2368 lines
66 KiB
C
2368 lines
66 KiB
C
/*
|
|
* NAND flash simulator.
|
|
*
|
|
* Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
|
|
*
|
|
* Copyright (C) 2004 Nokia Corporation
|
|
*
|
|
* Note: NS means "NAND Simulator".
|
|
* Note: Input means input TO flash chip, output means output FROM chip.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2, or (at your option) any later
|
|
* version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
|
|
* Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <asm/div64.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/list.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/pagemap.h>
|
|
|
|
/* Default simulator parameters values */
|
|
#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
|
|
!defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
|
|
!defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
|
|
!defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
|
|
#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
|
|
#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
|
|
#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
|
|
#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
|
|
#endif
|
|
|
|
#ifndef CONFIG_NANDSIM_ACCESS_DELAY
|
|
#define CONFIG_NANDSIM_ACCESS_DELAY 25
|
|
#endif
|
|
#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
|
|
#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
|
|
#endif
|
|
#ifndef CONFIG_NANDSIM_ERASE_DELAY
|
|
#define CONFIG_NANDSIM_ERASE_DELAY 2
|
|
#endif
|
|
#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
|
|
#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
|
|
#endif
|
|
#ifndef CONFIG_NANDSIM_INPUT_CYCLE
|
|
#define CONFIG_NANDSIM_INPUT_CYCLE 50
|
|
#endif
|
|
#ifndef CONFIG_NANDSIM_BUS_WIDTH
|
|
#define CONFIG_NANDSIM_BUS_WIDTH 8
|
|
#endif
|
|
#ifndef CONFIG_NANDSIM_DO_DELAYS
|
|
#define CONFIG_NANDSIM_DO_DELAYS 0
|
|
#endif
|
|
#ifndef CONFIG_NANDSIM_LOG
|
|
#define CONFIG_NANDSIM_LOG 0
|
|
#endif
|
|
#ifndef CONFIG_NANDSIM_DBG
|
|
#define CONFIG_NANDSIM_DBG 0
|
|
#endif
|
|
|
|
static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
|
|
static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
|
|
static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
|
|
static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
|
|
static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
|
|
static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
|
|
static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
|
|
static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
|
|
static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
|
|
static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
|
|
static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
|
|
static uint log = CONFIG_NANDSIM_LOG;
|
|
static uint dbg = CONFIG_NANDSIM_DBG;
|
|
static unsigned long parts[MAX_MTD_DEVICES];
|
|
static unsigned int parts_num;
|
|
static char *badblocks = NULL;
|
|
static char *weakblocks = NULL;
|
|
static char *weakpages = NULL;
|
|
static unsigned int bitflips = 0;
|
|
static char *gravepages = NULL;
|
|
static unsigned int rptwear = 0;
|
|
static unsigned int overridesize = 0;
|
|
static char *cache_file = NULL;
|
|
|
|
module_param(first_id_byte, uint, 0400);
|
|
module_param(second_id_byte, uint, 0400);
|
|
module_param(third_id_byte, uint, 0400);
|
|
module_param(fourth_id_byte, uint, 0400);
|
|
module_param(access_delay, uint, 0400);
|
|
module_param(programm_delay, uint, 0400);
|
|
module_param(erase_delay, uint, 0400);
|
|
module_param(output_cycle, uint, 0400);
|
|
module_param(input_cycle, uint, 0400);
|
|
module_param(bus_width, uint, 0400);
|
|
module_param(do_delays, uint, 0400);
|
|
module_param(log, uint, 0400);
|
|
module_param(dbg, uint, 0400);
|
|
module_param_array(parts, ulong, &parts_num, 0400);
|
|
module_param(badblocks, charp, 0400);
|
|
module_param(weakblocks, charp, 0400);
|
|
module_param(weakpages, charp, 0400);
|
|
module_param(bitflips, uint, 0400);
|
|
module_param(gravepages, charp, 0400);
|
|
module_param(rptwear, uint, 0400);
|
|
module_param(overridesize, uint, 0400);
|
|
module_param(cache_file, charp, 0400);
|
|
|
|
MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
|
|
MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
|
|
MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
|
|
MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
|
|
MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
|
|
MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
|
|
MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
|
|
MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
|
|
MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
|
|
MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
|
|
MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
|
|
MODULE_PARM_DESC(log, "Perform logging if not zero");
|
|
MODULE_PARM_DESC(dbg, "Output debug information if not zero");
|
|
MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
|
|
/* Page and erase block positions for the following parameters are independent of any partitions */
|
|
MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
|
|
MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
|
|
" separated by commas e.g. 113:2 means eb 113"
|
|
" can be erased only twice before failing");
|
|
MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
|
|
" separated by commas e.g. 1401:2 means page 1401"
|
|
" can be written only twice before failing");
|
|
MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
|
|
MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
|
|
" separated by commas e.g. 1401:2 means page 1401"
|
|
" can be read only twice before failing");
|
|
MODULE_PARM_DESC(rptwear, "Number of erases inbetween reporting wear, if not zero");
|
|
MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
|
|
"The size is specified in erase blocks and as the exponent of a power of two"
|
|
" e.g. 5 means a size of 32 erase blocks");
|
|
MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
|
|
|
|
/* The largest possible page size */
|
|
#define NS_LARGEST_PAGE_SIZE 4096
|
|
|
|
/* The prefix for simulator output */
|
|
#define NS_OUTPUT_PREFIX "[nandsim]"
|
|
|
|
/* Simulator's output macros (logging, debugging, warning, error) */
|
|
#define NS_LOG(args...) \
|
|
do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
|
|
#define NS_DBG(args...) \
|
|
do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
|
|
#define NS_WARN(args...) \
|
|
do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
|
|
#define NS_ERR(args...) \
|
|
do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
|
|
#define NS_INFO(args...) \
|
|
do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
|
|
|
|
/* Busy-wait delay macros (microseconds, milliseconds) */
|
|
#define NS_UDELAY(us) \
|
|
do { if (do_delays) udelay(us); } while(0)
|
|
#define NS_MDELAY(us) \
|
|
do { if (do_delays) mdelay(us); } while(0)
|
|
|
|
/* Is the nandsim structure initialized ? */
|
|
#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
|
|
|
|
/* Good operation completion status */
|
|
#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
|
|
|
|
/* Operation failed completion status */
|
|
#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
|
|
|
|
/* Calculate the page offset in flash RAM image by (row, column) address */
|
|
#define NS_RAW_OFFSET(ns) \
|
|
(((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
|
|
|
|
/* Calculate the OOB offset in flash RAM image by (row, column) address */
|
|
#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
|
|
|
|
/* After a command is input, the simulator goes to one of the following states */
|
|
#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
|
|
#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
|
|
#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
|
|
#define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
|
|
#define STATE_CMD_READOOB 0x00000005 /* read OOB area */
|
|
#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
|
|
#define STATE_CMD_STATUS 0x00000007 /* read status */
|
|
#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
|
|
#define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
|
|
#define STATE_CMD_READID 0x0000000A /* read ID */
|
|
#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
|
|
#define STATE_CMD_RESET 0x0000000C /* reset */
|
|
#define STATE_CMD_RNDOUT 0x0000000D /* random output command */
|
|
#define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
|
|
#define STATE_CMD_MASK 0x0000000F /* command states mask */
|
|
|
|
/* After an address is input, the simulator goes to one of these states */
|
|
#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
|
|
#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
|
|
#define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
|
|
#define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
|
|
#define STATE_ADDR_MASK 0x00000070 /* address states mask */
|
|
|
|
/* Durind data input/output the simulator is in these states */
|
|
#define STATE_DATAIN 0x00000100 /* waiting for data input */
|
|
#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
|
|
|
|
#define STATE_DATAOUT 0x00001000 /* waiting for page data output */
|
|
#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
|
|
#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
|
|
#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
|
|
#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
|
|
|
|
/* Previous operation is done, ready to accept new requests */
|
|
#define STATE_READY 0x00000000
|
|
|
|
/* This state is used to mark that the next state isn't known yet */
|
|
#define STATE_UNKNOWN 0x10000000
|
|
|
|
/* Simulator's actions bit masks */
|
|
#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
|
|
#define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
|
|
#define ACTION_SECERASE 0x00300000 /* erase sector */
|
|
#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
|
|
#define ACTION_HALFOFF 0x00500000 /* add to address half of page */
|
|
#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
|
|
#define ACTION_MASK 0x00700000 /* action mask */
|
|
|
|
#define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
|
|
#define NS_OPER_STATES 6 /* Maximum number of states in operation */
|
|
|
|
#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
|
|
#define OPT_PAGE256 0x00000001 /* 256-byte page chips */
|
|
#define OPT_PAGE512 0x00000002 /* 512-byte page chips */
|
|
#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
|
|
#define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
|
|
#define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
|
|
#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
|
|
#define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
|
|
#define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
|
|
#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
|
|
|
|
/* Remove action bits ftom state */
|
|
#define NS_STATE(x) ((x) & ~ACTION_MASK)
|
|
|
|
/*
|
|
* Maximum previous states which need to be saved. Currently saving is
|
|
* only needed for page programm operation with preceeded read command
|
|
* (which is only valid for 512-byte pages).
|
|
*/
|
|
#define NS_MAX_PREVSTATES 1
|
|
|
|
/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
|
|
#define NS_MAX_HELD_PAGES 16
|
|
|
|
/*
|
|
* A union to represent flash memory contents and flash buffer.
|
|
*/
|
|
union ns_mem {
|
|
u_char *byte; /* for byte access */
|
|
uint16_t *word; /* for 16-bit word access */
|
|
};
|
|
|
|
/*
|
|
* The structure which describes all the internal simulator data.
|
|
*/
|
|
struct nandsim {
|
|
struct mtd_partition partitions[MAX_MTD_DEVICES];
|
|
unsigned int nbparts;
|
|
|
|
uint busw; /* flash chip bus width (8 or 16) */
|
|
u_char ids[4]; /* chip's ID bytes */
|
|
uint32_t options; /* chip's characteristic bits */
|
|
uint32_t state; /* current chip state */
|
|
uint32_t nxstate; /* next expected state */
|
|
|
|
uint32_t *op; /* current operation, NULL operations isn't known yet */
|
|
uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
|
|
uint16_t npstates; /* number of previous states saved */
|
|
uint16_t stateidx; /* current state index */
|
|
|
|
/* The simulated NAND flash pages array */
|
|
union ns_mem *pages;
|
|
|
|
/* Slab allocator for nand pages */
|
|
struct kmem_cache *nand_pages_slab;
|
|
|
|
/* Internal buffer of page + OOB size bytes */
|
|
union ns_mem buf;
|
|
|
|
/* NAND flash "geometry" */
|
|
struct nandsin_geometry {
|
|
uint64_t totsz; /* total flash size, bytes */
|
|
uint32_t secsz; /* flash sector (erase block) size, bytes */
|
|
uint pgsz; /* NAND flash page size, bytes */
|
|
uint oobsz; /* page OOB area size, bytes */
|
|
uint64_t totszoob; /* total flash size including OOB, bytes */
|
|
uint pgszoob; /* page size including OOB , bytes*/
|
|
uint secszoob; /* sector size including OOB, bytes */
|
|
uint pgnum; /* total number of pages */
|
|
uint pgsec; /* number of pages per sector */
|
|
uint secshift; /* bits number in sector size */
|
|
uint pgshift; /* bits number in page size */
|
|
uint oobshift; /* bits number in OOB size */
|
|
uint pgaddrbytes; /* bytes per page address */
|
|
uint secaddrbytes; /* bytes per sector address */
|
|
uint idbytes; /* the number ID bytes that this chip outputs */
|
|
} geom;
|
|
|
|
/* NAND flash internal registers */
|
|
struct nandsim_regs {
|
|
unsigned command; /* the command register */
|
|
u_char status; /* the status register */
|
|
uint row; /* the page number */
|
|
uint column; /* the offset within page */
|
|
uint count; /* internal counter */
|
|
uint num; /* number of bytes which must be processed */
|
|
uint off; /* fixed page offset */
|
|
} regs;
|
|
|
|
/* NAND flash lines state */
|
|
struct ns_lines_status {
|
|
int ce; /* chip Enable */
|
|
int cle; /* command Latch Enable */
|
|
int ale; /* address Latch Enable */
|
|
int wp; /* write Protect */
|
|
} lines;
|
|
|
|
/* Fields needed when using a cache file */
|
|
struct file *cfile; /* Open file */
|
|
unsigned char *pages_written; /* Which pages have been written */
|
|
void *file_buf;
|
|
struct page *held_pages[NS_MAX_HELD_PAGES];
|
|
int held_cnt;
|
|
};
|
|
|
|
/*
|
|
* Operations array. To perform any operation the simulator must pass
|
|
* through the correspondent states chain.
|
|
*/
|
|
static struct nandsim_operations {
|
|
uint32_t reqopts; /* options which are required to perform the operation */
|
|
uint32_t states[NS_OPER_STATES]; /* operation's states */
|
|
} ops[NS_OPER_NUM] = {
|
|
/* Read page + OOB from the beginning */
|
|
{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
|
|
STATE_DATAOUT, STATE_READY}},
|
|
/* Read page + OOB from the second half */
|
|
{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
|
|
STATE_DATAOUT, STATE_READY}},
|
|
/* Read OOB */
|
|
{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
|
|
STATE_DATAOUT, STATE_READY}},
|
|
/* Programm page starting from the beginning */
|
|
{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
|
|
STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
|
|
/* Programm page starting from the beginning */
|
|
{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
|
|
STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
|
|
/* Programm page starting from the second half */
|
|
{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
|
|
STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
|
|
/* Programm OOB */
|
|
{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
|
|
STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
|
|
/* Erase sector */
|
|
{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
|
|
/* Read status */
|
|
{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
|
|
/* Read multi-plane status */
|
|
{OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
|
|
/* Read ID */
|
|
{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
|
|
/* Large page devices read page */
|
|
{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
|
|
STATE_DATAOUT, STATE_READY}},
|
|
/* Large page devices random page read */
|
|
{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
|
|
STATE_DATAOUT, STATE_READY}},
|
|
};
|
|
|
|
struct weak_block {
|
|
struct list_head list;
|
|
unsigned int erase_block_no;
|
|
unsigned int max_erases;
|
|
unsigned int erases_done;
|
|
};
|
|
|
|
static LIST_HEAD(weak_blocks);
|
|
|
|
struct weak_page {
|
|
struct list_head list;
|
|
unsigned int page_no;
|
|
unsigned int max_writes;
|
|
unsigned int writes_done;
|
|
};
|
|
|
|
static LIST_HEAD(weak_pages);
|
|
|
|
struct grave_page {
|
|
struct list_head list;
|
|
unsigned int page_no;
|
|
unsigned int max_reads;
|
|
unsigned int reads_done;
|
|
};
|
|
|
|
static LIST_HEAD(grave_pages);
|
|
|
|
static unsigned long *erase_block_wear = NULL;
|
|
static unsigned int wear_eb_count = 0;
|
|
static unsigned long total_wear = 0;
|
|
static unsigned int rptwear_cnt = 0;
|
|
|
|
/* MTD structure for NAND controller */
|
|
static struct mtd_info *nsmtd;
|
|
|
|
static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
|
|
|
|
/*
|
|
* Allocate array of page pointers, create slab allocation for an array
|
|
* and initialize the array by NULL pointers.
|
|
*
|
|
* RETURNS: 0 if success, -ENOMEM if memory alloc fails.
|
|
*/
|
|
static int alloc_device(struct nandsim *ns)
|
|
{
|
|
struct file *cfile;
|
|
int i, err;
|
|
|
|
if (cache_file) {
|
|
cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
|
|
if (IS_ERR(cfile))
|
|
return PTR_ERR(cfile);
|
|
if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
|
|
NS_ERR("alloc_device: cache file not readable\n");
|
|
err = -EINVAL;
|
|
goto err_close;
|
|
}
|
|
if (!cfile->f_op->write && !cfile->f_op->aio_write) {
|
|
NS_ERR("alloc_device: cache file not writeable\n");
|
|
err = -EINVAL;
|
|
goto err_close;
|
|
}
|
|
ns->pages_written = vmalloc(ns->geom.pgnum);
|
|
if (!ns->pages_written) {
|
|
NS_ERR("alloc_device: unable to allocate pages written array\n");
|
|
err = -ENOMEM;
|
|
goto err_close;
|
|
}
|
|
ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
|
|
if (!ns->file_buf) {
|
|
NS_ERR("alloc_device: unable to allocate file buf\n");
|
|
err = -ENOMEM;
|
|
goto err_free;
|
|
}
|
|
ns->cfile = cfile;
|
|
memset(ns->pages_written, 0, ns->geom.pgnum);
|
|
return 0;
|
|
}
|
|
|
|
ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
|
|
if (!ns->pages) {
|
|
NS_ERR("alloc_device: unable to allocate page array\n");
|
|
return -ENOMEM;
|
|
}
|
|
for (i = 0; i < ns->geom.pgnum; i++) {
|
|
ns->pages[i].byte = NULL;
|
|
}
|
|
ns->nand_pages_slab = kmem_cache_create("nandsim",
|
|
ns->geom.pgszoob, 0, 0, NULL);
|
|
if (!ns->nand_pages_slab) {
|
|
NS_ERR("cache_create: unable to create kmem_cache\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_free:
|
|
vfree(ns->pages_written);
|
|
err_close:
|
|
filp_close(cfile, NULL);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Free any allocated pages, and free the array of page pointers.
|
|
*/
|
|
static void free_device(struct nandsim *ns)
|
|
{
|
|
int i;
|
|
|
|
if (ns->cfile) {
|
|
kfree(ns->file_buf);
|
|
vfree(ns->pages_written);
|
|
filp_close(ns->cfile, NULL);
|
|
return;
|
|
}
|
|
|
|
if (ns->pages) {
|
|
for (i = 0; i < ns->geom.pgnum; i++) {
|
|
if (ns->pages[i].byte)
|
|
kmem_cache_free(ns->nand_pages_slab,
|
|
ns->pages[i].byte);
|
|
}
|
|
kmem_cache_destroy(ns->nand_pages_slab);
|
|
vfree(ns->pages);
|
|
}
|
|
}
|
|
|
|
static char *get_partition_name(int i)
|
|
{
|
|
char buf[64];
|
|
sprintf(buf, "NAND simulator partition %d", i);
|
|
return kstrdup(buf, GFP_KERNEL);
|
|
}
|
|
|
|
static uint64_t divide(uint64_t n, uint32_t d)
|
|
{
|
|
do_div(n, d);
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Initialize the nandsim structure.
|
|
*
|
|
* RETURNS: 0 if success, -ERRNO if failure.
|
|
*/
|
|
static int init_nandsim(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
|
|
struct nandsim *ns = (struct nandsim *)(chip->priv);
|
|
int i, ret = 0;
|
|
uint64_t remains;
|
|
uint64_t next_offset;
|
|
|
|
if (NS_IS_INITIALIZED(ns)) {
|
|
NS_ERR("init_nandsim: nandsim is already initialized\n");
|
|
return -EIO;
|
|
}
|
|
|
|
/* Force mtd to not do delays */
|
|
chip->chip_delay = 0;
|
|
|
|
/* Initialize the NAND flash parameters */
|
|
ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
|
|
ns->geom.totsz = mtd->size;
|
|
ns->geom.pgsz = mtd->writesize;
|
|
ns->geom.oobsz = mtd->oobsize;
|
|
ns->geom.secsz = mtd->erasesize;
|
|
ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
|
|
ns->geom.pgnum = divide(ns->geom.totsz, ns->geom.pgsz);
|
|
ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
|
|
ns->geom.secshift = ffs(ns->geom.secsz) - 1;
|
|
ns->geom.pgshift = chip->page_shift;
|
|
ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
|
|
ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
|
|
ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
|
|
ns->options = 0;
|
|
|
|
if (ns->geom.pgsz == 256) {
|
|
ns->options |= OPT_PAGE256;
|
|
}
|
|
else if (ns->geom.pgsz == 512) {
|
|
ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
|
|
if (ns->busw == 8)
|
|
ns->options |= OPT_PAGE512_8BIT;
|
|
} else if (ns->geom.pgsz == 2048) {
|
|
ns->options |= OPT_PAGE2048;
|
|
} else if (ns->geom.pgsz == 4096) {
|
|
ns->options |= OPT_PAGE4096;
|
|
} else {
|
|
NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
|
|
return -EIO;
|
|
}
|
|
|
|
if (ns->options & OPT_SMALLPAGE) {
|
|
if (ns->geom.totsz <= (32 << 20)) {
|
|
ns->geom.pgaddrbytes = 3;
|
|
ns->geom.secaddrbytes = 2;
|
|
} else {
|
|
ns->geom.pgaddrbytes = 4;
|
|
ns->geom.secaddrbytes = 3;
|
|
}
|
|
} else {
|
|
if (ns->geom.totsz <= (128 << 20)) {
|
|
ns->geom.pgaddrbytes = 4;
|
|
ns->geom.secaddrbytes = 2;
|
|
} else {
|
|
ns->geom.pgaddrbytes = 5;
|
|
ns->geom.secaddrbytes = 3;
|
|
}
|
|
}
|
|
|
|
/* Fill the partition_info structure */
|
|
if (parts_num > ARRAY_SIZE(ns->partitions)) {
|
|
NS_ERR("too many partitions.\n");
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
remains = ns->geom.totsz;
|
|
next_offset = 0;
|
|
for (i = 0; i < parts_num; ++i) {
|
|
uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
|
|
|
|
if (!part_sz || part_sz > remains) {
|
|
NS_ERR("bad partition size.\n");
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
ns->partitions[i].name = get_partition_name(i);
|
|
ns->partitions[i].offset = next_offset;
|
|
ns->partitions[i].size = part_sz;
|
|
next_offset += ns->partitions[i].size;
|
|
remains -= ns->partitions[i].size;
|
|
}
|
|
ns->nbparts = parts_num;
|
|
if (remains) {
|
|
if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
|
|
NS_ERR("too many partitions.\n");
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
ns->partitions[i].name = get_partition_name(i);
|
|
ns->partitions[i].offset = next_offset;
|
|
ns->partitions[i].size = remains;
|
|
ns->nbparts += 1;
|
|
}
|
|
|
|
/* Detect how many ID bytes the NAND chip outputs */
|
|
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
|
|
if (second_id_byte != nand_flash_ids[i].id)
|
|
continue;
|
|
if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
|
|
ns->options |= OPT_AUTOINCR;
|
|
}
|
|
|
|
if (ns->busw == 16)
|
|
NS_WARN("16-bit flashes support wasn't tested\n");
|
|
|
|
printk("flash size: %llu MiB\n",
|
|
(unsigned long long)ns->geom.totsz >> 20);
|
|
printk("page size: %u bytes\n", ns->geom.pgsz);
|
|
printk("OOB area size: %u bytes\n", ns->geom.oobsz);
|
|
printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
|
|
printk("pages number: %u\n", ns->geom.pgnum);
|
|
printk("pages per sector: %u\n", ns->geom.pgsec);
|
|
printk("bus width: %u\n", ns->busw);
|
|
printk("bits in sector size: %u\n", ns->geom.secshift);
|
|
printk("bits in page size: %u\n", ns->geom.pgshift);
|
|
printk("bits in OOB size: %u\n", ns->geom.oobshift);
|
|
printk("flash size with OOB: %llu KiB\n",
|
|
(unsigned long long)ns->geom.totszoob >> 10);
|
|
printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
|
|
printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
|
|
printk("options: %#x\n", ns->options);
|
|
|
|
if ((ret = alloc_device(ns)) != 0)
|
|
goto error;
|
|
|
|
/* Allocate / initialize the internal buffer */
|
|
ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
|
|
if (!ns->buf.byte) {
|
|
NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
|
|
ns->geom.pgszoob);
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
free_device(ns);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Free the nandsim structure.
|
|
*/
|
|
static void free_nandsim(struct nandsim *ns)
|
|
{
|
|
kfree(ns->buf.byte);
|
|
free_device(ns);
|
|
|
|
return;
|
|
}
|
|
|
|
static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
|
|
{
|
|
char *w;
|
|
int zero_ok;
|
|
unsigned int erase_block_no;
|
|
loff_t offset;
|
|
|
|
if (!badblocks)
|
|
return 0;
|
|
w = badblocks;
|
|
do {
|
|
zero_ok = (*w == '0' ? 1 : 0);
|
|
erase_block_no = simple_strtoul(w, &w, 0);
|
|
if (!zero_ok && !erase_block_no) {
|
|
NS_ERR("invalid badblocks.\n");
|
|
return -EINVAL;
|
|
}
|
|
offset = erase_block_no * ns->geom.secsz;
|
|
if (mtd->block_markbad(mtd, offset)) {
|
|
NS_ERR("invalid badblocks.\n");
|
|
return -EINVAL;
|
|
}
|
|
if (*w == ',')
|
|
w += 1;
|
|
} while (*w);
|
|
return 0;
|
|
}
|
|
|
|
static int parse_weakblocks(void)
|
|
{
|
|
char *w;
|
|
int zero_ok;
|
|
unsigned int erase_block_no;
|
|
unsigned int max_erases;
|
|
struct weak_block *wb;
|
|
|
|
if (!weakblocks)
|
|
return 0;
|
|
w = weakblocks;
|
|
do {
|
|
zero_ok = (*w == '0' ? 1 : 0);
|
|
erase_block_no = simple_strtoul(w, &w, 0);
|
|
if (!zero_ok && !erase_block_no) {
|
|
NS_ERR("invalid weakblocks.\n");
|
|
return -EINVAL;
|
|
}
|
|
max_erases = 3;
|
|
if (*w == ':') {
|
|
w += 1;
|
|
max_erases = simple_strtoul(w, &w, 0);
|
|
}
|
|
if (*w == ',')
|
|
w += 1;
|
|
wb = kzalloc(sizeof(*wb), GFP_KERNEL);
|
|
if (!wb) {
|
|
NS_ERR("unable to allocate memory.\n");
|
|
return -ENOMEM;
|
|
}
|
|
wb->erase_block_no = erase_block_no;
|
|
wb->max_erases = max_erases;
|
|
list_add(&wb->list, &weak_blocks);
|
|
} while (*w);
|
|
return 0;
|
|
}
|
|
|
|
static int erase_error(unsigned int erase_block_no)
|
|
{
|
|
struct weak_block *wb;
|
|
|
|
list_for_each_entry(wb, &weak_blocks, list)
|
|
if (wb->erase_block_no == erase_block_no) {
|
|
if (wb->erases_done >= wb->max_erases)
|
|
return 1;
|
|
wb->erases_done += 1;
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int parse_weakpages(void)
|
|
{
|
|
char *w;
|
|
int zero_ok;
|
|
unsigned int page_no;
|
|
unsigned int max_writes;
|
|
struct weak_page *wp;
|
|
|
|
if (!weakpages)
|
|
return 0;
|
|
w = weakpages;
|
|
do {
|
|
zero_ok = (*w == '0' ? 1 : 0);
|
|
page_no = simple_strtoul(w, &w, 0);
|
|
if (!zero_ok && !page_no) {
|
|
NS_ERR("invalid weakpagess.\n");
|
|
return -EINVAL;
|
|
}
|
|
max_writes = 3;
|
|
if (*w == ':') {
|
|
w += 1;
|
|
max_writes = simple_strtoul(w, &w, 0);
|
|
}
|
|
if (*w == ',')
|
|
w += 1;
|
|
wp = kzalloc(sizeof(*wp), GFP_KERNEL);
|
|
if (!wp) {
|
|
NS_ERR("unable to allocate memory.\n");
|
|
return -ENOMEM;
|
|
}
|
|
wp->page_no = page_no;
|
|
wp->max_writes = max_writes;
|
|
list_add(&wp->list, &weak_pages);
|
|
} while (*w);
|
|
return 0;
|
|
}
|
|
|
|
static int write_error(unsigned int page_no)
|
|
{
|
|
struct weak_page *wp;
|
|
|
|
list_for_each_entry(wp, &weak_pages, list)
|
|
if (wp->page_no == page_no) {
|
|
if (wp->writes_done >= wp->max_writes)
|
|
return 1;
|
|
wp->writes_done += 1;
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int parse_gravepages(void)
|
|
{
|
|
char *g;
|
|
int zero_ok;
|
|
unsigned int page_no;
|
|
unsigned int max_reads;
|
|
struct grave_page *gp;
|
|
|
|
if (!gravepages)
|
|
return 0;
|
|
g = gravepages;
|
|
do {
|
|
zero_ok = (*g == '0' ? 1 : 0);
|
|
page_no = simple_strtoul(g, &g, 0);
|
|
if (!zero_ok && !page_no) {
|
|
NS_ERR("invalid gravepagess.\n");
|
|
return -EINVAL;
|
|
}
|
|
max_reads = 3;
|
|
if (*g == ':') {
|
|
g += 1;
|
|
max_reads = simple_strtoul(g, &g, 0);
|
|
}
|
|
if (*g == ',')
|
|
g += 1;
|
|
gp = kzalloc(sizeof(*gp), GFP_KERNEL);
|
|
if (!gp) {
|
|
NS_ERR("unable to allocate memory.\n");
|
|
return -ENOMEM;
|
|
}
|
|
gp->page_no = page_no;
|
|
gp->max_reads = max_reads;
|
|
list_add(&gp->list, &grave_pages);
|
|
} while (*g);
|
|
return 0;
|
|
}
|
|
|
|
static int read_error(unsigned int page_no)
|
|
{
|
|
struct grave_page *gp;
|
|
|
|
list_for_each_entry(gp, &grave_pages, list)
|
|
if (gp->page_no == page_no) {
|
|
if (gp->reads_done >= gp->max_reads)
|
|
return 1;
|
|
gp->reads_done += 1;
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void free_lists(void)
|
|
{
|
|
struct list_head *pos, *n;
|
|
list_for_each_safe(pos, n, &weak_blocks) {
|
|
list_del(pos);
|
|
kfree(list_entry(pos, struct weak_block, list));
|
|
}
|
|
list_for_each_safe(pos, n, &weak_pages) {
|
|
list_del(pos);
|
|
kfree(list_entry(pos, struct weak_page, list));
|
|
}
|
|
list_for_each_safe(pos, n, &grave_pages) {
|
|
list_del(pos);
|
|
kfree(list_entry(pos, struct grave_page, list));
|
|
}
|
|
kfree(erase_block_wear);
|
|
}
|
|
|
|
static int setup_wear_reporting(struct mtd_info *mtd)
|
|
{
|
|
size_t mem;
|
|
|
|
if (!rptwear)
|
|
return 0;
|
|
wear_eb_count = divide(mtd->size, mtd->erasesize);
|
|
mem = wear_eb_count * sizeof(unsigned long);
|
|
if (mem / sizeof(unsigned long) != wear_eb_count) {
|
|
NS_ERR("Too many erase blocks for wear reporting\n");
|
|
return -ENOMEM;
|
|
}
|
|
erase_block_wear = kzalloc(mem, GFP_KERNEL);
|
|
if (!erase_block_wear) {
|
|
NS_ERR("Too many erase blocks for wear reporting\n");
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void update_wear(unsigned int erase_block_no)
|
|
{
|
|
unsigned long wmin = -1, wmax = 0, avg;
|
|
unsigned long deciles[10], decile_max[10], tot = 0;
|
|
unsigned int i;
|
|
|
|
if (!erase_block_wear)
|
|
return;
|
|
total_wear += 1;
|
|
if (total_wear == 0)
|
|
NS_ERR("Erase counter total overflow\n");
|
|
erase_block_wear[erase_block_no] += 1;
|
|
if (erase_block_wear[erase_block_no] == 0)
|
|
NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
|
|
rptwear_cnt += 1;
|
|
if (rptwear_cnt < rptwear)
|
|
return;
|
|
rptwear_cnt = 0;
|
|
/* Calc wear stats */
|
|
for (i = 0; i < wear_eb_count; ++i) {
|
|
unsigned long wear = erase_block_wear[i];
|
|
if (wear < wmin)
|
|
wmin = wear;
|
|
if (wear > wmax)
|
|
wmax = wear;
|
|
tot += wear;
|
|
}
|
|
for (i = 0; i < 9; ++i) {
|
|
deciles[i] = 0;
|
|
decile_max[i] = (wmax * (i + 1) + 5) / 10;
|
|
}
|
|
deciles[9] = 0;
|
|
decile_max[9] = wmax;
|
|
for (i = 0; i < wear_eb_count; ++i) {
|
|
int d;
|
|
unsigned long wear = erase_block_wear[i];
|
|
for (d = 0; d < 10; ++d)
|
|
if (wear <= decile_max[d]) {
|
|
deciles[d] += 1;
|
|
break;
|
|
}
|
|
}
|
|
avg = tot / wear_eb_count;
|
|
/* Output wear report */
|
|
NS_INFO("*** Wear Report ***\n");
|
|
NS_INFO("Total numbers of erases: %lu\n", tot);
|
|
NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
|
|
NS_INFO("Average number of erases: %lu\n", avg);
|
|
NS_INFO("Maximum number of erases: %lu\n", wmax);
|
|
NS_INFO("Minimum number of erases: %lu\n", wmin);
|
|
for (i = 0; i < 10; ++i) {
|
|
unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
|
|
if (from > decile_max[i])
|
|
continue;
|
|
NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
|
|
from,
|
|
decile_max[i],
|
|
deciles[i]);
|
|
}
|
|
NS_INFO("*** End of Wear Report ***\n");
|
|
}
|
|
|
|
/*
|
|
* Returns the string representation of 'state' state.
|
|
*/
|
|
static char *get_state_name(uint32_t state)
|
|
{
|
|
switch (NS_STATE(state)) {
|
|
case STATE_CMD_READ0:
|
|
return "STATE_CMD_READ0";
|
|
case STATE_CMD_READ1:
|
|
return "STATE_CMD_READ1";
|
|
case STATE_CMD_PAGEPROG:
|
|
return "STATE_CMD_PAGEPROG";
|
|
case STATE_CMD_READOOB:
|
|
return "STATE_CMD_READOOB";
|
|
case STATE_CMD_READSTART:
|
|
return "STATE_CMD_READSTART";
|
|
case STATE_CMD_ERASE1:
|
|
return "STATE_CMD_ERASE1";
|
|
case STATE_CMD_STATUS:
|
|
return "STATE_CMD_STATUS";
|
|
case STATE_CMD_STATUS_M:
|
|
return "STATE_CMD_STATUS_M";
|
|
case STATE_CMD_SEQIN:
|
|
return "STATE_CMD_SEQIN";
|
|
case STATE_CMD_READID:
|
|
return "STATE_CMD_READID";
|
|
case STATE_CMD_ERASE2:
|
|
return "STATE_CMD_ERASE2";
|
|
case STATE_CMD_RESET:
|
|
return "STATE_CMD_RESET";
|
|
case STATE_CMD_RNDOUT:
|
|
return "STATE_CMD_RNDOUT";
|
|
case STATE_CMD_RNDOUTSTART:
|
|
return "STATE_CMD_RNDOUTSTART";
|
|
case STATE_ADDR_PAGE:
|
|
return "STATE_ADDR_PAGE";
|
|
case STATE_ADDR_SEC:
|
|
return "STATE_ADDR_SEC";
|
|
case STATE_ADDR_ZERO:
|
|
return "STATE_ADDR_ZERO";
|
|
case STATE_ADDR_COLUMN:
|
|
return "STATE_ADDR_COLUMN";
|
|
case STATE_DATAIN:
|
|
return "STATE_DATAIN";
|
|
case STATE_DATAOUT:
|
|
return "STATE_DATAOUT";
|
|
case STATE_DATAOUT_ID:
|
|
return "STATE_DATAOUT_ID";
|
|
case STATE_DATAOUT_STATUS:
|
|
return "STATE_DATAOUT_STATUS";
|
|
case STATE_DATAOUT_STATUS_M:
|
|
return "STATE_DATAOUT_STATUS_M";
|
|
case STATE_READY:
|
|
return "STATE_READY";
|
|
case STATE_UNKNOWN:
|
|
return "STATE_UNKNOWN";
|
|
}
|
|
|
|
NS_ERR("get_state_name: unknown state, BUG\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Check if command is valid.
|
|
*
|
|
* RETURNS: 1 if wrong command, 0 if right.
|
|
*/
|
|
static int check_command(int cmd)
|
|
{
|
|
switch (cmd) {
|
|
|
|
case NAND_CMD_READ0:
|
|
case NAND_CMD_READ1:
|
|
case NAND_CMD_READSTART:
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_READOOB:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_STATUS:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_READID:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_RESET:
|
|
case NAND_CMD_RNDOUT:
|
|
case NAND_CMD_RNDOUTSTART:
|
|
return 0;
|
|
|
|
case NAND_CMD_STATUS_MULTI:
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Returns state after command is accepted by command number.
|
|
*/
|
|
static uint32_t get_state_by_command(unsigned command)
|
|
{
|
|
switch (command) {
|
|
case NAND_CMD_READ0:
|
|
return STATE_CMD_READ0;
|
|
case NAND_CMD_READ1:
|
|
return STATE_CMD_READ1;
|
|
case NAND_CMD_PAGEPROG:
|
|
return STATE_CMD_PAGEPROG;
|
|
case NAND_CMD_READSTART:
|
|
return STATE_CMD_READSTART;
|
|
case NAND_CMD_READOOB:
|
|
return STATE_CMD_READOOB;
|
|
case NAND_CMD_ERASE1:
|
|
return STATE_CMD_ERASE1;
|
|
case NAND_CMD_STATUS:
|
|
return STATE_CMD_STATUS;
|
|
case NAND_CMD_STATUS_MULTI:
|
|
return STATE_CMD_STATUS_M;
|
|
case NAND_CMD_SEQIN:
|
|
return STATE_CMD_SEQIN;
|
|
case NAND_CMD_READID:
|
|
return STATE_CMD_READID;
|
|
case NAND_CMD_ERASE2:
|
|
return STATE_CMD_ERASE2;
|
|
case NAND_CMD_RESET:
|
|
return STATE_CMD_RESET;
|
|
case NAND_CMD_RNDOUT:
|
|
return STATE_CMD_RNDOUT;
|
|
case NAND_CMD_RNDOUTSTART:
|
|
return STATE_CMD_RNDOUTSTART;
|
|
}
|
|
|
|
NS_ERR("get_state_by_command: unknown command, BUG\n");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Move an address byte to the correspondent internal register.
|
|
*/
|
|
static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
|
|
{
|
|
uint byte = (uint)bt;
|
|
|
|
if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
|
|
ns->regs.column |= (byte << 8 * ns->regs.count);
|
|
else {
|
|
ns->regs.row |= (byte << 8 * (ns->regs.count -
|
|
ns->geom.pgaddrbytes +
|
|
ns->geom.secaddrbytes));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Switch to STATE_READY state.
|
|
*/
|
|
static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
|
|
{
|
|
NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
|
|
|
|
ns->state = STATE_READY;
|
|
ns->nxstate = STATE_UNKNOWN;
|
|
ns->op = NULL;
|
|
ns->npstates = 0;
|
|
ns->stateidx = 0;
|
|
ns->regs.num = 0;
|
|
ns->regs.count = 0;
|
|
ns->regs.off = 0;
|
|
ns->regs.row = 0;
|
|
ns->regs.column = 0;
|
|
ns->regs.status = status;
|
|
}
|
|
|
|
/*
|
|
* If the operation isn't known yet, try to find it in the global array
|
|
* of supported operations.
|
|
*
|
|
* Operation can be unknown because of the following.
|
|
* 1. New command was accepted and this is the firs call to find the
|
|
* correspondent states chain. In this case ns->npstates = 0;
|
|
* 2. There is several operations which begin with the same command(s)
|
|
* (for example program from the second half and read from the
|
|
* second half operations both begin with the READ1 command). In this
|
|
* case the ns->pstates[] array contains previous states.
|
|
*
|
|
* Thus, the function tries to find operation containing the following
|
|
* states (if the 'flag' parameter is 0):
|
|
* ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
|
|
*
|
|
* If (one and only one) matching operation is found, it is accepted (
|
|
* ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
|
|
* zeroed).
|
|
*
|
|
* If there are several maches, the current state is pushed to the
|
|
* ns->pstates.
|
|
*
|
|
* The operation can be unknown only while commands are input to the chip.
|
|
* As soon as address command is accepted, the operation must be known.
|
|
* In such situation the function is called with 'flag' != 0, and the
|
|
* operation is searched using the following pattern:
|
|
* ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
|
|
*
|
|
* It is supposed that this pattern must either match one operation on
|
|
* none. There can't be ambiguity in that case.
|
|
*
|
|
* If no matches found, the functions does the following:
|
|
* 1. if there are saved states present, try to ignore them and search
|
|
* again only using the last command. If nothing was found, switch
|
|
* to the STATE_READY state.
|
|
* 2. if there are no saved states, switch to the STATE_READY state.
|
|
*
|
|
* RETURNS: -2 - no matched operations found.
|
|
* -1 - several matches.
|
|
* 0 - operation is found.
|
|
*/
|
|
static int find_operation(struct nandsim *ns, uint32_t flag)
|
|
{
|
|
int opsfound = 0;
|
|
int i, j, idx = 0;
|
|
|
|
for (i = 0; i < NS_OPER_NUM; i++) {
|
|
|
|
int found = 1;
|
|
|
|
if (!(ns->options & ops[i].reqopts))
|
|
/* Ignore operations we can't perform */
|
|
continue;
|
|
|
|
if (flag) {
|
|
if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
|
|
continue;
|
|
} else {
|
|
if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
|
|
continue;
|
|
}
|
|
|
|
for (j = 0; j < ns->npstates; j++)
|
|
if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
|
|
&& (ns->options & ops[idx].reqopts)) {
|
|
found = 0;
|
|
break;
|
|
}
|
|
|
|
if (found) {
|
|
idx = i;
|
|
opsfound += 1;
|
|
}
|
|
}
|
|
|
|
if (opsfound == 1) {
|
|
/* Exact match */
|
|
ns->op = &ops[idx].states[0];
|
|
if (flag) {
|
|
/*
|
|
* In this case the find_operation function was
|
|
* called when address has just began input. But it isn't
|
|
* yet fully input and the current state must
|
|
* not be one of STATE_ADDR_*, but the STATE_ADDR_*
|
|
* state must be the next state (ns->nxstate).
|
|
*/
|
|
ns->stateidx = ns->npstates - 1;
|
|
} else {
|
|
ns->stateidx = ns->npstates;
|
|
}
|
|
ns->npstates = 0;
|
|
ns->state = ns->op[ns->stateidx];
|
|
ns->nxstate = ns->op[ns->stateidx + 1];
|
|
NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
|
|
idx, get_state_name(ns->state), get_state_name(ns->nxstate));
|
|
return 0;
|
|
}
|
|
|
|
if (opsfound == 0) {
|
|
/* Nothing was found. Try to ignore previous commands (if any) and search again */
|
|
if (ns->npstates != 0) {
|
|
NS_DBG("find_operation: no operation found, try again with state %s\n",
|
|
get_state_name(ns->state));
|
|
ns->npstates = 0;
|
|
return find_operation(ns, 0);
|
|
|
|
}
|
|
NS_DBG("find_operation: no operations found\n");
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
return -2;
|
|
}
|
|
|
|
if (flag) {
|
|
/* This shouldn't happen */
|
|
NS_DBG("find_operation: BUG, operation must be known if address is input\n");
|
|
return -2;
|
|
}
|
|
|
|
NS_DBG("find_operation: there is still ambiguity\n");
|
|
|
|
ns->pstates[ns->npstates++] = ns->state;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void put_pages(struct nandsim *ns)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ns->held_cnt; i++)
|
|
page_cache_release(ns->held_pages[i]);
|
|
}
|
|
|
|
/* Get page cache pages in advance to provide NOFS memory allocation */
|
|
static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
|
|
{
|
|
pgoff_t index, start_index, end_index;
|
|
struct page *page;
|
|
struct address_space *mapping = file->f_mapping;
|
|
|
|
start_index = pos >> PAGE_CACHE_SHIFT;
|
|
end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
|
|
if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
|
|
return -EINVAL;
|
|
ns->held_cnt = 0;
|
|
for (index = start_index; index <= end_index; index++) {
|
|
page = find_get_page(mapping, index);
|
|
if (page == NULL) {
|
|
page = find_or_create_page(mapping, index, GFP_NOFS);
|
|
if (page == NULL) {
|
|
write_inode_now(mapping->host, 1);
|
|
page = find_or_create_page(mapping, index, GFP_NOFS);
|
|
}
|
|
if (page == NULL) {
|
|
put_pages(ns);
|
|
return -ENOMEM;
|
|
}
|
|
unlock_page(page);
|
|
}
|
|
ns->held_pages[ns->held_cnt++] = page;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int set_memalloc(void)
|
|
{
|
|
if (current->flags & PF_MEMALLOC)
|
|
return 0;
|
|
current->flags |= PF_MEMALLOC;
|
|
return 1;
|
|
}
|
|
|
|
static void clear_memalloc(int memalloc)
|
|
{
|
|
if (memalloc)
|
|
current->flags &= ~PF_MEMALLOC;
|
|
}
|
|
|
|
static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
|
|
{
|
|
mm_segment_t old_fs;
|
|
ssize_t tx;
|
|
int err, memalloc;
|
|
|
|
err = get_pages(ns, file, count, *pos);
|
|
if (err)
|
|
return err;
|
|
old_fs = get_fs();
|
|
set_fs(get_ds());
|
|
memalloc = set_memalloc();
|
|
tx = vfs_read(file, (char __user *)buf, count, pos);
|
|
clear_memalloc(memalloc);
|
|
set_fs(old_fs);
|
|
put_pages(ns);
|
|
return tx;
|
|
}
|
|
|
|
static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
|
|
{
|
|
mm_segment_t old_fs;
|
|
ssize_t tx;
|
|
int err, memalloc;
|
|
|
|
err = get_pages(ns, file, count, *pos);
|
|
if (err)
|
|
return err;
|
|
old_fs = get_fs();
|
|
set_fs(get_ds());
|
|
memalloc = set_memalloc();
|
|
tx = vfs_write(file, (char __user *)buf, count, pos);
|
|
clear_memalloc(memalloc);
|
|
set_fs(old_fs);
|
|
put_pages(ns);
|
|
return tx;
|
|
}
|
|
|
|
/*
|
|
* Returns a pointer to the current page.
|
|
*/
|
|
static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
|
|
{
|
|
return &(ns->pages[ns->regs.row]);
|
|
}
|
|
|
|
/*
|
|
* Retuns a pointer to the current byte, within the current page.
|
|
*/
|
|
static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
|
|
{
|
|
return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
|
|
}
|
|
|
|
int do_read_error(struct nandsim *ns, int num)
|
|
{
|
|
unsigned int page_no = ns->regs.row;
|
|
|
|
if (read_error(page_no)) {
|
|
int i;
|
|
memset(ns->buf.byte, 0xFF, num);
|
|
for (i = 0; i < num; ++i)
|
|
ns->buf.byte[i] = random32();
|
|
NS_WARN("simulating read error in page %u\n", page_no);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void do_bit_flips(struct nandsim *ns, int num)
|
|
{
|
|
if (bitflips && random32() < (1 << 22)) {
|
|
int flips = 1;
|
|
if (bitflips > 1)
|
|
flips = (random32() % (int) bitflips) + 1;
|
|
while (flips--) {
|
|
int pos = random32() % (num * 8);
|
|
ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
|
|
NS_WARN("read_page: flipping bit %d in page %d "
|
|
"reading from %d ecc: corrected=%u failed=%u\n",
|
|
pos, ns->regs.row, ns->regs.column + ns->regs.off,
|
|
nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill the NAND buffer with data read from the specified page.
|
|
*/
|
|
static void read_page(struct nandsim *ns, int num)
|
|
{
|
|
union ns_mem *mypage;
|
|
|
|
if (ns->cfile) {
|
|
if (!ns->pages_written[ns->regs.row]) {
|
|
NS_DBG("read_page: page %d not written\n", ns->regs.row);
|
|
memset(ns->buf.byte, 0xFF, num);
|
|
} else {
|
|
loff_t pos;
|
|
ssize_t tx;
|
|
|
|
NS_DBG("read_page: page %d written, reading from %d\n",
|
|
ns->regs.row, ns->regs.column + ns->regs.off);
|
|
if (do_read_error(ns, num))
|
|
return;
|
|
pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
|
|
tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
|
|
if (tx != num) {
|
|
NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
|
|
return;
|
|
}
|
|
do_bit_flips(ns, num);
|
|
}
|
|
return;
|
|
}
|
|
|
|
mypage = NS_GET_PAGE(ns);
|
|
if (mypage->byte == NULL) {
|
|
NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
|
|
memset(ns->buf.byte, 0xFF, num);
|
|
} else {
|
|
NS_DBG("read_page: page %d allocated, reading from %d\n",
|
|
ns->regs.row, ns->regs.column + ns->regs.off);
|
|
if (do_read_error(ns, num))
|
|
return;
|
|
memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
|
|
do_bit_flips(ns, num);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Erase all pages in the specified sector.
|
|
*/
|
|
static void erase_sector(struct nandsim *ns)
|
|
{
|
|
union ns_mem *mypage;
|
|
int i;
|
|
|
|
if (ns->cfile) {
|
|
for (i = 0; i < ns->geom.pgsec; i++)
|
|
if (ns->pages_written[ns->regs.row + i]) {
|
|
NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
|
|
ns->pages_written[ns->regs.row + i] = 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
mypage = NS_GET_PAGE(ns);
|
|
for (i = 0; i < ns->geom.pgsec; i++) {
|
|
if (mypage->byte != NULL) {
|
|
NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
|
|
kmem_cache_free(ns->nand_pages_slab, mypage->byte);
|
|
mypage->byte = NULL;
|
|
}
|
|
mypage++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Program the specified page with the contents from the NAND buffer.
|
|
*/
|
|
static int prog_page(struct nandsim *ns, int num)
|
|
{
|
|
int i;
|
|
union ns_mem *mypage;
|
|
u_char *pg_off;
|
|
|
|
if (ns->cfile) {
|
|
loff_t off, pos;
|
|
ssize_t tx;
|
|
int all;
|
|
|
|
NS_DBG("prog_page: writing page %d\n", ns->regs.row);
|
|
pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
|
|
off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
|
|
if (!ns->pages_written[ns->regs.row]) {
|
|
all = 1;
|
|
memset(ns->file_buf, 0xff, ns->geom.pgszoob);
|
|
} else {
|
|
all = 0;
|
|
pos = off;
|
|
tx = read_file(ns, ns->cfile, pg_off, num, &pos);
|
|
if (tx != num) {
|
|
NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
|
|
return -1;
|
|
}
|
|
}
|
|
for (i = 0; i < num; i++)
|
|
pg_off[i] &= ns->buf.byte[i];
|
|
if (all) {
|
|
pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
|
|
tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
|
|
if (tx != ns->geom.pgszoob) {
|
|
NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
|
|
return -1;
|
|
}
|
|
ns->pages_written[ns->regs.row] = 1;
|
|
} else {
|
|
pos = off;
|
|
tx = write_file(ns, ns->cfile, pg_off, num, &pos);
|
|
if (tx != num) {
|
|
NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
mypage = NS_GET_PAGE(ns);
|
|
if (mypage->byte == NULL) {
|
|
NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
|
|
/*
|
|
* We allocate memory with GFP_NOFS because a flash FS may
|
|
* utilize this. If it is holding an FS lock, then gets here,
|
|
* then kernel memory alloc runs writeback which goes to the FS
|
|
* again and deadlocks. This was seen in practice.
|
|
*/
|
|
mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
|
|
if (mypage->byte == NULL) {
|
|
NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
|
|
return -1;
|
|
}
|
|
memset(mypage->byte, 0xFF, ns->geom.pgszoob);
|
|
}
|
|
|
|
pg_off = NS_PAGE_BYTE_OFF(ns);
|
|
for (i = 0; i < num; i++)
|
|
pg_off[i] &= ns->buf.byte[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If state has any action bit, perform this action.
|
|
*
|
|
* RETURNS: 0 if success, -1 if error.
|
|
*/
|
|
static int do_state_action(struct nandsim *ns, uint32_t action)
|
|
{
|
|
int num;
|
|
int busdiv = ns->busw == 8 ? 1 : 2;
|
|
unsigned int erase_block_no, page_no;
|
|
|
|
action &= ACTION_MASK;
|
|
|
|
/* Check that page address input is correct */
|
|
if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
|
|
NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
|
|
return -1;
|
|
}
|
|
|
|
switch (action) {
|
|
|
|
case ACTION_CPY:
|
|
/*
|
|
* Copy page data to the internal buffer.
|
|
*/
|
|
|
|
/* Column shouldn't be very large */
|
|
if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
|
|
NS_ERR("do_state_action: column number is too large\n");
|
|
break;
|
|
}
|
|
num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
|
|
read_page(ns, num);
|
|
|
|
NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
|
|
num, NS_RAW_OFFSET(ns) + ns->regs.off);
|
|
|
|
if (ns->regs.off == 0)
|
|
NS_LOG("read page %d\n", ns->regs.row);
|
|
else if (ns->regs.off < ns->geom.pgsz)
|
|
NS_LOG("read page %d (second half)\n", ns->regs.row);
|
|
else
|
|
NS_LOG("read OOB of page %d\n", ns->regs.row);
|
|
|
|
NS_UDELAY(access_delay);
|
|
NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
|
|
|
|
break;
|
|
|
|
case ACTION_SECERASE:
|
|
/*
|
|
* Erase sector.
|
|
*/
|
|
|
|
if (ns->lines.wp) {
|
|
NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
|
|
return -1;
|
|
}
|
|
|
|
if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
|
|
|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
|
|
NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
|
|
return -1;
|
|
}
|
|
|
|
ns->regs.row = (ns->regs.row <<
|
|
8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
|
|
ns->regs.column = 0;
|
|
|
|
erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
|
|
|
|
NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
|
|
ns->regs.row, NS_RAW_OFFSET(ns));
|
|
NS_LOG("erase sector %u\n", erase_block_no);
|
|
|
|
erase_sector(ns);
|
|
|
|
NS_MDELAY(erase_delay);
|
|
|
|
if (erase_block_wear)
|
|
update_wear(erase_block_no);
|
|
|
|
if (erase_error(erase_block_no)) {
|
|
NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
|
|
return -1;
|
|
}
|
|
|
|
break;
|
|
|
|
case ACTION_PRGPAGE:
|
|
/*
|
|
* Programm page - move internal buffer data to the page.
|
|
*/
|
|
|
|
if (ns->lines.wp) {
|
|
NS_WARN("do_state_action: device is write-protected, programm\n");
|
|
return -1;
|
|
}
|
|
|
|
num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
|
|
if (num != ns->regs.count) {
|
|
NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
|
|
ns->regs.count, num);
|
|
return -1;
|
|
}
|
|
|
|
if (prog_page(ns, num) == -1)
|
|
return -1;
|
|
|
|
page_no = ns->regs.row;
|
|
|
|
NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
|
|
num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
|
|
NS_LOG("programm page %d\n", ns->regs.row);
|
|
|
|
NS_UDELAY(programm_delay);
|
|
NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
|
|
|
|
if (write_error(page_no)) {
|
|
NS_WARN("simulating write failure in page %u\n", page_no);
|
|
return -1;
|
|
}
|
|
|
|
break;
|
|
|
|
case ACTION_ZEROOFF:
|
|
NS_DBG("do_state_action: set internal offset to 0\n");
|
|
ns->regs.off = 0;
|
|
break;
|
|
|
|
case ACTION_HALFOFF:
|
|
if (!(ns->options & OPT_PAGE512_8BIT)) {
|
|
NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
|
|
"byte page size 8x chips\n");
|
|
return -1;
|
|
}
|
|
NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
|
|
ns->regs.off = ns->geom.pgsz/2;
|
|
break;
|
|
|
|
case ACTION_OOBOFF:
|
|
NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
|
|
ns->regs.off = ns->geom.pgsz;
|
|
break;
|
|
|
|
default:
|
|
NS_DBG("do_state_action: BUG! unknown action\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Switch simulator's state.
|
|
*/
|
|
static void switch_state(struct nandsim *ns)
|
|
{
|
|
if (ns->op) {
|
|
/*
|
|
* The current operation have already been identified.
|
|
* Just follow the states chain.
|
|
*/
|
|
|
|
ns->stateidx += 1;
|
|
ns->state = ns->nxstate;
|
|
ns->nxstate = ns->op[ns->stateidx + 1];
|
|
|
|
NS_DBG("switch_state: operation is known, switch to the next state, "
|
|
"state: %s, nxstate: %s\n",
|
|
get_state_name(ns->state), get_state_name(ns->nxstate));
|
|
|
|
/* See, whether we need to do some action */
|
|
if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
return;
|
|
}
|
|
|
|
} else {
|
|
/*
|
|
* We don't yet know which operation we perform.
|
|
* Try to identify it.
|
|
*/
|
|
|
|
/*
|
|
* The only event causing the switch_state function to
|
|
* be called with yet unknown operation is new command.
|
|
*/
|
|
ns->state = get_state_by_command(ns->regs.command);
|
|
|
|
NS_DBG("switch_state: operation is unknown, try to find it\n");
|
|
|
|
if (find_operation(ns, 0) != 0)
|
|
return;
|
|
|
|
if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* For 16x devices column means the page offset in words */
|
|
if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
|
|
NS_DBG("switch_state: double the column number for 16x device\n");
|
|
ns->regs.column <<= 1;
|
|
}
|
|
|
|
if (NS_STATE(ns->nxstate) == STATE_READY) {
|
|
/*
|
|
* The current state is the last. Return to STATE_READY
|
|
*/
|
|
|
|
u_char status = NS_STATUS_OK(ns);
|
|
|
|
/* In case of data states, see if all bytes were input/output */
|
|
if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
|
|
&& ns->regs.count != ns->regs.num) {
|
|
NS_WARN("switch_state: not all bytes were processed, %d left\n",
|
|
ns->regs.num - ns->regs.count);
|
|
status = NS_STATUS_FAILED(ns);
|
|
}
|
|
|
|
NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
|
|
|
|
switch_to_ready_state(ns, status);
|
|
|
|
return;
|
|
} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
|
|
/*
|
|
* If the next state is data input/output, switch to it now
|
|
*/
|
|
|
|
ns->state = ns->nxstate;
|
|
ns->nxstate = ns->op[++ns->stateidx + 1];
|
|
ns->regs.num = ns->regs.count = 0;
|
|
|
|
NS_DBG("switch_state: the next state is data I/O, switch, "
|
|
"state: %s, nxstate: %s\n",
|
|
get_state_name(ns->state), get_state_name(ns->nxstate));
|
|
|
|
/*
|
|
* Set the internal register to the count of bytes which
|
|
* are expected to be input or output
|
|
*/
|
|
switch (NS_STATE(ns->state)) {
|
|
case STATE_DATAIN:
|
|
case STATE_DATAOUT:
|
|
ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
|
|
break;
|
|
|
|
case STATE_DATAOUT_ID:
|
|
ns->regs.num = ns->geom.idbytes;
|
|
break;
|
|
|
|
case STATE_DATAOUT_STATUS:
|
|
case STATE_DATAOUT_STATUS_M:
|
|
ns->regs.count = ns->regs.num = 0;
|
|
break;
|
|
|
|
default:
|
|
NS_ERR("switch_state: BUG! unknown data state\n");
|
|
}
|
|
|
|
} else if (ns->nxstate & STATE_ADDR_MASK) {
|
|
/*
|
|
* If the next state is address input, set the internal
|
|
* register to the number of expected address bytes
|
|
*/
|
|
|
|
ns->regs.count = 0;
|
|
|
|
switch (NS_STATE(ns->nxstate)) {
|
|
case STATE_ADDR_PAGE:
|
|
ns->regs.num = ns->geom.pgaddrbytes;
|
|
|
|
break;
|
|
case STATE_ADDR_SEC:
|
|
ns->regs.num = ns->geom.secaddrbytes;
|
|
break;
|
|
|
|
case STATE_ADDR_ZERO:
|
|
ns->regs.num = 1;
|
|
break;
|
|
|
|
case STATE_ADDR_COLUMN:
|
|
/* Column address is always 2 bytes */
|
|
ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
|
|
break;
|
|
|
|
default:
|
|
NS_ERR("switch_state: BUG! unknown address state\n");
|
|
}
|
|
} else {
|
|
/*
|
|
* Just reset internal counters.
|
|
*/
|
|
|
|
ns->regs.num = 0;
|
|
ns->regs.count = 0;
|
|
}
|
|
}
|
|
|
|
static u_char ns_nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
|
|
u_char outb = 0x00;
|
|
|
|
/* Sanity and correctness checks */
|
|
if (!ns->lines.ce) {
|
|
NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
|
|
return outb;
|
|
}
|
|
if (ns->lines.ale || ns->lines.cle) {
|
|
NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
|
|
return outb;
|
|
}
|
|
if (!(ns->state & STATE_DATAOUT_MASK)) {
|
|
NS_WARN("read_byte: unexpected data output cycle, state is %s "
|
|
"return %#x\n", get_state_name(ns->state), (uint)outb);
|
|
return outb;
|
|
}
|
|
|
|
/* Status register may be read as many times as it is wanted */
|
|
if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
|
|
NS_DBG("read_byte: return %#x status\n", ns->regs.status);
|
|
return ns->regs.status;
|
|
}
|
|
|
|
/* Check if there is any data in the internal buffer which may be read */
|
|
if (ns->regs.count == ns->regs.num) {
|
|
NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
|
|
return outb;
|
|
}
|
|
|
|
switch (NS_STATE(ns->state)) {
|
|
case STATE_DATAOUT:
|
|
if (ns->busw == 8) {
|
|
outb = ns->buf.byte[ns->regs.count];
|
|
ns->regs.count += 1;
|
|
} else {
|
|
outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
|
|
ns->regs.count += 2;
|
|
}
|
|
break;
|
|
case STATE_DATAOUT_ID:
|
|
NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
|
|
outb = ns->ids[ns->regs.count];
|
|
ns->regs.count += 1;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (ns->regs.count == ns->regs.num) {
|
|
NS_DBG("read_byte: all bytes were read\n");
|
|
|
|
/*
|
|
* The OPT_AUTOINCR allows to read next conseqitive pages without
|
|
* new read operation cycle.
|
|
*/
|
|
if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
|
|
ns->regs.count = 0;
|
|
if (ns->regs.row + 1 < ns->geom.pgnum)
|
|
ns->regs.row += 1;
|
|
NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
|
|
do_state_action(ns, ACTION_CPY);
|
|
}
|
|
else if (NS_STATE(ns->nxstate) == STATE_READY)
|
|
switch_state(ns);
|
|
|
|
}
|
|
|
|
return outb;
|
|
}
|
|
|
|
static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
|
|
{
|
|
struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
|
|
|
|
/* Sanity and correctness checks */
|
|
if (!ns->lines.ce) {
|
|
NS_ERR("write_byte: chip is disabled, ignore write\n");
|
|
return;
|
|
}
|
|
if (ns->lines.ale && ns->lines.cle) {
|
|
NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
|
|
return;
|
|
}
|
|
|
|
if (ns->lines.cle == 1) {
|
|
/*
|
|
* The byte written is a command.
|
|
*/
|
|
|
|
if (byte == NAND_CMD_RESET) {
|
|
NS_LOG("reset chip\n");
|
|
switch_to_ready_state(ns, NS_STATUS_OK(ns));
|
|
return;
|
|
}
|
|
|
|
/* Check that the command byte is correct */
|
|
if (check_command(byte)) {
|
|
NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
|
|
return;
|
|
}
|
|
|
|
if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
|
|
|| NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
|
|
|| NS_STATE(ns->state) == STATE_DATAOUT) {
|
|
int row = ns->regs.row;
|
|
|
|
switch_state(ns);
|
|
if (byte == NAND_CMD_RNDOUT)
|
|
ns->regs.row = row;
|
|
}
|
|
|
|
/* Check if chip is expecting command */
|
|
if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
|
|
/* Do not warn if only 2 id bytes are read */
|
|
if (!(ns->regs.command == NAND_CMD_READID &&
|
|
NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
|
|
/*
|
|
* We are in situation when something else (not command)
|
|
* was expected but command was input. In this case ignore
|
|
* previous command(s)/state(s) and accept the last one.
|
|
*/
|
|
NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
|
|
"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
|
|
}
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
}
|
|
|
|
NS_DBG("command byte corresponding to %s state accepted\n",
|
|
get_state_name(get_state_by_command(byte)));
|
|
ns->regs.command = byte;
|
|
switch_state(ns);
|
|
|
|
} else if (ns->lines.ale == 1) {
|
|
/*
|
|
* The byte written is an address.
|
|
*/
|
|
|
|
if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
|
|
|
|
NS_DBG("write_byte: operation isn't known yet, identify it\n");
|
|
|
|
if (find_operation(ns, 1) < 0)
|
|
return;
|
|
|
|
if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
return;
|
|
}
|
|
|
|
ns->regs.count = 0;
|
|
switch (NS_STATE(ns->nxstate)) {
|
|
case STATE_ADDR_PAGE:
|
|
ns->regs.num = ns->geom.pgaddrbytes;
|
|
break;
|
|
case STATE_ADDR_SEC:
|
|
ns->regs.num = ns->geom.secaddrbytes;
|
|
break;
|
|
case STATE_ADDR_ZERO:
|
|
ns->regs.num = 1;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/* Check that chip is expecting address */
|
|
if (!(ns->nxstate & STATE_ADDR_MASK)) {
|
|
NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
|
|
"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
return;
|
|
}
|
|
|
|
/* Check if this is expected byte */
|
|
if (ns->regs.count == ns->regs.num) {
|
|
NS_ERR("write_byte: no more address bytes expected\n");
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
return;
|
|
}
|
|
|
|
accept_addr_byte(ns, byte);
|
|
|
|
ns->regs.count += 1;
|
|
|
|
NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
|
|
(uint)byte, ns->regs.count, ns->regs.num);
|
|
|
|
if (ns->regs.count == ns->regs.num) {
|
|
NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
|
|
switch_state(ns);
|
|
}
|
|
|
|
} else {
|
|
/*
|
|
* The byte written is an input data.
|
|
*/
|
|
|
|
/* Check that chip is expecting data input */
|
|
if (!(ns->state & STATE_DATAIN_MASK)) {
|
|
NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
|
|
"switch to %s\n", (uint)byte,
|
|
get_state_name(ns->state), get_state_name(STATE_READY));
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
return;
|
|
}
|
|
|
|
/* Check if this is expected byte */
|
|
if (ns->regs.count == ns->regs.num) {
|
|
NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
|
|
ns->regs.num);
|
|
return;
|
|
}
|
|
|
|
if (ns->busw == 8) {
|
|
ns->buf.byte[ns->regs.count] = byte;
|
|
ns->regs.count += 1;
|
|
} else {
|
|
ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
|
|
ns->regs.count += 2;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
|
|
{
|
|
struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
|
|
|
|
ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
|
|
ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
|
|
ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
|
|
|
|
if (cmd != NAND_CMD_NONE)
|
|
ns_nand_write_byte(mtd, cmd);
|
|
}
|
|
|
|
static int ns_device_ready(struct mtd_info *mtd)
|
|
{
|
|
NS_DBG("device_ready\n");
|
|
return 1;
|
|
}
|
|
|
|
static uint16_t ns_nand_read_word(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = (struct nand_chip *)mtd->priv;
|
|
|
|
NS_DBG("read_word\n");
|
|
|
|
return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
|
|
}
|
|
|
|
static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
|
|
|
|
/* Check that chip is expecting data input */
|
|
if (!(ns->state & STATE_DATAIN_MASK)) {
|
|
NS_ERR("write_buf: data input isn't expected, state is %s, "
|
|
"switch to STATE_READY\n", get_state_name(ns->state));
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
return;
|
|
}
|
|
|
|
/* Check if these are expected bytes */
|
|
if (ns->regs.count + len > ns->regs.num) {
|
|
NS_ERR("write_buf: too many input bytes\n");
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
return;
|
|
}
|
|
|
|
memcpy(ns->buf.byte + ns->regs.count, buf, len);
|
|
ns->regs.count += len;
|
|
|
|
if (ns->regs.count == ns->regs.num) {
|
|
NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
|
|
}
|
|
}
|
|
|
|
static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
|
|
|
|
/* Sanity and correctness checks */
|
|
if (!ns->lines.ce) {
|
|
NS_ERR("read_buf: chip is disabled\n");
|
|
return;
|
|
}
|
|
if (ns->lines.ale || ns->lines.cle) {
|
|
NS_ERR("read_buf: ALE or CLE pin is high\n");
|
|
return;
|
|
}
|
|
if (!(ns->state & STATE_DATAOUT_MASK)) {
|
|
NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
|
|
get_state_name(ns->state));
|
|
return;
|
|
}
|
|
|
|
if (NS_STATE(ns->state) != STATE_DATAOUT) {
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Check if these are expected bytes */
|
|
if (ns->regs.count + len > ns->regs.num) {
|
|
NS_ERR("read_buf: too many bytes to read\n");
|
|
switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
|
|
return;
|
|
}
|
|
|
|
memcpy(buf, ns->buf.byte + ns->regs.count, len);
|
|
ns->regs.count += len;
|
|
|
|
if (ns->regs.count == ns->regs.num) {
|
|
if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
|
|
ns->regs.count = 0;
|
|
if (ns->regs.row + 1 < ns->geom.pgnum)
|
|
ns->regs.row += 1;
|
|
NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
|
|
do_state_action(ns, ACTION_CPY);
|
|
}
|
|
else if (NS_STATE(ns->nxstate) == STATE_READY)
|
|
switch_state(ns);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
|
|
|
|
if (!memcmp(buf, &ns_verify_buf[0], len)) {
|
|
NS_DBG("verify_buf: the buffer is OK\n");
|
|
return 0;
|
|
} else {
|
|
NS_DBG("verify_buf: the buffer is wrong\n");
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Module initialization function
|
|
*/
|
|
static int __init ns_init_module(void)
|
|
{
|
|
struct nand_chip *chip;
|
|
struct nandsim *nand;
|
|
int retval = -ENOMEM, i;
|
|
|
|
if (bus_width != 8 && bus_width != 16) {
|
|
NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
|
|
nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
|
|
+ sizeof(struct nandsim), GFP_KERNEL);
|
|
if (!nsmtd) {
|
|
NS_ERR("unable to allocate core structures.\n");
|
|
return -ENOMEM;
|
|
}
|
|
chip = (struct nand_chip *)(nsmtd + 1);
|
|
nsmtd->priv = (void *)chip;
|
|
nand = (struct nandsim *)(chip + 1);
|
|
chip->priv = (void *)nand;
|
|
|
|
/*
|
|
* Register simulator's callbacks.
|
|
*/
|
|
chip->cmd_ctrl = ns_hwcontrol;
|
|
chip->read_byte = ns_nand_read_byte;
|
|
chip->dev_ready = ns_device_ready;
|
|
chip->write_buf = ns_nand_write_buf;
|
|
chip->read_buf = ns_nand_read_buf;
|
|
chip->verify_buf = ns_nand_verify_buf;
|
|
chip->read_word = ns_nand_read_word;
|
|
chip->ecc.mode = NAND_ECC_SOFT;
|
|
/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
|
|
/* and 'badblocks' parameters to work */
|
|
chip->options |= NAND_SKIP_BBTSCAN;
|
|
|
|
/*
|
|
* Perform minimum nandsim structure initialization to handle
|
|
* the initial ID read command correctly
|
|
*/
|
|
if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
|
|
nand->geom.idbytes = 4;
|
|
else
|
|
nand->geom.idbytes = 2;
|
|
nand->regs.status = NS_STATUS_OK(nand);
|
|
nand->nxstate = STATE_UNKNOWN;
|
|
nand->options |= OPT_PAGE256; /* temporary value */
|
|
nand->ids[0] = first_id_byte;
|
|
nand->ids[1] = second_id_byte;
|
|
nand->ids[2] = third_id_byte;
|
|
nand->ids[3] = fourth_id_byte;
|
|
if (bus_width == 16) {
|
|
nand->busw = 16;
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
}
|
|
|
|
nsmtd->owner = THIS_MODULE;
|
|
|
|
if ((retval = parse_weakblocks()) != 0)
|
|
goto error;
|
|
|
|
if ((retval = parse_weakpages()) != 0)
|
|
goto error;
|
|
|
|
if ((retval = parse_gravepages()) != 0)
|
|
goto error;
|
|
|
|
if ((retval = nand_scan(nsmtd, 1)) != 0) {
|
|
NS_ERR("can't register NAND Simulator\n");
|
|
if (retval > 0)
|
|
retval = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
if (overridesize) {
|
|
uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
|
|
if (new_size >> overridesize != nsmtd->erasesize) {
|
|
NS_ERR("overridesize is too big\n");
|
|
goto err_exit;
|
|
}
|
|
/* N.B. This relies on nand_scan not doing anything with the size before we change it */
|
|
nsmtd->size = new_size;
|
|
chip->chipsize = new_size;
|
|
chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
|
|
chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
|
|
}
|
|
|
|
if ((retval = setup_wear_reporting(nsmtd)) != 0)
|
|
goto err_exit;
|
|
|
|
if ((retval = init_nandsim(nsmtd)) != 0)
|
|
goto err_exit;
|
|
|
|
if ((retval = parse_badblocks(nand, nsmtd)) != 0)
|
|
goto err_exit;
|
|
|
|
if ((retval = nand_default_bbt(nsmtd)) != 0)
|
|
goto err_exit;
|
|
|
|
/* Register NAND partitions */
|
|
if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
|
|
goto err_exit;
|
|
|
|
return 0;
|
|
|
|
err_exit:
|
|
free_nandsim(nand);
|
|
nand_release(nsmtd);
|
|
for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
|
|
kfree(nand->partitions[i].name);
|
|
error:
|
|
kfree(nsmtd);
|
|
free_lists();
|
|
|
|
return retval;
|
|
}
|
|
|
|
module_init(ns_init_module);
|
|
|
|
/*
|
|
* Module clean-up function
|
|
*/
|
|
static void __exit ns_cleanup_module(void)
|
|
{
|
|
struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
|
|
int i;
|
|
|
|
free_nandsim(ns); /* Free nandsim private resources */
|
|
nand_release(nsmtd); /* Unregister driver */
|
|
for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
|
|
kfree(ns->partitions[i].name);
|
|
kfree(nsmtd); /* Free other structures */
|
|
free_lists();
|
|
}
|
|
|
|
module_exit(ns_cleanup_module);
|
|
|
|
MODULE_LICENSE ("GPL");
|
|
MODULE_AUTHOR ("Artem B. Bityuckiy");
|
|
MODULE_DESCRIPTION ("The NAND flash simulator");
|