OpenCloudOS-Kernel/arch/x86/kernel/cpu/microcode/amd.c

967 lines
21 KiB
C

/*
* AMD CPU Microcode Update Driver for Linux
*
* This driver allows to upgrade microcode on F10h AMD
* CPUs and later.
*
* Copyright (C) 2008-2011 Advanced Micro Devices Inc.
*
* Author: Peter Oruba <peter.oruba@amd.com>
*
* Based on work by:
* Tigran Aivazian <tigran@aivazian.fsnet.co.uk>
*
* early loader:
* Copyright (C) 2013 Advanced Micro Devices, Inc.
*
* Author: Jacob Shin <jacob.shin@amd.com>
* Fixes: Borislav Petkov <bp@suse.de>
*
* Licensed under the terms of the GNU General Public
* License version 2. See file COPYING for details.
*/
#define pr_fmt(fmt) "microcode: " fmt
#include <linux/earlycpio.h>
#include <linux/firmware.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/initrd.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <asm/microcode_amd.h>
#include <asm/microcode.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/cpu.h>
#include <asm/msr.h>
static struct equiv_cpu_entry *equiv_cpu_table;
struct ucode_patch {
struct list_head plist;
void *data;
u32 patch_id;
u16 equiv_cpu;
};
static LIST_HEAD(pcache);
/*
* This points to the current valid container of microcode patches which we will
* save from the initrd before jettisoning its contents.
*/
static u8 *container;
static size_t container_size;
static u32 ucode_new_rev;
static u8 amd_ucode_patch[PATCH_MAX_SIZE];
static u16 this_equiv_id;
static struct cpio_data ucode_cpio;
static struct cpio_data __init find_ucode_in_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
char *path;
void *start;
size_t size;
/*
* Microcode patch container file is prepended to the initrd in cpio
* format. See Documentation/x86/early-microcode.txt
*/
static __initdata char ucode_path[] = "kernel/x86/microcode/AuthenticAMD.bin";
#ifdef CONFIG_X86_32
struct boot_params *p;
/*
* On 32-bit, early load occurs before paging is turned on so we need
* to use physical addresses.
*/
p = (struct boot_params *)__pa_nodebug(&boot_params);
path = (char *)__pa_nodebug(ucode_path);
start = (void *)p->hdr.ramdisk_image;
size = p->hdr.ramdisk_size;
#else
path = ucode_path;
start = (void *)(boot_params.hdr.ramdisk_image + PAGE_OFFSET);
size = boot_params.hdr.ramdisk_size;
#endif /* !CONFIG_X86_32 */
return find_cpio_data(path, start, size, NULL);
#else
return (struct cpio_data){ NULL, 0, "" };
#endif
}
static size_t compute_container_size(u8 *data, u32 total_size)
{
size_t size = 0;
u32 *header = (u32 *)data;
if (header[0] != UCODE_MAGIC ||
header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
header[2] == 0) /* size */
return size;
size = header[2] + CONTAINER_HDR_SZ;
total_size -= size;
data += size;
while (total_size) {
u16 patch_size;
header = (u32 *)data;
if (header[0] != UCODE_UCODE_TYPE)
break;
/*
* Sanity-check patch size.
*/
patch_size = header[1];
if (patch_size > PATCH_MAX_SIZE)
break;
size += patch_size + SECTION_HDR_SIZE;
data += patch_size + SECTION_HDR_SIZE;
total_size -= patch_size + SECTION_HDR_SIZE;
}
return size;
}
/*
* Early load occurs before we can vmalloc(). So we look for the microcode
* patch container file in initrd, traverse equivalent cpu table, look for a
* matching microcode patch, and update, all in initrd memory in place.
* When vmalloc() is available for use later -- on 64-bit during first AP load,
* and on 32-bit during save_microcode_in_initrd_amd() -- we can call
* load_microcode_amd() to save equivalent cpu table and microcode patches in
* kernel heap memory.
*/
static void apply_ucode_in_initrd(void *ucode, size_t size, bool save_patch)
{
struct equiv_cpu_entry *eq;
size_t *cont_sz;
u32 *header;
u8 *data, **cont;
u8 (*patch)[PATCH_MAX_SIZE];
u16 eq_id = 0;
int offset, left;
u32 rev, eax, ebx, ecx, edx;
u32 *new_rev;
#ifdef CONFIG_X86_32
new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
cont_sz = (size_t *)__pa_nodebug(&container_size);
cont = (u8 **)__pa_nodebug(&container);
patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
#else
new_rev = &ucode_new_rev;
cont_sz = &container_size;
cont = &container;
patch = &amd_ucode_patch;
#endif
data = ucode;
left = size;
header = (u32 *)data;
/* find equiv cpu table */
if (header[0] != UCODE_MAGIC ||
header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */
header[2] == 0) /* size */
return;
eax = 0x00000001;
ecx = 0;
native_cpuid(&eax, &ebx, &ecx, &edx);
while (left > 0) {
eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ);
*cont = data;
/* Advance past the container header */
offset = header[2] + CONTAINER_HDR_SZ;
data += offset;
left -= offset;
eq_id = find_equiv_id(eq, eax);
if (eq_id) {
this_equiv_id = eq_id;
*cont_sz = compute_container_size(*cont, left + offset);
/*
* truncate how much we need to iterate over in the
* ucode update loop below
*/
left = *cont_sz - offset;
break;
}
/*
* support multiple container files appended together. if this
* one does not have a matching equivalent cpu entry, we fast
* forward to the next container file.
*/
while (left > 0) {
header = (u32 *)data;
if (header[0] == UCODE_MAGIC &&
header[1] == UCODE_EQUIV_CPU_TABLE_TYPE)
break;
offset = header[1] + SECTION_HDR_SIZE;
data += offset;
left -= offset;
}
/* mark where the next microcode container file starts */
offset = data - (u8 *)ucode;
ucode = data;
}
if (!eq_id) {
*cont = NULL;
*cont_sz = 0;
return;
}
if (check_current_patch_level(&rev, true))
return;
while (left > 0) {
struct microcode_amd *mc;
header = (u32 *)data;
if (header[0] != UCODE_UCODE_TYPE || /* type */
header[1] == 0) /* size */
break;
mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE);
if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) {
if (!__apply_microcode_amd(mc)) {
rev = mc->hdr.patch_id;
*new_rev = rev;
if (save_patch)
memcpy(patch, mc,
min_t(u32, header[1], PATCH_MAX_SIZE));
}
}
offset = header[1] + SECTION_HDR_SIZE;
data += offset;
left -= offset;
}
}
static bool __init load_builtin_amd_microcode(struct cpio_data *cp,
unsigned int family)
{
#ifdef CONFIG_X86_64
char fw_name[36] = "amd-ucode/microcode_amd.bin";
if (family >= 0x15)
snprintf(fw_name, sizeof(fw_name),
"amd-ucode/microcode_amd_fam%.2xh.bin", family);
return get_builtin_firmware(cp, fw_name);
#else
return false;
#endif
}
void __init load_ucode_amd_bsp(unsigned int family)
{
struct cpio_data cp;
void **data;
size_t *size;
#ifdef CONFIG_X86_32
data = (void **)__pa_nodebug(&ucode_cpio.data);
size = (size_t *)__pa_nodebug(&ucode_cpio.size);
#else
data = &ucode_cpio.data;
size = &ucode_cpio.size;
#endif
if (!load_builtin_amd_microcode(&cp, family))
cp = find_ucode_in_initrd();
if (!(cp.data && cp.size))
return;
*data = cp.data;
*size = cp.size;
apply_ucode_in_initrd(cp.data, cp.size, true);
}
#ifdef CONFIG_X86_32
/*
* On 32-bit, since AP's early load occurs before paging is turned on, we
* cannot traverse cpu_equiv_table and pcache in kernel heap memory. So during
* cold boot, AP will apply_ucode_in_initrd() just like the BSP. During
* save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch,
* which is used upon resume from suspend.
*/
void load_ucode_amd_ap(void)
{
struct microcode_amd *mc;
size_t *usize;
void **ucode;
mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
if (mc->hdr.patch_id && mc->hdr.processor_rev_id) {
__apply_microcode_amd(mc);
return;
}
ucode = (void *)__pa_nodebug(&container);
usize = (size_t *)__pa_nodebug(&container_size);
if (!*ucode || !*usize)
return;
apply_ucode_in_initrd(*ucode, *usize, false);
}
static void __init collect_cpu_sig_on_bsp(void *arg)
{
unsigned int cpu = smp_processor_id();
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
uci->cpu_sig.sig = cpuid_eax(0x00000001);
}
static void __init get_bsp_sig(void)
{
unsigned int bsp = boot_cpu_data.cpu_index;
struct ucode_cpu_info *uci = ucode_cpu_info + bsp;
if (!uci->cpu_sig.sig)
smp_call_function_single(bsp, collect_cpu_sig_on_bsp, NULL, 1);
}
#else
void load_ucode_amd_ap(void)
{
unsigned int cpu = smp_processor_id();
struct equiv_cpu_entry *eq;
struct microcode_amd *mc;
u32 rev, eax;
u16 eq_id;
/* Exit if called on the BSP. */
if (!cpu)
return;
if (!container)
return;
/*
* 64-bit runs with paging enabled, thus early==false.
*/
if (check_current_patch_level(&rev, false))
return;
eax = cpuid_eax(0x00000001);
eq = (struct equiv_cpu_entry *)(container + CONTAINER_HDR_SZ);
eq_id = find_equiv_id(eq, eax);
if (!eq_id)
return;
if (eq_id == this_equiv_id) {
mc = (struct microcode_amd *)amd_ucode_patch;
if (mc && rev < mc->hdr.patch_id) {
if (!__apply_microcode_amd(mc))
ucode_new_rev = mc->hdr.patch_id;
}
} else {
if (!ucode_cpio.data)
return;
/*
* AP has a different equivalence ID than BSP, looks like
* mixed-steppings silicon so go through the ucode blob anew.
*/
apply_ucode_in_initrd(ucode_cpio.data, ucode_cpio.size, false);
}
}
#endif
int __init save_microcode_in_initrd_amd(void)
{
unsigned long cont;
int retval = 0;
enum ucode_state ret;
u8 *cont_va;
u32 eax;
if (!container)
return -EINVAL;
#ifdef CONFIG_X86_32
get_bsp_sig();
cont = (unsigned long)container;
cont_va = __va(container);
#else
/*
* We need the physical address of the container for both bitness since
* boot_params.hdr.ramdisk_image is a physical address.
*/
cont = __pa(container);
cont_va = container;
#endif
/*
* Take into account the fact that the ramdisk might get relocated and
* therefore we need to recompute the container's position in virtual
* memory space.
*/
if (relocated_ramdisk)
container = (u8 *)(__va(relocated_ramdisk) +
(cont - boot_params.hdr.ramdisk_image));
else
container = cont_va;
eax = cpuid_eax(0x00000001);
eax = ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff);
ret = load_microcode_amd(smp_processor_id(), eax, container, container_size);
if (ret != UCODE_OK)
retval = -EINVAL;
/*
* This will be freed any msec now, stash patches for the current
* family and switch to patch cache for cpu hotplug, etc later.
*/
container = NULL;
container_size = 0;
return retval;
}
void reload_ucode_amd(void)
{
struct microcode_amd *mc;
u32 rev;
/*
* early==false because this is a syscore ->resume path and by
* that time paging is long enabled.
*/
if (check_current_patch_level(&rev, false))
return;
mc = (struct microcode_amd *)amd_ucode_patch;
if (mc && rev < mc->hdr.patch_id) {
if (!__apply_microcode_amd(mc)) {
ucode_new_rev = mc->hdr.patch_id;
pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
}
}
}
static u16 __find_equiv_id(unsigned int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig);
}
static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu)
{
int i = 0;
BUG_ON(!equiv_cpu_table);
while (equiv_cpu_table[i].equiv_cpu != 0) {
if (equiv_cpu == equiv_cpu_table[i].equiv_cpu)
return equiv_cpu_table[i].installed_cpu;
i++;
}
return 0;
}
/*
* a small, trivial cache of per-family ucode patches
*/
static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
{
struct ucode_patch *p;
list_for_each_entry(p, &pcache, plist)
if (p->equiv_cpu == equiv_cpu)
return p;
return NULL;
}
static void update_cache(struct ucode_patch *new_patch)
{
struct ucode_patch *p;
list_for_each_entry(p, &pcache, plist) {
if (p->equiv_cpu == new_patch->equiv_cpu) {
if (p->patch_id >= new_patch->patch_id)
/* we already have the latest patch */
return;
list_replace(&p->plist, &new_patch->plist);
kfree(p->data);
kfree(p);
return;
}
}
/* no patch found, add it */
list_add_tail(&new_patch->plist, &pcache);
}
static void free_cache(void)
{
struct ucode_patch *p, *tmp;
list_for_each_entry_safe(p, tmp, &pcache, plist) {
__list_del(p->plist.prev, p->plist.next);
kfree(p->data);
kfree(p);
}
}
static struct ucode_patch *find_patch(unsigned int cpu)
{
u16 equiv_id;
equiv_id = __find_equiv_id(cpu);
if (!equiv_id)
return NULL;
return cache_find_patch(equiv_id);
}
static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
struct ucode_patch *p;
csig->sig = cpuid_eax(0x00000001);
csig->rev = c->microcode;
/*
* a patch could have been loaded early, set uci->mc so that
* mc_bp_resume() can call apply_microcode()
*/
p = find_patch(cpu);
if (p && (p->patch_id == csig->rev))
uci->mc = p->data;
pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
return 0;
}
static unsigned int verify_patch_size(u8 family, u32 patch_size,
unsigned int size)
{
u32 max_size;
#define F1XH_MPB_MAX_SIZE 2048
#define F14H_MPB_MAX_SIZE 1824
#define F15H_MPB_MAX_SIZE 4096
#define F16H_MPB_MAX_SIZE 3458
switch (family) {
case 0x14:
max_size = F14H_MPB_MAX_SIZE;
break;
case 0x15:
max_size = F15H_MPB_MAX_SIZE;
break;
case 0x16:
max_size = F16H_MPB_MAX_SIZE;
break;
default:
max_size = F1XH_MPB_MAX_SIZE;
break;
}
if (patch_size > min_t(u32, size, max_size)) {
pr_err("patch size mismatch\n");
return 0;
}
return patch_size;
}
/*
* Those patch levels cannot be updated to newer ones and thus should be final.
*/
static u32 final_levels[] = {
0x01000098,
0x0100009f,
0x010000af,
0, /* T-101 terminator */
};
/*
* Check the current patch level on this CPU.
*
* @rev: Use it to return the patch level. It is set to 0 in the case of
* error.
*
* Returns:
* - true: if update should stop
* - false: otherwise
*/
bool check_current_patch_level(u32 *rev, bool early)
{
u32 lvl, dummy, i;
bool ret = false;
u32 *levels;
native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy);
if (IS_ENABLED(CONFIG_X86_32) && early)
levels = (u32 *)__pa_nodebug(&final_levels);
else
levels = final_levels;
for (i = 0; levels[i]; i++) {
if (lvl == levels[i]) {
lvl = 0;
ret = true;
break;
}
}
if (rev)
*rev = lvl;
return ret;
}
int __apply_microcode_amd(struct microcode_amd *mc_amd)
{
u32 rev, dummy;
native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code);
/* verify patch application was successful */
native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
if (rev != mc_amd->hdr.patch_id)
return -1;
return 0;
}
int apply_microcode_amd(int cpu)
{
struct cpuinfo_x86 *c = &cpu_data(cpu);
struct microcode_amd *mc_amd;
struct ucode_cpu_info *uci;
struct ucode_patch *p;
u32 rev;
BUG_ON(raw_smp_processor_id() != cpu);
uci = ucode_cpu_info + cpu;
p = find_patch(cpu);
if (!p)
return 0;
mc_amd = p->data;
uci->mc = p->data;
if (check_current_patch_level(&rev, false))
return -1;
/* need to apply patch? */
if (rev >= mc_amd->hdr.patch_id) {
c->microcode = rev;
uci->cpu_sig.rev = rev;
return 0;
}
if (__apply_microcode_amd(mc_amd)) {
pr_err("CPU%d: update failed for patch_level=0x%08x\n",
cpu, mc_amd->hdr.patch_id);
return -1;
}
pr_info("CPU%d: new patch_level=0x%08x\n", cpu,
mc_amd->hdr.patch_id);
uci->cpu_sig.rev = mc_amd->hdr.patch_id;
c->microcode = mc_amd->hdr.patch_id;
return 0;
}
static int install_equiv_cpu_table(const u8 *buf)
{
unsigned int *ibuf = (unsigned int *)buf;
unsigned int type = ibuf[1];
unsigned int size = ibuf[2];
if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) {
pr_err("empty section/"
"invalid type field in container file section header\n");
return -EINVAL;
}
equiv_cpu_table = vmalloc(size);
if (!equiv_cpu_table) {
pr_err("failed to allocate equivalent CPU table\n");
return -ENOMEM;
}
memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size);
/* add header length */
return size + CONTAINER_HDR_SZ;
}
static void free_equiv_cpu_table(void)
{
vfree(equiv_cpu_table);
equiv_cpu_table = NULL;
}
static void cleanup(void)
{
free_equiv_cpu_table();
free_cache();
}
/*
* We return the current size even if some of the checks failed so that
* we can skip over the next patch. If we return a negative value, we
* signal a grave error like a memory allocation has failed and the
* driver cannot continue functioning normally. In such cases, we tear
* down everything we've used up so far and exit.
*/
static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover)
{
struct microcode_header_amd *mc_hdr;
struct ucode_patch *patch;
unsigned int patch_size, crnt_size, ret;
u32 proc_fam;
u16 proc_id;
patch_size = *(u32 *)(fw + 4);
crnt_size = patch_size + SECTION_HDR_SIZE;
mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
proc_id = mc_hdr->processor_rev_id;
proc_fam = find_cpu_family_by_equiv_cpu(proc_id);
if (!proc_fam) {
pr_err("No patch family for equiv ID: 0x%04x\n", proc_id);
return crnt_size;
}
/* check if patch is for the current family */
proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff);
if (proc_fam != family)
return crnt_size;
if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n",
mc_hdr->patch_id);
return crnt_size;
}
ret = verify_patch_size(family, patch_size, leftover);
if (!ret) {
pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id);
return crnt_size;
}
patch = kzalloc(sizeof(*patch), GFP_KERNEL);
if (!patch) {
pr_err("Patch allocation failure.\n");
return -EINVAL;
}
patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL);
if (!patch->data) {
pr_err("Patch data allocation failure.\n");
kfree(patch);
return -EINVAL;
}
INIT_LIST_HEAD(&patch->plist);
patch->patch_id = mc_hdr->patch_id;
patch->equiv_cpu = proc_id;
pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
__func__, patch->patch_id, proc_id);
/* ... and add to cache. */
update_cache(patch);
return crnt_size;
}
static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
size_t size)
{
enum ucode_state ret = UCODE_ERROR;
unsigned int leftover;
u8 *fw = (u8 *)data;
int crnt_size = 0;
int offset;
offset = install_equiv_cpu_table(data);
if (offset < 0) {
pr_err("failed to create equivalent cpu table\n");
return ret;
}
fw += offset;
leftover = size - offset;
if (*(u32 *)fw != UCODE_UCODE_TYPE) {
pr_err("invalid type field in container file section header\n");
free_equiv_cpu_table();
return ret;
}
while (leftover) {
crnt_size = verify_and_add_patch(family, fw, leftover);
if (crnt_size < 0)
return ret;
fw += crnt_size;
leftover -= crnt_size;
}
return UCODE_OK;
}
enum ucode_state load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size)
{
enum ucode_state ret;
/* free old equiv table */
free_equiv_cpu_table();
ret = __load_microcode_amd(family, data, size);
if (ret != UCODE_OK)
cleanup();
#ifdef CONFIG_X86_32
/* save BSP's matching patch for early load */
if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) {
struct ucode_patch *p = find_patch(cpu);
if (p) {
memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data),
PATCH_MAX_SIZE));
}
}
#endif
return ret;
}
/*
* AMD microcode firmware naming convention, up to family 15h they are in
* the legacy file:
*
* amd-ucode/microcode_amd.bin
*
* This legacy file is always smaller than 2K in size.
*
* Beginning with family 15h, they are in family-specific firmware files:
*
* amd-ucode/microcode_amd_fam15h.bin
* amd-ucode/microcode_amd_fam16h.bin
* ...
*
* These might be larger than 2K.
*/
static enum ucode_state request_microcode_amd(int cpu, struct device *device,
bool refresh_fw)
{
char fw_name[36] = "amd-ucode/microcode_amd.bin";
struct cpuinfo_x86 *c = &cpu_data(cpu);
enum ucode_state ret = UCODE_NFOUND;
const struct firmware *fw;
/* reload ucode container only on the boot cpu */
if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index)
return UCODE_OK;
if (c->x86 >= 0x15)
snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
pr_debug("failed to load file %s\n", fw_name);
goto out;
}
ret = UCODE_ERROR;
if (*(u32 *)fw->data != UCODE_MAGIC) {
pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data);
goto fw_release;
}
ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size);
fw_release:
release_firmware(fw);
out:
return ret;
}
static enum ucode_state
request_microcode_user(int cpu, const void __user *buf, size_t size)
{
return UCODE_ERROR;
}
static void microcode_fini_cpu_amd(int cpu)
{
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
uci->mc = NULL;
}
static struct microcode_ops microcode_amd_ops = {
.request_microcode_user = request_microcode_user,
.request_microcode_fw = request_microcode_amd,
.collect_cpu_info = collect_cpu_info_amd,
.apply_microcode = apply_microcode_amd,
.microcode_fini_cpu = microcode_fini_cpu_amd,
};
struct microcode_ops * __init init_amd_microcode(void)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
return NULL;
}
if (ucode_new_rev)
pr_info_once("microcode updated early to new patch_level=0x%08x\n",
ucode_new_rev);
return &microcode_amd_ops;
}
void __exit exit_amd_microcode(void)
{
cleanup();
}