OpenCloudOS-Kernel/drivers/mtd/nand/nand_bcm_umi.h

359 lines
9.6 KiB
C

/*****************************************************************************
* Copyright 2003 - 2009 Broadcom Corporation. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
#ifndef NAND_BCM_UMI_H
#define NAND_BCM_UMI_H
/* ---- Include Files ---------------------------------------------------- */
#include <mach/reg_umi.h>
#include <mach/reg_nand.h>
#include <cfg_global.h>
/* ---- Constants and Types ---------------------------------------------- */
#if (CFG_GLOBAL_CHIP_FAMILY == CFG_GLOBAL_CHIP_FAMILY_BCMRING)
#define NAND_ECC_BCH (CFG_GLOBAL_CHIP_REV > 0xA0)
#else
#define NAND_ECC_BCH 0
#endif
#define CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES 13
#if NAND_ECC_BCH
#ifdef BOOT0_BUILD
#define NAND_ECC_NUM_BYTES 13
#else
#define NAND_ECC_NUM_BYTES CFG_GLOBAL_NAND_ECC_BCH_NUM_BYTES
#endif
#else
#define NAND_ECC_NUM_BYTES 3
#endif
#define NAND_DATA_ACCESS_SIZE 512
/* ---- Variable Externs ------------------------------------------ */
/* ---- Function Prototypes --------------------------------------- */
int nand_bcm_umi_bch_correct_page(uint8_t *datap, uint8_t *readEccData,
int numEccBytes);
/* Check in device is ready */
static inline int nand_bcm_umi_dev_ready(void)
{
return REG_UMI_NAND_RCSR & REG_UMI_NAND_RCSR_RDY;
}
/* Wait until device is ready */
static inline void nand_bcm_umi_wait_till_ready(void)
{
while (nand_bcm_umi_dev_ready() == 0)
;
}
/* Enable Hamming ECC */
static inline void nand_bcm_umi_hamming_enable_hwecc(void)
{
/* disable and reset ECC, 512 byte page */
REG_UMI_NAND_ECC_CSR &= ~(REG_UMI_NAND_ECC_CSR_ECC_ENABLE |
REG_UMI_NAND_ECC_CSR_256BYTE);
/* enable ECC */
REG_UMI_NAND_ECC_CSR |= REG_UMI_NAND_ECC_CSR_ECC_ENABLE;
}
#if NAND_ECC_BCH
/* BCH ECC specifics */
#define ECC_BITS_PER_CORRECTABLE_BIT 13
/* Enable BCH Read ECC */
static inline void nand_bcm_umi_bch_enable_read_hwecc(void)
{
/* disable and reset ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
/* Turn on ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
}
/* Enable BCH Write ECC */
static inline void nand_bcm_umi_bch_enable_write_hwecc(void)
{
/* disable and reset ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID;
/* Turn on ECC */
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_WR_EN;
}
/* Config number of BCH ECC bytes */
static inline void nand_bcm_umi_bch_config_ecc(uint8_t numEccBytes)
{
uint32_t nValue;
uint32_t tValue;
uint32_t kValue;
uint32_t numBits = numEccBytes * 8;
/* disable and reset ECC */
REG_UMI_BCH_CTRL_STATUS =
REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID |
REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID;
/* Every correctible bit requires 13 ECC bits */
tValue = (uint32_t) (numBits / ECC_BITS_PER_CORRECTABLE_BIT);
/* Total data in number of bits for generating and computing BCH ECC */
nValue = (NAND_DATA_ACCESS_SIZE + numEccBytes) * 8;
/* K parameter is used internally. K = N - (T * 13) */
kValue = nValue - (tValue * ECC_BITS_PER_CORRECTABLE_BIT);
/* Write the settings */
REG_UMI_BCH_N = nValue;
REG_UMI_BCH_T = tValue;
REG_UMI_BCH_K = kValue;
}
/* Pause during ECC read calculation to skip bytes in OOB */
static inline void nand_bcm_umi_bch_pause_read_ecc_calc(void)
{
REG_UMI_BCH_CTRL_STATUS =
REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN |
REG_UMI_BCH_CTRL_STATUS_PAUSE_ECC_DEC;
}
/* Resume during ECC read calculation after skipping bytes in OOB */
static inline void nand_bcm_umi_bch_resume_read_ecc_calc(void)
{
REG_UMI_BCH_CTRL_STATUS = REG_UMI_BCH_CTRL_STATUS_ECC_RD_EN;
}
/* Poll read ECC calc to check when hardware completes */
static inline uint32_t nand_bcm_umi_bch_poll_read_ecc_calc(void)
{
uint32_t regVal;
do {
/* wait for ECC to be valid */
regVal = REG_UMI_BCH_CTRL_STATUS;
} while ((regVal & REG_UMI_BCH_CTRL_STATUS_RD_ECC_VALID) == 0);
return regVal;
}
/* Poll write ECC calc to check when hardware completes */
static inline void nand_bcm_umi_bch_poll_write_ecc_calc(void)
{
/* wait for ECC to be valid */
while ((REG_UMI_BCH_CTRL_STATUS & REG_UMI_BCH_CTRL_STATUS_WR_ECC_VALID)
== 0)
;
}
/* Read the OOB and ECC, for kernel write OOB to a buffer */
#if defined(__KERNEL__) && !defined(STANDALONE)
static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
uint8_t *eccCalc, int numEccBytes, uint8_t *oobp)
#else
static inline void nand_bcm_umi_bch_read_oobEcc(uint32_t pageSize,
uint8_t *eccCalc, int numEccBytes)
#endif
{
int eccPos = 0;
int numToRead = 16; /* There are 16 bytes per sector in the OOB */
/* ECC is already paused when this function is called */
if (pageSize == NAND_DATA_ACCESS_SIZE) {
while (numToRead > numEccBytes) {
/* skip free oob region */
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8;
#else
REG_NAND_DATA8;
#endif
numToRead--;
}
/* read ECC bytes before BI */
nand_bcm_umi_bch_resume_read_ecc_calc();
while (numToRead > 11) {
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp = REG_NAND_DATA8;
eccCalc[eccPos++] = *oobp;
oobp++;
#else
eccCalc[eccPos++] = REG_NAND_DATA8;
#endif
}
nand_bcm_umi_bch_pause_read_ecc_calc();
if (numToRead == 11) {
/* read BI */
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8;
#else
REG_NAND_DATA8;
#endif
numToRead--;
}
/* read ECC bytes */
nand_bcm_umi_bch_resume_read_ecc_calc();
while (numToRead) {
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp = REG_NAND_DATA8;
eccCalc[eccPos++] = *oobp;
oobp++;
#else
eccCalc[eccPos++] = REG_NAND_DATA8;
#endif
numToRead--;
}
} else {
/* skip BI */
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8;
#else
REG_NAND_DATA8;
#endif
numToRead--;
while (numToRead > numEccBytes) {
/* skip free oob region */
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp++ = REG_NAND_DATA8;
#else
REG_NAND_DATA8;
#endif
numToRead--;
}
/* read ECC bytes */
nand_bcm_umi_bch_resume_read_ecc_calc();
while (numToRead) {
#if defined(__KERNEL__) && !defined(STANDALONE)
*oobp = REG_NAND_DATA8;
eccCalc[eccPos++] = *oobp;
oobp++;
#else
eccCalc[eccPos++] = REG_NAND_DATA8;
#endif
numToRead--;
}
}
}
/* Helper function to write ECC */
static inline void NAND_BCM_UMI_ECC_WRITE(int numEccBytes, int eccBytePos,
uint8_t *oobp, uint8_t eccVal)
{
if (eccBytePos <= numEccBytes)
*oobp = eccVal;
}
/* Write OOB with ECC */
static inline void nand_bcm_umi_bch_write_oobEcc(uint32_t pageSize,
uint8_t *oobp, int numEccBytes)
{
uint32_t eccVal = 0xffffffff;
/* wait for write ECC to be valid */
nand_bcm_umi_bch_poll_write_ecc_calc();
/*
** Get the hardware ecc from the 32-bit result registers.
** Read after 512 byte accesses. Format B3B2B1B0
** where B3 = ecc3, etc.
*/
if (pageSize == NAND_DATA_ACCESS_SIZE) {
/* Now fill in the ECC bytes */
if (numEccBytes >= 13)
eccVal = REG_UMI_BCH_WR_ECC_3;
/* Usually we skip CM in oob[0,1] */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[0],
(eccVal >> 16) & 0xff);
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[1],
(eccVal >> 8) & 0xff);
/* Write ECC in oob[2,3,4] */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[2],
eccVal & 0xff); /* ECC 12 */
if (numEccBytes >= 9)
eccVal = REG_UMI_BCH_WR_ECC_2;
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[3],
(eccVal >> 24) & 0xff); /* ECC11 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[4],
(eccVal >> 16) & 0xff); /* ECC10 */
/* Always Skip BI in oob[5] */
} else {
/* Always Skip BI in oob[0] */
/* Now fill in the ECC bytes */
if (numEccBytes >= 13)
eccVal = REG_UMI_BCH_WR_ECC_3;
/* Usually skip CM in oob[1,2] */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 15, &oobp[1],
(eccVal >> 16) & 0xff);
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 14, &oobp[2],
(eccVal >> 8) & 0xff);
/* Write ECC in oob[3-15] */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 13, &oobp[3],
eccVal & 0xff); /* ECC12 */
if (numEccBytes >= 9)
eccVal = REG_UMI_BCH_WR_ECC_2;
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 12, &oobp[4],
(eccVal >> 24) & 0xff); /* ECC11 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 11, &oobp[5],
(eccVal >> 16) & 0xff); /* ECC10 */
}
/* Fill in the remainder of ECC locations */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 10, &oobp[6],
(eccVal >> 8) & 0xff); /* ECC9 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 9, &oobp[7],
eccVal & 0xff); /* ECC8 */
if (numEccBytes >= 5)
eccVal = REG_UMI_BCH_WR_ECC_1;
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 8, &oobp[8],
(eccVal >> 24) & 0xff); /* ECC7 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 7, &oobp[9],
(eccVal >> 16) & 0xff); /* ECC6 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 6, &oobp[10],
(eccVal >> 8) & 0xff); /* ECC5 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 5, &oobp[11],
eccVal & 0xff); /* ECC4 */
if (numEccBytes >= 1)
eccVal = REG_UMI_BCH_WR_ECC_0;
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 4, &oobp[12],
(eccVal >> 24) & 0xff); /* ECC3 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 3, &oobp[13],
(eccVal >> 16) & 0xff); /* ECC2 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 2, &oobp[14],
(eccVal >> 8) & 0xff); /* ECC1 */
NAND_BCM_UMI_ECC_WRITE(numEccBytes, 1, &oobp[15],
eccVal & 0xff); /* ECC0 */
}
#endif
#endif /* NAND_BCM_UMI_H */