Go to file
Yu Zhao ec1c86b25f mm: multi-gen LRU: groundwork
Evictable pages are divided into multiple generations for each lruvec.
The youngest generation number is stored in lrugen->max_seq for both
anon and file types as they are aged on an equal footing. The oldest
generation numbers are stored in lrugen->min_seq[] separately for anon
and file types as clean file pages can be evicted regardless of swap
constraints. These three variables are monotonically increasing.

Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits
in order to fit into the gen counter in folio->flags. Each truncated
generation number is an index to lrugen->lists[]. The sliding window
technique is used to track at least MIN_NR_GENS and at most
MAX_NR_GENS generations. The gen counter stores a value within [1,
MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it
stores 0.

There are two conceptually independent procedures: "the aging", which
produces young generations, and "the eviction", which consumes old
generations.  They form a closed-loop system, i.e., "the page reclaim". 
Both procedures can be invoked from userspace for the purposes of working
set estimation and proactive reclaim.  These techniques are commonly used
to optimize job scheduling (bin packing) in data centers [1][2].

To avoid confusion, the terms "hot" and "cold" will be applied to the
multi-gen LRU, as a new convention; the terms "active" and "inactive" will
be applied to the active/inactive LRU, as usual.

The protection of hot pages and the selection of cold pages are based
on page access channels and patterns. There are two access channels:
one through page tables and the other through file descriptors. The
protection of the former channel is by design stronger because:
1. The uncertainty in determining the access patterns of the former
   channel is higher due to the approximation of the accessed bit.
2. The cost of evicting the former channel is higher due to the TLB
   flushes required and the likelihood of encountering the dirty bit.
3. The penalty of underprotecting the former channel is higher because
   applications usually do not prepare themselves for major page
   faults like they do for blocked I/O. E.g., GUI applications
   commonly use dedicated I/O threads to avoid blocking rendering
   threads.

There are also two access patterns: one with temporal locality and the
other without.  For the reasons listed above, the former channel is
assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is
present; the latter channel is assumed to follow the latter pattern unless
outlying refaults have been observed [3][4].

The next patch will address the "outlying refaults".  Three macros, i.e.,
LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in
this patch to make the entire patchset less diffy.

A page is added to the youngest generation on faulting.  The aging needs
to check the accessed bit at least twice before handing this page over to
the eviction.  The first check takes care of the accessed bit set on the
initial fault; the second check makes sure this page has not been used
since then.  This protocol, AKA second chance, requires a minimum of two
generations, hence MIN_NR_GENS.

[1] https://dl.acm.org/doi/10.1145/3297858.3304053
[2] https://dl.acm.org/doi/10.1145/3503222.3507731
[3] https://lwn.net/Articles/495543/
[4] https://lwn.net/Articles/815342/

Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:09 -07:00
Documentation filemap: make the accounting of thrashing more consistent 2022-09-26 19:46:06 -07:00
LICENSES LICENSES/LGPL-2.1: Add LGPL-2.1-or-later as valid identifiers 2021-12-16 14:33:10 +01:00
arch mm: x86: add CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG 2022-09-26 19:46:08 -07:00
block block-6.0-2022-08-26 2022-08-26 11:05:54 -07:00
certs Kbuild updates for v5.20 2022-08-10 10:40:41 -07:00
crypto crypto: blake2b: effectively disable frame size warning 2022-08-10 17:59:11 -07:00
drivers mm: kill is_memblock_offlined() 2022-09-11 20:26:04 -07:00
fs mm: multi-gen LRU: groundwork 2022-09-26 19:46:09 -07:00
include mm: multi-gen LRU: groundwork 2022-09-26 19:46:09 -07:00
init page_ext: introduce boot parameter 'early_page_ext' 2022-09-11 20:26:02 -07:00
io_uring io_uring/net: save address for sendzc async execution 2022-08-25 07:52:30 -06:00
ipc Updates to various subsystems which I help look after. lib, ocfs2, 2022-08-07 10:03:24 -07:00
kernel mm: multi-gen LRU: groundwork 2022-09-26 19:46:09 -07:00
lib bitmap fixes for v6.0-rc3 2022-08-28 14:36:27 -07:00
mm mm: multi-gen LRU: groundwork 2022-09-26 19:46:09 -07:00
net Including fixes from ipsec and netfilter (with one broken Fixes tag). 2022-08-25 14:03:58 -07:00
samples Tracing updates for 5.20 / 6.0 2022-08-05 09:41:12 -07:00
scripts asm goto: eradicate CC_HAS_ASM_GOTO 2022-08-21 10:06:28 -07:00
security hardening fixes for v6.0-rc2 2022-08-19 13:56:14 -07:00
sound sound fixes for 6.0-rc2 2022-08-19 09:46:11 -07:00
tools Merge branch 'mm-hotfixes-stable' into mm-stable 2022-09-26 13:13:15 -07:00
usr Not a lot of material this cycle. Many singleton patches against various 2022-05-27 11:22:03 -07:00
virt KVM: Drop unnecessary initialization of "ops" in kvm_ioctl_create_device() 2022-08-19 04:05:43 -04:00
.clang-format PCI/DOE: Add DOE mailbox support functions 2022-07-19 15:38:04 -07:00
.cocciconfig
.get_maintainer.ignore get_maintainer: add Alan to .get_maintainer.ignore 2022-08-20 15:17:44 -07:00
.gitattributes .gitattributes: use 'dts' diff driver for dts files 2019-12-04 19:44:11 -08:00
.gitignore kbuild: split the second line of *.mod into *.usyms 2022-05-08 03:16:59 +09:00
.mailmap .mailmap: update Luca Ceresoli's e-mail address 2022-08-28 14:02:46 -07:00
COPYING COPYING: state that all contributions really are covered by this file 2020-02-10 13:32:20 -08:00
CREDITS drm for 5.20/6.0 2022-08-03 19:52:08 -07:00
Kbuild kbuild: rename hostprogs-y/always to hostprogs/always-y 2020-02-04 01:53:07 +09:00
Kconfig kbuild: ensure full rebuild when the compiler is updated 2020-05-12 13:28:33 +09:00
MAINTAINERS bitmap fixes for v6.0-rc3 2022-08-28 14:36:27 -07:00
Makefile Linux 6.0-rc3 2022-08-28 15:05:29 -07:00
README Drop all 00-INDEX files from Documentation/ 2018-09-09 15:08:58 -06:00

README

Linux kernel
============

There are several guides for kernel developers and users. These guides can
be rendered in a number of formats, like HTML and PDF. Please read
Documentation/admin-guide/README.rst first.

In order to build the documentation, use ``make htmldocs`` or
``make pdfdocs``.  The formatted documentation can also be read online at:

    https://www.kernel.org/doc/html/latest/

There are various text files in the Documentation/ subdirectory,
several of them using the Restructured Text markup notation.

Please read the Documentation/process/changes.rst file, as it contains the
requirements for building and running the kernel, and information about
the problems which may result by upgrading your kernel.