OpenCloudOS-Kernel/drivers/crypto/ccree/cc_ivgen.c

280 lines
8.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
#include <crypto/ctr.h>
#include "cc_driver.h"
#include "cc_ivgen.h"
#include "cc_request_mgr.h"
#include "cc_sram_mgr.h"
#include "cc_buffer_mgr.h"
/* The max. size of pool *MUST* be <= SRAM total size */
#define CC_IVPOOL_SIZE 1024
/* The first 32B fraction of pool are dedicated to the
* next encryption "key" & "IV" for pool regeneration
*/
#define CC_IVPOOL_META_SIZE (CC_AES_IV_SIZE + AES_KEYSIZE_128)
#define CC_IVPOOL_GEN_SEQ_LEN 4
/**
* struct cc_ivgen_ctx -IV pool generation context
* @pool: the start address of the iv-pool resides in internal RAM
* @ctr_key_dma: address of pool's encryption key material in internal RAM
* @ctr_iv_dma: address of pool's counter iv in internal RAM
* @next_iv_ofs: the offset to the next available IV in pool
* @pool_meta: virt. address of the initial enc. key/IV
* @pool_meta_dma: phys. address of the initial enc. key/IV
*/
struct cc_ivgen_ctx {
cc_sram_addr_t pool;
cc_sram_addr_t ctr_key;
cc_sram_addr_t ctr_iv;
u32 next_iv_ofs;
u8 *pool_meta;
dma_addr_t pool_meta_dma;
};
/*!
* Generates CC_IVPOOL_SIZE of random bytes by
* encrypting 0's using AES128-CTR.
*
* \param ivgen iv-pool context
* \param iv_seq IN/OUT array to the descriptors sequence
* \param iv_seq_len IN/OUT pointer to the sequence length
*/
static int cc_gen_iv_pool(struct cc_ivgen_ctx *ivgen_ctx,
struct cc_hw_desc iv_seq[], unsigned int *iv_seq_len)
{
unsigned int idx = *iv_seq_len;
if ((*iv_seq_len + CC_IVPOOL_GEN_SEQ_LEN) > CC_IVPOOL_SEQ_LEN) {
/* The sequence will be longer than allowed */
return -EINVAL;
}
/* Setup key */
hw_desc_init(&iv_seq[idx]);
set_din_sram(&iv_seq[idx], ivgen_ctx->ctr_key, AES_KEYSIZE_128);
set_setup_mode(&iv_seq[idx], SETUP_LOAD_KEY0);
set_cipher_config0(&iv_seq[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_flow_mode(&iv_seq[idx], S_DIN_to_AES);
set_key_size_aes(&iv_seq[idx], CC_AES_128_BIT_KEY_SIZE);
set_cipher_mode(&iv_seq[idx], DRV_CIPHER_CTR);
idx++;
/* Setup cipher state */
hw_desc_init(&iv_seq[idx]);
set_din_sram(&iv_seq[idx], ivgen_ctx->ctr_iv, CC_AES_IV_SIZE);
set_cipher_config0(&iv_seq[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_flow_mode(&iv_seq[idx], S_DIN_to_AES);
set_setup_mode(&iv_seq[idx], SETUP_LOAD_STATE1);
set_key_size_aes(&iv_seq[idx], CC_AES_128_BIT_KEY_SIZE);
set_cipher_mode(&iv_seq[idx], DRV_CIPHER_CTR);
idx++;
/* Perform dummy encrypt to skip first block */
hw_desc_init(&iv_seq[idx]);
set_din_const(&iv_seq[idx], 0, CC_AES_IV_SIZE);
set_dout_sram(&iv_seq[idx], ivgen_ctx->pool, CC_AES_IV_SIZE);
set_flow_mode(&iv_seq[idx], DIN_AES_DOUT);
idx++;
/* Generate IV pool */
hw_desc_init(&iv_seq[idx]);
set_din_const(&iv_seq[idx], 0, CC_IVPOOL_SIZE);
set_dout_sram(&iv_seq[idx], ivgen_ctx->pool, CC_IVPOOL_SIZE);
set_flow_mode(&iv_seq[idx], DIN_AES_DOUT);
idx++;
*iv_seq_len = idx; /* Update sequence length */
/* queue ordering assures pool readiness */
ivgen_ctx->next_iv_ofs = CC_IVPOOL_META_SIZE;
return 0;
}
/*!
* Generates the initial pool in SRAM.
* This function should be invoked when resuming driver.
*
* \param drvdata
*
* \return int Zero for success, negative value otherwise.
*/
int cc_init_iv_sram(struct cc_drvdata *drvdata)
{
struct cc_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle;
struct cc_hw_desc iv_seq[CC_IVPOOL_SEQ_LEN];
unsigned int iv_seq_len = 0;
int rc;
/* Generate initial enc. key/iv */
get_random_bytes(ivgen_ctx->pool_meta, CC_IVPOOL_META_SIZE);
/* The first 32B reserved for the enc. Key/IV */
ivgen_ctx->ctr_key = ivgen_ctx->pool;
ivgen_ctx->ctr_iv = ivgen_ctx->pool + AES_KEYSIZE_128;
/* Copy initial enc. key and IV to SRAM at a single descriptor */
hw_desc_init(&iv_seq[iv_seq_len]);
set_din_type(&iv_seq[iv_seq_len], DMA_DLLI, ivgen_ctx->pool_meta_dma,
CC_IVPOOL_META_SIZE, NS_BIT);
set_dout_sram(&iv_seq[iv_seq_len], ivgen_ctx->pool,
CC_IVPOOL_META_SIZE);
set_flow_mode(&iv_seq[iv_seq_len], BYPASS);
iv_seq_len++;
/* Generate initial pool */
rc = cc_gen_iv_pool(ivgen_ctx, iv_seq, &iv_seq_len);
if (rc)
return rc;
/* Fire-and-forget */
return send_request_init(drvdata, iv_seq, iv_seq_len);
}
/*!
* Free iv-pool and ivgen context.
*
* \param drvdata
*/
void cc_ivgen_fini(struct cc_drvdata *drvdata)
{
struct cc_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle;
struct device *device = &drvdata->plat_dev->dev;
if (!ivgen_ctx)
return;
if (ivgen_ctx->pool_meta) {
memset(ivgen_ctx->pool_meta, 0, CC_IVPOOL_META_SIZE);
dma_free_coherent(device, CC_IVPOOL_META_SIZE,
ivgen_ctx->pool_meta,
ivgen_ctx->pool_meta_dma);
}
ivgen_ctx->pool = NULL_SRAM_ADDR;
/* release "this" context */
kfree(ivgen_ctx);
}
/*!
* Allocates iv-pool and maps resources.
* This function generates the first IV pool.
*
* \param drvdata Driver's private context
*
* \return int Zero for success, negative value otherwise.
*/
int cc_ivgen_init(struct cc_drvdata *drvdata)
{
struct cc_ivgen_ctx *ivgen_ctx;
struct device *device = &drvdata->plat_dev->dev;
int rc;
/* Allocate "this" context */
ivgen_ctx = kzalloc(sizeof(*ivgen_ctx), GFP_KERNEL);
if (!ivgen_ctx)
return -ENOMEM;
/* Allocate pool's header for initial enc. key/IV */
ivgen_ctx->pool_meta = dma_alloc_coherent(device, CC_IVPOOL_META_SIZE,
&ivgen_ctx->pool_meta_dma,
GFP_KERNEL);
if (!ivgen_ctx->pool_meta) {
dev_err(device, "Not enough memory to allocate DMA of pool_meta (%u B)\n",
CC_IVPOOL_META_SIZE);
rc = -ENOMEM;
goto out;
}
/* Allocate IV pool in SRAM */
ivgen_ctx->pool = cc_sram_alloc(drvdata, CC_IVPOOL_SIZE);
if (ivgen_ctx->pool == NULL_SRAM_ADDR) {
dev_err(device, "SRAM pool exhausted\n");
rc = -ENOMEM;
goto out;
}
drvdata->ivgen_handle = ivgen_ctx;
return cc_init_iv_sram(drvdata);
out:
cc_ivgen_fini(drvdata);
return rc;
}
/*!
* Acquires 16 Bytes IV from the iv-pool
*
* \param drvdata Driver private context
* \param iv_out_dma Array of physical IV out addresses
* \param iv_out_dma_len Length of iv_out_dma array (additional elements
* of iv_out_dma array are ignore)
* \param iv_out_size May be 8 or 16 bytes long
* \param iv_seq IN/OUT array to the descriptors sequence
* \param iv_seq_len IN/OUT pointer to the sequence length
*
* \return int Zero for success, negative value otherwise.
*/
int cc_get_iv(struct cc_drvdata *drvdata, dma_addr_t iv_out_dma[],
unsigned int iv_out_dma_len, unsigned int iv_out_size,
struct cc_hw_desc iv_seq[], unsigned int *iv_seq_len)
{
struct cc_ivgen_ctx *ivgen_ctx = drvdata->ivgen_handle;
unsigned int idx = *iv_seq_len;
struct device *dev = drvdata_to_dev(drvdata);
unsigned int t;
if (iv_out_size != CC_AES_IV_SIZE &&
iv_out_size != CTR_RFC3686_IV_SIZE) {
return -EINVAL;
}
if ((iv_out_dma_len + 1) > CC_IVPOOL_SEQ_LEN) {
/* The sequence will be longer than allowed */
return -EINVAL;
}
/* check that number of generated IV is limited to max dma address
* iv buffer size
*/
if (iv_out_dma_len > CC_MAX_IVGEN_DMA_ADDRESSES) {
/* The sequence will be longer than allowed */
return -EINVAL;
}
for (t = 0; t < iv_out_dma_len; t++) {
/* Acquire IV from pool */
hw_desc_init(&iv_seq[idx]);
set_din_sram(&iv_seq[idx], (ivgen_ctx->pool +
ivgen_ctx->next_iv_ofs),
iv_out_size);
set_dout_dlli(&iv_seq[idx], iv_out_dma[t], iv_out_size,
NS_BIT, 0);
set_flow_mode(&iv_seq[idx], BYPASS);
idx++;
}
/* Bypass operation is proceeded by crypto sequence, hence must
* assure bypass-write-transaction by a memory barrier
*/
hw_desc_init(&iv_seq[idx]);
set_din_no_dma(&iv_seq[idx], 0, 0xfffff0);
set_dout_no_dma(&iv_seq[idx], 0, 0, 1);
idx++;
*iv_seq_len = idx; /* update seq length */
/* Update iv index */
ivgen_ctx->next_iv_ofs += iv_out_size;
if ((CC_IVPOOL_SIZE - ivgen_ctx->next_iv_ofs) < CC_AES_IV_SIZE) {
dev_dbg(dev, "Pool exhausted, regenerating iv-pool\n");
/* pool is drained -regenerate it! */
return cc_gen_iv_pool(ivgen_ctx, iv_seq, iv_seq_len);
}
return 0;
}