit2 = readl(host->base + MSDC_PATCH_BIT2);
host->save_para.pad_ds_tune = readl(host->base + PAD_DS_TUNE);
host->save_para.pad_cmd_tune = readl(host->base + PAD_CMD_TUNE);
host->save_para.emmc50_cfg0 = readl(host->base + EMMC50_CFG0);
host->save_para.emmc50_cfg3 = readl(host->base + EMMC50_CFG3);
host->save_para.sdc_fifo_cfg = readl(host->base + SDC_FIFO_CFG);
if (host->top_base) {
host->save_para.emmc_top_control =
readl(host->top_base + EMMC_TOP_CONTROL);
host->save_para.emmc_top_cmd =
readl(host->top_base + EMMC_TOP_CMD);
host->save_para.emmc50_pad_ds_tune =
readl(host->top_base + EMMC50_PAD_DS_TUNE);
} else {
host->save_para.pad_tune = readl(host->base + tune_reg);
}
}
static void msdc_restore_reg(struct msdc_host *host)
{
struct mmc_host *mmc = mmc_from_priv(host);
u32 tune_reg = host->dev_comp->pad_tune_reg;
writel(host->save_para.msdc_cfg, host->base + MSDC_CFG);
writel(host->save_para.iocon, host->base + MSDC_IOCON);
writel(host->save_para.sdc_cfg, host->base + SDC_CFG);
writel(host->save_para.patch_bit0, host->base + MSDC_PATCH_BIT);
writel(host->save_para.patch_bit1, host->base + MSDC_PATCH_BIT1);
writel(host->save_para.patch_bit2, host->base + MSDC_PATCH_BIT2);
writel(host->save_para.pad_ds_tune, host->base + PAD_DS_TUNE);
writel(host->save_para.pad_cmd_tune, host->base + PAD_CMD_TUNE);
writel(host->save_para.emmc50_cfg0, host->base + EMMC50_CFG0);
writel(host->save_para.emmc50_cfg3, host->base + EMMC50_CFG3);
writel(host->save_para.sdc_fifo_cfg, host->base + SDC_FIFO_CFG);
if (host->top_base) {
writel(host->save_para.emmc_top_control,
host->top_base + EMMC_TOP_CONTROL);
writel(host->save_para.emmc_top_cmd,
host->top_base + EMMC_TOP_CMD);
writel(host->save_para.emmc50_pad_ds_tune,
host->top_base + EMMC50_PAD_DS_TUNE);
} else {
writel(host->save_para.pad_tune, host->base + tune_reg);
}
if (sdio_irq_claimed(mmc))
__msdc_enable_sdio_irq(host, 1);
}
static int __maybe_unused msdc_runtime_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msdc_host *host = mmc_priv(mmc);
msdc_save_reg(host);
if (sdio_irq_claimed(mmc)) {
if (host->pins_eint) {
disable_irq(host->irq);
pinctrl_select_state(host->pinctrl, host->pins_eint);
}
__msdc_enable_sdio_irq(host, 0);
}
msdc_gate_clock(host);
return 0;
}
static int __maybe_unused msdc_runtime_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msdc_host *host = mmc_priv(mmc);
int ret;
ret = msdc_ungate_clock(host);
if (ret)
return ret;
msdc_restore_reg(host);
if (sdio_irq_claimed(mmc) && host->pins_eint) {
pinctrl_select_state(host->pinctrl, host->pins_uhs);
enable_irq(host->irq);
}
return 0;
}
static int __maybe_unused msdc_suspend(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msdc_host *host = mmc_priv(mmc);
int ret;
u32 val;
if (mmc->caps2 & MMC_CAP2_CQE) {
ret = cqhci_suspend(mmc);
if (ret)
return ret;
val = readl(host->base + MSDC_INT);
writel(val, host->base + MSDC_INT);
}
/*
* Bump up runtime PM usage counter otherwise dev->power.needs_force_resume will
* not be marked as 1, pm_runtime_force_resume() will go out directly.
*/
if (sdio_irq_claimed(mmc) && host->pins_eint)
pm_runtime_get_noresume(dev);
return pm_runtime_force_suspend(dev);
}
static int __maybe_unused msdc_resume(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
struct msdc_host *host = mmc_priv(mmc);
if (sdio_irq_claimed(mmc) && host->pins_eint)
pm_runtime_put_noidle(dev);
return pm_runtime_force_resume(dev);
}
static const struct dev_pm_ops msdc_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(msdc_suspend, msdc_resume)
SET_RUNTIME_PM_OPS(msdc_runtime_suspend, msdc_runtime_resume, NULL)
};
static struct platform_driver mt_msdc_driver = {
.probe = msdc_drv_probe,
.remove = msdc_drv_remove,
.driver = {
.name = "mtk-msdc",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = msdc_of_ids,
.pm = &msdc_dev_pm_ops,
},
};
module_platform_driver(mt_msdc_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MediaTek SD/MMC Card Driver");