OpenCloudOS-Kernel/drivers/media/IR/ene_ir.c

1024 lines
26 KiB
C

/*
* driver for ENE KB3926 B/C/D CIR (pnp id: ENE0XXX)
*
* Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pnp.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/input.h>
#include <media/ir-core.h>
#include <media/ir-common.h>
#include "ene_ir.h"
static int sample_period = -1;
static int enable_idle = 1;
static int input = 1;
static int debug;
static int txsim;
static int ene_irq_status(struct ene_device *dev);
/* read a hardware register */
static u8 ene_hw_read_reg(struct ene_device *dev, u16 reg)
{
u8 retval;
outb(reg >> 8, dev->hw_io + ENE_ADDR_HI);
outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO);
retval = inb(dev->hw_io + ENE_IO);
ene_dbg_verbose("reg %04x == %02x", reg, retval);
return retval;
}
/* write a hardware register */
static void ene_hw_write_reg(struct ene_device *dev, u16 reg, u8 value)
{
outb(reg >> 8, dev->hw_io + ENE_ADDR_HI);
outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO);
outb(value, dev->hw_io + ENE_IO);
ene_dbg_verbose("reg %04x <- %02x", reg, value);
}
/* change specific bits in hardware register */
static void ene_hw_write_reg_mask(struct ene_device *dev,
u16 reg, u8 value, u8 mask)
{
u8 regvalue;
outb(reg >> 8, dev->hw_io + ENE_ADDR_HI);
outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO);
regvalue = inb(dev->hw_io + ENE_IO) & ~mask;
regvalue |= (value & mask);
outb(regvalue, dev->hw_io + ENE_IO);
ene_dbg_verbose("reg %04x <- %02x (mask=%02x)", reg, value, mask);
}
/* detect hardware features */
static int ene_hw_detect(struct ene_device *dev)
{
u8 chip_major, chip_minor;
u8 hw_revision, old_ver;
u8 tmp;
u8 fw_capabilities;
int pll_freq;
tmp = ene_hw_read_reg(dev, ENE_HW_UNK);
ene_hw_write_reg(dev, ENE_HW_UNK, tmp & ~ENE_HW_UNK_CLR);
chip_major = ene_hw_read_reg(dev, ENE_HW_VER_MAJOR);
chip_minor = ene_hw_read_reg(dev, ENE_HW_VER_MINOR);
ene_hw_write_reg(dev, ENE_HW_UNK, tmp);
hw_revision = ene_hw_read_reg(dev, ENE_HW_VERSION);
old_ver = ene_hw_read_reg(dev, ENE_HW_VER_OLD);
pll_freq = (ene_hw_read_reg(dev, ENE_PLLFRH) << 4) +
(ene_hw_read_reg(dev, ENE_PLLFRL) >> 4);
if (pll_freq != 1000)
dev->rx_period_adjust = 4;
else
dev->rx_period_adjust = 2;
ene_printk(KERN_NOTICE, "PLL freq = %d\n", pll_freq);
if (hw_revision == 0xFF) {
ene_printk(KERN_WARNING, "device seems to be disabled\n");
ene_printk(KERN_WARNING,
"send a mail to lirc-list@lists.sourceforge.net\n");
ene_printk(KERN_WARNING, "please attach output of acpidump\n");
return -ENODEV;
}
if (chip_major == 0x33) {
ene_printk(KERN_WARNING, "chips 0x33xx aren't supported\n");
return -ENODEV;
}
if (chip_major == 0x39 && chip_minor == 0x26 && hw_revision == 0xC0) {
dev->hw_revision = ENE_HW_C;
} else if (old_ver == 0x24 && hw_revision == 0xC0) {
dev->hw_revision = ENE_HW_B;
ene_printk(KERN_NOTICE, "KB3926B detected\n");
} else {
dev->hw_revision = ENE_HW_D;
ene_printk(KERN_WARNING,
"unknown ENE chip detected, assuming KB3926D\n");
ene_printk(KERN_WARNING,
"driver support might be not complete");
}
ene_printk(KERN_DEBUG,
"chip is 0x%02x%02x - kbver = 0x%02x, rev = 0x%02x\n",
chip_major, chip_minor, old_ver, hw_revision);
/* detect features hardware supports */
if (dev->hw_revision < ENE_HW_C)
return 0;
fw_capabilities = ene_hw_read_reg(dev, ENE_FW2);
ene_dbg("Firmware capabilities: %02x", fw_capabilities);
dev->hw_gpio40_learning = fw_capabilities & ENE_FW2_GP40_AS_LEARN;
dev->hw_learning_and_tx_capable = fw_capabilities & ENE_FW2_LEARNING;
dev->hw_fan_as_normal_input = dev->hw_learning_and_tx_capable &&
(fw_capabilities & ENE_FW2_FAN_AS_NRML_IN);
ene_printk(KERN_NOTICE, "hardware features:\n");
ene_printk(KERN_NOTICE,
"learning and transmit %s, gpio40_learn %s, fan_in %s\n",
dev->hw_learning_and_tx_capable ? "on" : "off",
dev->hw_gpio40_learning ? "on" : "off",
dev->hw_fan_as_normal_input ? "on" : "off");
if (dev->hw_learning_and_tx_capable) {
ene_printk(KERN_WARNING,
"Device supports transmitting, but that support is\n");
ene_printk(KERN_WARNING,
"lightly tested. Please test it and mail\n");
ene_printk(KERN_WARNING,
"lirc-list@lists.sourceforge.net\n");
}
return 0;
}
/* this enables/disables IR input via gpio40*/
static void ene_enable_gpio40_receive(struct ene_device *dev, int enable)
{
ene_hw_write_reg_mask(dev, ENE_CIR_CONF2, enable ?
0 : ENE_CIR_CONF2_GPIO40DIS,
ENE_CIR_CONF2_GPIO40DIS);
}
/* this enables/disables IR via standard input */
static void ene_enable_normal_receive(struct ene_device *dev, int enable)
{
ene_hw_write_reg(dev, ENE_CIR_CONF1, enable ? ENE_CIR_CONF1_RX_ON : 0);
}
/* this enables/disables IR input via unused fan tachtometer input */
static void ene_enable_fan_receive(struct ene_device *dev, int enable)
{
if (!enable)
ene_hw_write_reg(dev, ENE_FAN_AS_IN1, 0);
else {
ene_hw_write_reg(dev, ENE_FAN_AS_IN1, ENE_FAN_AS_IN1_EN);
ene_hw_write_reg(dev, ENE_FAN_AS_IN2, ENE_FAN_AS_IN2_EN);
}
dev->rx_fan_input_inuse = enable;
}
/* Sense current received carrier */
static int ene_rx_sense_carrier(struct ene_device *dev)
{
int period = ene_hw_read_reg(dev, ENE_RX_CARRIER);
int carrier;
ene_dbg("RX: hardware carrier period = %02x", period);
if (!(period & ENE_RX_CARRIER_VALID))
return 0;
period &= ~ENE_RX_CARRIER_VALID;
if (!period)
return 0;
carrier = 2000000 / period;
ene_dbg("RX: sensed carrier = %d Hz", carrier);
return carrier;
}
/* determine which input to use*/
static void ene_rx_set_inputs(struct ene_device *dev)
{
int learning_mode = dev->learning_enabled;
ene_dbg("RX: setup receiver, learning mode = %d", learning_mode);
ene_enable_normal_receive(dev, 1);
/* old hardware doesn't support learning mode for sure */
if (dev->hw_revision <= ENE_HW_B)
return;
/* receiver not learning capable, still set gpio40 correctly */
if (!dev->hw_learning_and_tx_capable) {
ene_enable_gpio40_receive(dev, !dev->hw_gpio40_learning);
return;
}
/* enable learning mode */
if (learning_mode) {
ene_enable_gpio40_receive(dev, dev->hw_gpio40_learning);
/* fan input is not used for learning */
if (dev->hw_fan_as_normal_input)
ene_enable_fan_receive(dev, 0);
/* disable learning mode */
} else {
if (dev->hw_fan_as_normal_input) {
ene_enable_fan_receive(dev, 1);
ene_enable_normal_receive(dev, 0);
} else
ene_enable_gpio40_receive(dev,
!dev->hw_gpio40_learning);
}
/* set few additional settings for this mode */
ene_hw_write_reg_mask(dev, ENE_CIR_CONF1, learning_mode ?
ENE_CIR_CONF1_LEARN1 : 0, ENE_CIR_CONF1_LEARN1);
ene_hw_write_reg_mask(dev, ENE_CIR_CONF2, learning_mode ?
ENE_CIR_CONF2_LEARN2 : 0, ENE_CIR_CONF2_LEARN2);
if (dev->rx_fan_input_inuse) {
dev->props->rx_resolution = ENE_SAMPLE_PERIOD_FAN * 1000;
dev->props->timeout =
ENE_FAN_VALUE_MASK * ENE_SAMPLE_PERIOD_FAN * 1000;
} else {
dev->props->rx_resolution = sample_period * 1000;
dev->props->timeout = ENE_MAXGAP * 1000;
}
}
/* Enable the device for receive */
static void ene_rx_enable(struct ene_device *dev)
{
u8 reg_value;
if (dev->hw_revision < ENE_HW_C) {
ene_hw_write_reg(dev, ENEB_IRQ, dev->irq << 1);
ene_hw_write_reg(dev, ENEB_IRQ_UNK1, 0x01);
} else {
reg_value = ene_hw_read_reg(dev, ENEC_IRQ) & 0xF0;
reg_value |= ENEC_IRQ_UNK_EN;
reg_value &= ~ENEC_IRQ_STATUS;
reg_value |= (dev->irq & ENEC_IRQ_MASK);
ene_hw_write_reg(dev, ENEC_IRQ, reg_value);
ene_hw_write_reg(dev, ENE_TX_UNK1, 0x63);
}
ene_hw_write_reg(dev, ENE_CIR_CONF2, 0x00);
ene_rx_set_inputs(dev);
/* set sampling period */
ene_hw_write_reg(dev, ENE_CIR_SAMPLE_PERIOD, sample_period);
/* ack any pending irqs - just in case */
ene_irq_status(dev);
/* enable firmware bits */
ene_hw_write_reg_mask(dev, ENE_FW1,
ENE_FW1_ENABLE | ENE_FW1_IRQ,
ENE_FW1_ENABLE | ENE_FW1_IRQ);
/* enter idle mode */
ir_raw_event_set_idle(dev->idev, 1);
ir_raw_event_reset(dev->idev);
}
/* Disable the device receiver */
static void ene_rx_disable(struct ene_device *dev)
{
/* disable inputs */
ene_enable_normal_receive(dev, 0);
if (dev->hw_fan_as_normal_input)
ene_enable_fan_receive(dev, 0);
/* disable hardware IRQ and firmware flag */
ene_hw_write_reg_mask(dev, ENE_FW1, 0, ENE_FW1_ENABLE | ENE_FW1_IRQ);
ir_raw_event_set_idle(dev->idev, 1);
ir_raw_event_reset(dev->idev);
}
/* prepare transmission */
static void ene_tx_prepare(struct ene_device *dev)
{
u8 conf1;
conf1 = ene_hw_read_reg(dev, ENE_CIR_CONF1);
dev->saved_conf1 = conf1;
if (dev->hw_revision == ENE_HW_C)
conf1 &= ~ENE_CIR_CONF1_TX_CLEAR;
/* Enable TX engine */
conf1 |= ENE_CIR_CONF1_TX_ON;
/* Set carrier */
if (dev->tx_period) {
/* NOTE: duty cycle handling is just a guess, it might
not be aviable. Default values were tested */
int tx_period_in500ns = dev->tx_period * 2;
int tx_pulse_width_in_500ns =
tx_period_in500ns / (100 / dev->tx_duty_cycle);
if (!tx_pulse_width_in_500ns)
tx_pulse_width_in_500ns = 1;
ene_dbg("TX: pulse distance = %d * 500 ns", tx_period_in500ns);
ene_dbg("TX: pulse width = %d * 500 ns",
tx_pulse_width_in_500ns);
ene_hw_write_reg(dev, ENE_TX_PERIOD, ENE_TX_PERIOD_UNKBIT |
tx_period_in500ns);
ene_hw_write_reg(dev, ENE_TX_PERIOD_PULSE,
tx_pulse_width_in_500ns);
conf1 |= ENE_CIR_CONF1_TX_CARR;
} else
conf1 &= ~ENE_CIR_CONF1_TX_CARR;
ene_hw_write_reg(dev, ENE_CIR_CONF1, conf1);
}
/* end transmission */
static void ene_tx_complete(struct ene_device *dev)
{
ene_hw_write_reg(dev, ENE_CIR_CONF1, dev->saved_conf1);
dev->tx_buffer = NULL;
}
/* set transmit mask */
static void ene_tx_hw_set_transmiter_mask(struct ene_device *dev)
{
u8 txport1 = ene_hw_read_reg(dev, ENE_TX_PORT1) & ~ENE_TX_PORT1_EN;
u8 txport2 = ene_hw_read_reg(dev, ENE_TX_PORT2) & ~ENE_TX_PORT2_EN;
if (dev->transmitter_mask & 0x01)
txport1 |= ENE_TX_PORT1_EN;
if (dev->transmitter_mask & 0x02)
txport2 |= ENE_TX_PORT2_EN;
ene_hw_write_reg(dev, ENE_TX_PORT1, txport1);
ene_hw_write_reg(dev, ENE_TX_PORT2, txport2);
}
/* TX one sample - must be called with dev->hw_lock*/
static void ene_tx_sample(struct ene_device *dev)
{
u8 raw_tx;
u32 sample;
if (!dev->tx_buffer) {
ene_dbg("TX: attempt to transmit NULL buffer");
return;
}
/* Grab next TX sample */
if (!dev->tx_sample) {
again:
if (dev->tx_pos == dev->tx_len + 1) {
if (!dev->tx_done) {
ene_dbg("TX: no more data to send");
dev->tx_done = 1;
goto exit;
} else {
ene_dbg("TX: last sample sent by hardware");
ene_tx_complete(dev);
complete(&dev->tx_complete);
return;
}
}
sample = dev->tx_buffer[dev->tx_pos++];
dev->tx_sample_pulse = !dev->tx_sample_pulse;
ene_dbg("TX: sample %8d (%s)", sample, dev->tx_sample_pulse ?
"pulse" : "space");
dev->tx_sample = DIV_ROUND_CLOSEST(sample, ENE_TX_SMPL_PERIOD);
/* guard against too short samples */
if (!dev->tx_sample)
goto again;
}
raw_tx = min(dev->tx_sample , (unsigned int)ENE_TX_SMLP_MASK);
dev->tx_sample -= raw_tx;
if (dev->tx_sample_pulse)
raw_tx |= ENE_TX_PULSE_MASK;
ene_hw_write_reg(dev, ENE_TX_INPUT1 + dev->tx_reg, raw_tx);
dev->tx_reg = !dev->tx_reg;
exit:
/* simulate TX done interrupt */
if (txsim)
mod_timer(&dev->tx_sim_timer, jiffies + HZ / 500);
}
/* timer to simulate tx done interrupt */
static void ene_tx_irqsim(unsigned long data)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
spin_lock_irqsave(&dev->hw_lock, flags);
ene_tx_sample(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
}
/* read irq status and ack it */
static int ene_irq_status(struct ene_device *dev)
{
u8 irq_status;
u8 fw_flags1, fw_flags2;
int cur_rx_pointer;
int retval = 0;
fw_flags2 = ene_hw_read_reg(dev, ENE_FW2);
cur_rx_pointer = !!(fw_flags2 & ENE_FW2_BUF_HIGH);
if (dev->hw_revision < ENE_HW_C) {
irq_status = ene_hw_read_reg(dev, ENEB_IRQ_STATUS);
if (!(irq_status & ENEB_IRQ_STATUS_IR))
return 0;
ene_hw_write_reg(dev, ENEB_IRQ_STATUS,
irq_status & ~ENEB_IRQ_STATUS_IR);
dev->rx_pointer = cur_rx_pointer;
return ENE_IRQ_RX;
}
irq_status = ene_hw_read_reg(dev, ENEC_IRQ);
if (!(irq_status & ENEC_IRQ_STATUS))
return 0;
/* original driver does that twice - a workaround ? */
ene_hw_write_reg(dev, ENEC_IRQ, irq_status & ~ENEC_IRQ_STATUS);
ene_hw_write_reg(dev, ENEC_IRQ, irq_status & ~ENEC_IRQ_STATUS);
/* clear unknown flag in F8F9 */
if (fw_flags2 & ENE_FW2_IRQ_CLR)
ene_hw_write_reg(dev, ENE_FW2, fw_flags2 & ~ENE_FW2_IRQ_CLR);
/* check if this is a TX interrupt */
fw_flags1 = ene_hw_read_reg(dev, ENE_FW1);
if (fw_flags1 & ENE_FW1_TXIRQ) {
ene_hw_write_reg(dev, ENE_FW1, fw_flags1 & ~ENE_FW1_TXIRQ);
retval |= ENE_IRQ_TX;
}
/* Check if this is RX interrupt */
if (dev->rx_pointer != cur_rx_pointer) {
retval |= ENE_IRQ_RX;
dev->rx_pointer = cur_rx_pointer;
} else if (!(retval & ENE_IRQ_TX)) {
ene_dbg("RX: interrupt without change in RX pointer(%d)",
dev->rx_pointer);
retval |= ENE_IRQ_RX;
}
if ((retval & ENE_IRQ_RX) && (retval & ENE_IRQ_TX))
ene_dbg("both RX and TX interrupt at same time");
return retval;
}
/* interrupt handler */
static irqreturn_t ene_isr(int irq, void *data)
{
u16 hw_value;
int i, hw_sample;
int pulse;
int irq_status;
unsigned long flags;
int carrier = 0;
irqreturn_t retval = IRQ_NONE;
struct ene_device *dev = (struct ene_device *)data;
struct ir_raw_event ev;
spin_lock_irqsave(&dev->hw_lock, flags);
irq_status = ene_irq_status(dev);
if (!irq_status)
goto unlock;
retval = IRQ_HANDLED;
if (irq_status & ENE_IRQ_TX) {
if (!dev->hw_learning_and_tx_capable) {
ene_dbg("TX interrupt on unsupported device!");
goto unlock;
}
ene_tx_sample(dev);
}
if (!(irq_status & ENE_IRQ_RX))
goto unlock;
if (dev->carrier_detect_enabled || debug)
carrier = ene_rx_sense_carrier(dev);
#if 0
/* TODO */
if (dev->carrier_detect_enabled && carrier)
ir_raw_event_report_frequency(dev->idev, carrier);
#endif
for (i = 0; i < ENE_SAMPLES_SIZE; i++) {
hw_value = ene_hw_read_reg(dev,
ENE_SAMPLE_BUFFER + dev->rx_pointer * 4 + i);
if (dev->rx_fan_input_inuse) {
/* read high part of the sample */
hw_value |= ene_hw_read_reg(dev,
ENE_SAMPLE_BUFFER_FAN +
dev->rx_pointer * 4 + i) << 8;
pulse = hw_value & ENE_FAN_SMPL_PULS_MSK;
/* clear space bit, and other unused bits */
hw_value &= ENE_FAN_VALUE_MASK;
hw_sample = hw_value * ENE_SAMPLE_PERIOD_FAN;
} else {
pulse = !(hw_value & ENE_SAMPLE_SPC_MASK);
hw_value &= ENE_SAMPLE_VALUE_MASK;
hw_sample = hw_value * sample_period;
if (dev->rx_period_adjust) {
hw_sample *= (100 - dev->rx_period_adjust);
hw_sample /= 100;
}
}
/* no more data */
if (!(hw_value))
break;
ene_dbg("RX: %d (%s)", hw_sample, pulse ? "pulse" : "space");
ev.duration = hw_sample * 1000;
ev.pulse = pulse;
ir_raw_event_store_with_filter(dev->idev, &ev);
}
ir_raw_event_handle(dev->idev);
unlock:
spin_unlock_irqrestore(&dev->hw_lock, flags);
return retval;
}
/* Initialize default settings */
static void ene_setup_settings(struct ene_device *dev)
{
dev->tx_period = 32;
dev->tx_duty_cycle = 25; /*%*/
dev->transmitter_mask = 3;
/* Force learning mode if (input == 2), otherwise
let user set it with LIRC_SET_REC_CARRIER */
dev->learning_enabled =
(input == 2 && dev->hw_learning_and_tx_capable);
dev->rx_pointer = -1;
}
/* outside interface: called on first open*/
static int ene_open(void *data)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
spin_lock_irqsave(&dev->hw_lock, flags);
dev->in_use = 1;
ene_setup_settings(dev);
ene_rx_enable(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
return 0;
}
/* outside interface: called on device close*/
static void ene_close(void *data)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
spin_lock_irqsave(&dev->hw_lock, flags);
ene_rx_disable(dev);
dev->in_use = 0;
spin_unlock_irqrestore(&dev->hw_lock, flags);
}
/* outside interface: set transmitter mask */
static int ene_set_tx_mask(void *data, u32 tx_mask)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
ene_dbg("TX: attempt to set transmitter mask %02x", tx_mask);
/* invalid txmask */
if (!tx_mask || tx_mask & ~0x3) {
ene_dbg("TX: invalid mask");
/* return count of transmitters */
return 2;
}
spin_lock_irqsave(&dev->hw_lock, flags);
dev->transmitter_mask = tx_mask;
spin_unlock_irqrestore(&dev->hw_lock, flags);
return 0;
}
/* outside interface : set tx carrier */
static int ene_set_tx_carrier(void *data, u32 carrier)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
u32 period = 1000000 / carrier; /* (1 / freq) (* # usec in 1 sec) */
ene_dbg("TX: attempt to set tx carrier to %d kHz", carrier);
if (period && (period > ENE_TX_PERIOD_MAX ||
period < ENE_TX_PERIOD_MIN)) {
ene_dbg("TX: out of range %d-%d carrier, "
"falling back to 32 kHz",
1000 / ENE_TX_PERIOD_MIN,
1000 / ENE_TX_PERIOD_MAX);
period = 32; /* this is just a coincidence!!! */
}
ene_dbg("TX: set carrier to %d kHz", carrier);
spin_lock_irqsave(&dev->hw_lock, flags);
dev->tx_period = period;
spin_unlock_irqrestore(&dev->hw_lock, flags);
return 0;
}
/* outside interface: enable learning mode */
static int ene_set_learning_mode(void *data, int enable)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
if (enable == dev->learning_enabled)
return 0;
spin_lock_irqsave(&dev->hw_lock, flags);
dev->learning_enabled = enable;
ene_rx_set_inputs(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
return 0;
}
/* outside interface: set rec carrier */
static int ene_set_rec_carrier(void *data, u32 min, u32 max)
{
struct ene_device *dev = (struct ene_device *)data;
ene_set_learning_mode(dev,
max > ENE_NORMAL_RX_HI || min < ENE_NORMAL_RX_LOW);
return 0;
}
/* outside interface: enable or disable idle mode */
static void ene_rx_set_idle(void *data, int idle)
{
struct ene_device *dev = (struct ene_device *)data;
ene_dbg("%sabling idle mode", idle ? "en" : "dis");
ene_hw_write_reg_mask(dev, ENE_CIR_SAMPLE_PERIOD,
(enable_idle && idle) ? 0 : ENE_CIR_SAMPLE_OVERFLOW,
ENE_CIR_SAMPLE_OVERFLOW);
}
/* outside interface: transmit */
static int ene_transmit(void *data, int *buf, u32 n)
{
struct ene_device *dev = (struct ene_device *)data;
unsigned long flags;
dev->tx_buffer = buf;
dev->tx_len = n / sizeof(int);
dev->tx_pos = 0;
dev->tx_reg = 0;
dev->tx_done = 0;
dev->tx_sample = 0;
dev->tx_sample_pulse = 0;
ene_dbg("TX: %d samples", dev->tx_len);
spin_lock_irqsave(&dev->hw_lock, flags);
ene_tx_hw_set_transmiter_mask(dev);
ene_tx_prepare(dev);
/* Transmit first two samples */
ene_tx_sample(dev);
ene_tx_sample(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
if (wait_for_completion_timeout(&dev->tx_complete, 2 * HZ) == 0) {
ene_dbg("TX: timeout");
spin_lock_irqsave(&dev->hw_lock, flags);
ene_tx_complete(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
} else
ene_dbg("TX: done");
return n;
}
/* probe entry */
static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id)
{
int error = -ENOMEM;
struct ir_dev_props *ir_props;
struct input_dev *input_dev;
struct ene_device *dev;
/* allocate memory */
input_dev = input_allocate_device();
ir_props = kzalloc(sizeof(struct ir_dev_props), GFP_KERNEL);
dev = kzalloc(sizeof(struct ene_device), GFP_KERNEL);
if (!input_dev || !ir_props || !dev)
goto error;
/* validate resources */
error = -ENODEV;
if (!pnp_port_valid(pnp_dev, 0) ||
pnp_port_len(pnp_dev, 0) < ENE_MAX_IO)
goto error;
if (!pnp_irq_valid(pnp_dev, 0))
goto error;
dev->hw_io = pnp_port_start(pnp_dev, 0);
dev->irq = pnp_irq(pnp_dev, 0);
spin_lock_init(&dev->hw_lock);
/* claim the resources */
error = -EBUSY;
if (!request_region(dev->hw_io, ENE_MAX_IO, ENE_DRIVER_NAME))
goto error;
if (request_irq(dev->irq, ene_isr,
IRQF_SHARED, ENE_DRIVER_NAME, (void *)dev))
goto error;
pnp_set_drvdata(pnp_dev, dev);
dev->pnp_dev = pnp_dev;
/* detect hardware version and features */
error = ene_hw_detect(dev);
if (error)
goto error;
ene_setup_settings(dev);
if (!dev->hw_learning_and_tx_capable && txsim) {
dev->hw_learning_and_tx_capable = 1;
setup_timer(&dev->tx_sim_timer, ene_tx_irqsim,
(long unsigned int)dev);
ene_printk(KERN_WARNING,
"Simulation of TX activated\n");
}
ir_props->driver_type = RC_DRIVER_IR_RAW;
ir_props->allowed_protos = IR_TYPE_ALL;
ir_props->priv = dev;
ir_props->open = ene_open;
ir_props->close = ene_close;
ir_props->min_timeout = ENE_MINGAP * 1000;
ir_props->max_timeout = ENE_MAXGAP * 1000;
ir_props->timeout = ENE_MAXGAP * 1000;
if (dev->hw_revision == ENE_HW_B)
ir_props->s_idle = ene_rx_set_idle;
dev->props = ir_props;
dev->idev = input_dev;
/* don't allow too short/long sample periods */
if (sample_period < 5 || sample_period > 0x7F)
sample_period = -1;
/* choose default sample period */
if (sample_period == -1) {
sample_period = 50;
/* on revB, hardware idle mode eats first sample
if we set too low sample period */
if (dev->hw_revision == ENE_HW_B && enable_idle)
sample_period = 75;
}
ir_props->rx_resolution = sample_period * 1000;
if (dev->hw_learning_and_tx_capable) {
ir_props->s_learning_mode = ene_set_learning_mode;
if (input == 0)
ir_props->s_rx_carrier_range = ene_set_rec_carrier;
init_completion(&dev->tx_complete);
ir_props->tx_ir = ene_transmit;
ir_props->s_tx_mask = ene_set_tx_mask;
ir_props->s_tx_carrier = ene_set_tx_carrier;
ir_props->tx_resolution = ENE_TX_SMPL_PERIOD * 1000;
/* ir_props->s_carrier_report = ene_set_carrier_report; */
}
device_set_wakeup_capable(&pnp_dev->dev, 1);
device_set_wakeup_enable(&pnp_dev->dev, 1);
if (dev->hw_learning_and_tx_capable)
input_dev->name = "ENE eHome Infrared Remote Transceiver";
else
input_dev->name = "ENE eHome Infrared Remote Receiver";
error = -ENODEV;
if (ir_input_register(input_dev, RC_MAP_RC6_MCE, ir_props,
ENE_DRIVER_NAME))
goto error;
ene_printk(KERN_NOTICE, "driver has been succesfully loaded\n");
return 0;
error:
if (dev->irq)
free_irq(dev->irq, dev);
if (dev->hw_io)
release_region(dev->hw_io, ENE_MAX_IO);
input_free_device(input_dev);
kfree(ir_props);
kfree(dev);
return error;
}
/* main unload function */
static void ene_remove(struct pnp_dev *pnp_dev)
{
struct ene_device *dev = pnp_get_drvdata(pnp_dev);
unsigned long flags;
spin_lock_irqsave(&dev->hw_lock, flags);
ene_rx_disable(dev);
spin_unlock_irqrestore(&dev->hw_lock, flags);
free_irq(dev->irq, dev);
release_region(dev->hw_io, ENE_MAX_IO);
ir_input_unregister(dev->idev);
kfree(dev->props);
kfree(dev);
}
/* enable wake on IR (wakes on specific button on original remote) */
static void ene_enable_wake(struct ene_device *dev, int enable)
{
enable = enable && device_may_wakeup(&dev->pnp_dev->dev);
ene_dbg("wake on IR %s", enable ? "enabled" : "disabled");
ene_hw_write_reg_mask(dev, ENE_FW1, enable ?
ENE_FW1_WAKE : 0, ENE_FW1_WAKE);
}
#ifdef CONFIG_PM
static int ene_suspend(struct pnp_dev *pnp_dev, pm_message_t state)
{
struct ene_device *dev = pnp_get_drvdata(pnp_dev);
ene_enable_wake(dev, 1);
return 0;
}
static int ene_resume(struct pnp_dev *pnp_dev)
{
struct ene_device *dev = pnp_get_drvdata(pnp_dev);
if (dev->in_use)
ene_rx_enable(dev);
ene_enable_wake(dev, 0);
return 0;
}
#endif
static void ene_shutdown(struct pnp_dev *pnp_dev)
{
struct ene_device *dev = pnp_get_drvdata(pnp_dev);
ene_enable_wake(dev, 1);
}
static const struct pnp_device_id ene_ids[] = {
{.id = "ENE0100",},
{.id = "ENE0200",},
{.id = "ENE0201",},
{.id = "ENE0202",},
{},
};
static struct pnp_driver ene_driver = {
.name = ENE_DRIVER_NAME,
.id_table = ene_ids,
.flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
.probe = ene_probe,
.remove = __devexit_p(ene_remove),
#ifdef CONFIG_PM
.suspend = ene_suspend,
.resume = ene_resume,
#endif
.shutdown = ene_shutdown,
};
static int __init ene_init(void)
{
return pnp_register_driver(&ene_driver);
}
static void ene_exit(void)
{
pnp_unregister_driver(&ene_driver);
}
module_param(sample_period, int, S_IRUGO);
MODULE_PARM_DESC(sample_period, "Hardware sample period (50 us default)");
module_param(enable_idle, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(enable_idle,
"Enables turning off signal sampling after long inactivity time; "
"if disabled might help detecting input signal (default: enabled)"
" (KB3926B only)");
module_param(input, bool, S_IRUGO);
MODULE_PARM_DESC(input, "select which input to use "
"0 - auto, 1 - standard, 2 - wideband(KB3926C+)");
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debug (debug=2 verbose debug output)");
module_param(txsim, bool, S_IRUGO);
MODULE_PARM_DESC(txsim,
"Simulate TX features on unsupported hardware (dangerous)");
MODULE_DEVICE_TABLE(pnp, ene_ids);
MODULE_DESCRIPTION
("Infrared input driver for KB3926B/KB3926C/KB3926D "
"(aka ENE0100/ENE0200/ENE0201) CIR port");
MODULE_AUTHOR("Maxim Levitsky");
MODULE_LICENSE("GPL");
module_init(ene_init);
module_exit(ene_exit);