OpenCloudOS-Kernel/drivers/gpu/drm/nouveau/nouveau_calc.c

479 lines
13 KiB
C

/*
* Copyright 1993-2003 NVIDIA, Corporation
* Copyright 2007-2009 Stuart Bennett
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "drmP.h"
#include "nouveau_drv.h"
#include "nouveau_hw.h"
/****************************************************************************\
* *
* The video arbitration routines calculate some "magic" numbers. Fixes *
* the snow seen when accessing the framebuffer without it. *
* It just works (I hope). *
* *
\****************************************************************************/
struct nv_fifo_info {
int lwm;
int burst;
};
struct nv_sim_state {
int pclk_khz;
int mclk_khz;
int nvclk_khz;
int bpp;
int mem_page_miss;
int mem_latency;
int memory_type;
int memory_width;
int two_heads;
};
static void
nv04_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
{
int pagemiss, cas, width, bpp;
int nvclks, mclks, pclks, crtpagemiss;
int found, mclk_extra, mclk_loop, cbs, m1, p1;
int mclk_freq, pclk_freq, nvclk_freq;
int us_m, us_n, us_p, crtc_drain_rate;
int cpm_us, us_crt, clwm;
pclk_freq = arb->pclk_khz;
mclk_freq = arb->mclk_khz;
nvclk_freq = arb->nvclk_khz;
pagemiss = arb->mem_page_miss;
cas = arb->mem_latency;
width = arb->memory_width >> 6;
bpp = arb->bpp;
cbs = 128;
pclks = 2;
nvclks = 10;
mclks = 13 + cas;
mclk_extra = 3;
found = 0;
while (!found) {
found = 1;
mclk_loop = mclks + mclk_extra;
us_m = mclk_loop * 1000 * 1000 / mclk_freq;
us_n = nvclks * 1000 * 1000 / nvclk_freq;
us_p = nvclks * 1000 * 1000 / pclk_freq;
crtc_drain_rate = pclk_freq * bpp / 8;
crtpagemiss = 2;
crtpagemiss += 1;
cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq;
us_crt = cpm_us + us_m + us_n + us_p;
clwm = us_crt * crtc_drain_rate / (1000 * 1000);
clwm++;
m1 = clwm + cbs - 512;
p1 = m1 * pclk_freq / mclk_freq;
p1 = p1 * bpp / 8;
if ((p1 < m1 && m1 > 0) || clwm > 519) {
found = !mclk_extra;
mclk_extra--;
}
if (clwm < 384)
clwm = 384;
fifo->lwm = clwm;
fifo->burst = cbs;
}
}
static void
nv10_calc_arb(struct nv_fifo_info *fifo, struct nv_sim_state *arb)
{
int fill_rate, drain_rate;
int pclks, nvclks, mclks, xclks;
int pclk_freq, nvclk_freq, mclk_freq;
int fill_lat, extra_lat;
int max_burst_o, max_burst_l;
int fifo_len, min_lwm, max_lwm;
const int burst_lat = 80; /* Maximum allowable latency due
* to the CRTC FIFO burst. (ns) */
pclk_freq = arb->pclk_khz;
nvclk_freq = arb->nvclk_khz;
mclk_freq = arb->mclk_khz;
fill_rate = mclk_freq * arb->memory_width / 8; /* kB/s */
drain_rate = pclk_freq * arb->bpp / 8; /* kB/s */
fifo_len = arb->two_heads ? 1536 : 1024; /* B */
/* Fixed FIFO refill latency. */
pclks = 4; /* lwm detect. */
nvclks = 3 /* lwm -> sync. */
+ 2 /* fbi bus cycles (1 req + 1 busy) */
+ 1 /* 2 edge sync. may be very close to edge so
* just put one. */
+ 1 /* fbi_d_rdv_n */
+ 1 /* Fbi_d_rdata */
+ 1; /* crtfifo load */
mclks = 1 /* 2 edge sync. may be very close to edge so
* just put one. */
+ 1 /* arb_hp_req */
+ 5 /* tiling pipeline */
+ 2 /* latency fifo */
+ 2 /* memory request to fbio block */
+ 7; /* data returned from fbio block */
/* Need to accumulate 256 bits for read */
mclks += (arb->memory_type == 0 ? 2 : 1)
* arb->memory_width / 32;
fill_lat = mclks * 1000 * 1000 / mclk_freq /* minimum mclk latency */
+ nvclks * 1000 * 1000 / nvclk_freq /* nvclk latency */
+ pclks * 1000 * 1000 / pclk_freq; /* pclk latency */
/* Conditional FIFO refill latency. */
xclks = 2 * arb->mem_page_miss + mclks /* Extra latency due to
* the overlay. */
+ 2 * arb->mem_page_miss /* Extra pagemiss latency. */
+ (arb->bpp == 32 ? 8 : 4); /* Margin of error. */
extra_lat = xclks * 1000 * 1000 / mclk_freq;
if (arb->two_heads)
/* Account for another CRTC. */
extra_lat += fill_lat + extra_lat + burst_lat;
/* FIFO burst */
/* Max burst not leading to overflows. */
max_burst_o = (1 + fifo_len - extra_lat * drain_rate / (1000 * 1000))
* (fill_rate / 1000) / ((fill_rate - drain_rate) / 1000);
fifo->burst = min(max_burst_o, 1024);
/* Max burst value with an acceptable latency. */
max_burst_l = burst_lat * fill_rate / (1000 * 1000);
fifo->burst = min(max_burst_l, fifo->burst);
fifo->burst = rounddown_pow_of_two(fifo->burst);
/* FIFO low watermark */
min_lwm = (fill_lat + extra_lat) * drain_rate / (1000 * 1000) + 1;
max_lwm = fifo_len - fifo->burst
+ fill_lat * drain_rate / (1000 * 1000)
+ fifo->burst * drain_rate / fill_rate;
fifo->lwm = min_lwm + 10 * (max_lwm - min_lwm) / 100; /* Empirical. */
}
static void
nv04_update_arb(struct drm_device *dev, int VClk, int bpp,
int *burst, int *lwm)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nv_fifo_info fifo_data;
struct nv_sim_state sim_data;
int MClk = nouveau_hw_get_clock(dev, MPLL);
int NVClk = nouveau_hw_get_clock(dev, NVPLL);
uint32_t cfg1 = nvReadFB(dev, NV_PFB_CFG1);
sim_data.pclk_khz = VClk;
sim_data.mclk_khz = MClk;
sim_data.nvclk_khz = NVClk;
sim_data.bpp = bpp;
sim_data.two_heads = nv_two_heads(dev);
if ((dev->pci_device & 0xffff) == 0x01a0 /*CHIPSET_NFORCE*/ ||
(dev->pci_device & 0xffff) == 0x01f0 /*CHIPSET_NFORCE2*/) {
uint32_t type;
pci_read_config_dword(pci_get_bus_and_slot(0, 1), 0x7c, &type);
sim_data.memory_type = (type >> 12) & 1;
sim_data.memory_width = 64;
sim_data.mem_latency = 3;
sim_data.mem_page_miss = 10;
} else {
sim_data.memory_type = nvReadFB(dev, NV_PFB_CFG0) & 0x1;
sim_data.memory_width = (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & 0x10) ? 128 : 64;
sim_data.mem_latency = cfg1 & 0xf;
sim_data.mem_page_miss = ((cfg1 >> 4) & 0xf) + ((cfg1 >> 31) & 0x1);
}
if (dev_priv->card_type == NV_04)
nv04_calc_arb(&fifo_data, &sim_data);
else
nv10_calc_arb(&fifo_data, &sim_data);
*burst = ilog2(fifo_data.burst >> 4);
*lwm = fifo_data.lwm >> 3;
}
static void
nv30_update_arb(int *burst, int *lwm)
{
unsigned int fifo_size, burst_size, graphics_lwm;
fifo_size = 2048;
burst_size = 512;
graphics_lwm = fifo_size - burst_size;
*burst = ilog2(burst_size >> 5);
*lwm = graphics_lwm >> 3;
}
void
nouveau_calc_arb(struct drm_device *dev, int vclk, int bpp, int *burst, int *lwm)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
if (dev_priv->card_type < NV_30)
nv04_update_arb(dev, vclk, bpp, burst, lwm);
else if ((dev->pci_device & 0xfff0) == 0x0240 /*CHIPSET_C51*/ ||
(dev->pci_device & 0xfff0) == 0x03d0 /*CHIPSET_C512*/) {
*burst = 128;
*lwm = 0x0480;
} else
nv30_update_arb(burst, lwm);
}
static int
getMNP_single(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
struct nouveau_pll_vals *bestpv)
{
/* Find M, N and P for a single stage PLL
*
* Note that some bioses (NV3x) have lookup tables of precomputed MNP
* values, but we're too lazy to use those atm
*
* "clk" parameter in kHz
* returns calculated clock
*/
struct drm_nouveau_private *dev_priv = dev->dev_private;
int cv = dev_priv->vbios.chip_version;
int minvco = pll_lim->vco1.minfreq, maxvco = pll_lim->vco1.maxfreq;
int minM = pll_lim->vco1.min_m, maxM = pll_lim->vco1.max_m;
int minN = pll_lim->vco1.min_n, maxN = pll_lim->vco1.max_n;
int minU = pll_lim->vco1.min_inputfreq;
int maxU = pll_lim->vco1.max_inputfreq;
int minP = pll_lim->max_p ? pll_lim->min_p : 0;
int maxP = pll_lim->max_p ? pll_lim->max_p : pll_lim->max_usable_log2p;
int crystal = pll_lim->refclk;
int M, N, thisP, P;
int clkP, calcclk;
int delta, bestdelta = INT_MAX;
int bestclk = 0;
/* this division verified for nv20, nv18, nv28 (Haiku), and nv34 */
/* possibly correlated with introduction of 27MHz crystal */
if (dev_priv->card_type < NV_50) {
if (cv < 0x17 || cv == 0x1a || cv == 0x20) {
if (clk > 250000)
maxM = 6;
if (clk > 340000)
maxM = 2;
} else if (cv < 0x40) {
if (clk > 150000)
maxM = 6;
if (clk > 200000)
maxM = 4;
if (clk > 340000)
maxM = 2;
}
}
P = pll_lim->max_p ? maxP : (1 << maxP);
if ((clk * P) < minvco) {
minvco = clk * maxP;
maxvco = minvco * 2;
}
if (clk + clk/200 > maxvco) /* +0.5% */
maxvco = clk + clk/200;
/* NV34 goes maxlog2P->0, NV20 goes 0->maxlog2P */
for (thisP = minP; thisP <= maxP; thisP++) {
P = pll_lim->max_p ? thisP : (1 << thisP);
clkP = clk * P;
if (clkP < minvco)
continue;
if (clkP > maxvco)
return bestclk;
for (M = minM; M <= maxM; M++) {
if (crystal/M < minU)
return bestclk;
if (crystal/M > maxU)
continue;
/* add crystal/2 to round better */
N = (clkP * M + crystal/2) / crystal;
if (N < minN)
continue;
if (N > maxN)
break;
/* more rounding additions */
calcclk = ((N * crystal + P/2) / P + M/2) / M;
delta = abs(calcclk - clk);
/* we do an exhaustive search rather than terminating
* on an optimality condition...
*/
if (delta < bestdelta) {
bestdelta = delta;
bestclk = calcclk;
bestpv->N1 = N;
bestpv->M1 = M;
bestpv->log2P = thisP;
if (delta == 0) /* except this one */
return bestclk;
}
}
}
return bestclk;
}
static int
getMNP_double(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
struct nouveau_pll_vals *bestpv)
{
/* Find M, N and P for a two stage PLL
*
* Note that some bioses (NV30+) have lookup tables of precomputed MNP
* values, but we're too lazy to use those atm
*
* "clk" parameter in kHz
* returns calculated clock
*/
struct drm_nouveau_private *dev_priv = dev->dev_private;
int chip_version = dev_priv->vbios.chip_version;
int minvco1 = pll_lim->vco1.minfreq, maxvco1 = pll_lim->vco1.maxfreq;
int minvco2 = pll_lim->vco2.minfreq, maxvco2 = pll_lim->vco2.maxfreq;
int minU1 = pll_lim->vco1.min_inputfreq, minU2 = pll_lim->vco2.min_inputfreq;
int maxU1 = pll_lim->vco1.max_inputfreq, maxU2 = pll_lim->vco2.max_inputfreq;
int minM1 = pll_lim->vco1.min_m, maxM1 = pll_lim->vco1.max_m;
int minN1 = pll_lim->vco1.min_n, maxN1 = pll_lim->vco1.max_n;
int minM2 = pll_lim->vco2.min_m, maxM2 = pll_lim->vco2.max_m;
int minN2 = pll_lim->vco2.min_n, maxN2 = pll_lim->vco2.max_n;
int maxlog2P = pll_lim->max_usable_log2p;
int crystal = pll_lim->refclk;
bool fixedgain2 = (minM2 == maxM2 && minN2 == maxN2);
int M1, N1, M2, N2, log2P;
int clkP, calcclk1, calcclk2, calcclkout;
int delta, bestdelta = INT_MAX;
int bestclk = 0;
int vco2 = (maxvco2 - maxvco2/200) / 2;
for (log2P = 0; clk && log2P < maxlog2P && clk <= (vco2 >> log2P); log2P++)
;
clkP = clk << log2P;
if (maxvco2 < clk + clk/200) /* +0.5% */
maxvco2 = clk + clk/200;
for (M1 = minM1; M1 <= maxM1; M1++) {
if (crystal/M1 < minU1)
return bestclk;
if (crystal/M1 > maxU1)
continue;
for (N1 = minN1; N1 <= maxN1; N1++) {
calcclk1 = crystal * N1 / M1;
if (calcclk1 < minvco1)
continue;
if (calcclk1 > maxvco1)
break;
for (M2 = minM2; M2 <= maxM2; M2++) {
if (calcclk1/M2 < minU2)
break;
if (calcclk1/M2 > maxU2)
continue;
/* add calcclk1/2 to round better */
N2 = (clkP * M2 + calcclk1/2) / calcclk1;
if (N2 < minN2)
continue;
if (N2 > maxN2)
break;
if (!fixedgain2) {
if (chip_version < 0x60)
if (N2/M2 < 4 || N2/M2 > 10)
continue;
calcclk2 = calcclk1 * N2 / M2;
if (calcclk2 < minvco2)
break;
if (calcclk2 > maxvco2)
continue;
} else
calcclk2 = calcclk1;
calcclkout = calcclk2 >> log2P;
delta = abs(calcclkout - clk);
/* we do an exhaustive search rather than terminating
* on an optimality condition...
*/
if (delta < bestdelta) {
bestdelta = delta;
bestclk = calcclkout;
bestpv->N1 = N1;
bestpv->M1 = M1;
bestpv->N2 = N2;
bestpv->M2 = M2;
bestpv->log2P = log2P;
if (delta == 0) /* except this one */
return bestclk;
}
}
}
}
return bestclk;
}
int
nouveau_calc_pll_mnp(struct drm_device *dev, struct pll_lims *pll_lim, int clk,
struct nouveau_pll_vals *pv)
{
int outclk;
if (!pll_lim->vco2.maxfreq)
outclk = getMNP_single(dev, pll_lim, clk, pv);
else
outclk = getMNP_double(dev, pll_lim, clk, pv);
if (!outclk)
NV_ERROR(dev, "Could not find a compatible set of PLL values\n");
return outclk;
}