OpenCloudOS-Kernel/net/bluetooth/l2cap_sock.c

1620 lines
34 KiB
C

/*
BlueZ - Bluetooth protocol stack for Linux
Copyright (C) 2000-2001 Qualcomm Incorporated
Copyright (C) 2009-2010 Gustavo F. Padovan <gustavo@padovan.org>
Copyright (C) 2010 Google Inc.
Copyright (C) 2011 ProFUSION Embedded Systems
Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
SOFTWARE IS DISCLAIMED.
*/
/* Bluetooth L2CAP sockets. */
#include <linux/module.h>
#include <linux/export.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include <net/bluetooth/l2cap.h>
#include "smp.h"
bool enable_lecoc;
static struct bt_sock_list l2cap_sk_list = {
.lock = __RW_LOCK_UNLOCKED(l2cap_sk_list.lock)
};
static const struct proto_ops l2cap_sock_ops;
static void l2cap_sock_init(struct sock *sk, struct sock *parent);
static struct sock *l2cap_sock_alloc(struct net *net, struct socket *sock,
int proto, gfp_t prio);
bool l2cap_is_socket(struct socket *sock)
{
return sock && sock->ops == &l2cap_sock_ops;
}
EXPORT_SYMBOL(l2cap_is_socket);
static int l2cap_validate_bredr_psm(u16 psm)
{
/* PSM must be odd and lsb of upper byte must be 0 */
if ((psm & 0x0101) != 0x0001)
return -EINVAL;
/* Restrict usage of well-known PSMs */
if (psm < 0x1001 && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
return 0;
}
static int l2cap_validate_le_psm(u16 psm)
{
/* Valid LE_PSM ranges are defined only until 0x00ff */
if (psm > 0x00ff)
return -EINVAL;
/* Restrict fixed, SIG assigned PSM values to CAP_NET_BIND_SERVICE */
if (psm <= 0x007f && !capable(CAP_NET_BIND_SERVICE))
return -EACCES;
return 0;
}
static int l2cap_sock_bind(struct socket *sock, struct sockaddr *addr, int alen)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct sockaddr_l2 la;
int len, err = 0;
BT_DBG("sk %p", sk);
if (!addr || addr->sa_family != AF_BLUETOOTH)
return -EINVAL;
memset(&la, 0, sizeof(la));
len = min_t(unsigned int, sizeof(la), alen);
memcpy(&la, addr, len);
if (la.l2_cid && la.l2_psm)
return -EINVAL;
if (!bdaddr_type_is_valid(la.l2_bdaddr_type))
return -EINVAL;
if (bdaddr_type_is_le(la.l2_bdaddr_type)) {
if (!enable_lecoc && la.l2_psm)
return -EINVAL;
/* We only allow ATT user space socket */
if (la.l2_cid &&
la.l2_cid != __constant_cpu_to_le16(L2CAP_CID_ATT))
return -EINVAL;
}
lock_sock(sk);
if (sk->sk_state != BT_OPEN) {
err = -EBADFD;
goto done;
}
if (la.l2_psm) {
__u16 psm = __le16_to_cpu(la.l2_psm);
if (la.l2_bdaddr_type == BDADDR_BREDR)
err = l2cap_validate_bredr_psm(psm);
else
err = l2cap_validate_le_psm(psm);
if (err)
goto done;
}
if (la.l2_cid)
err = l2cap_add_scid(chan, __le16_to_cpu(la.l2_cid));
else
err = l2cap_add_psm(chan, &la.l2_bdaddr, la.l2_psm);
if (err < 0)
goto done;
switch (chan->chan_type) {
case L2CAP_CHAN_CONN_LESS:
if (__le16_to_cpu(la.l2_psm) == L2CAP_PSM_3DSP)
chan->sec_level = BT_SECURITY_SDP;
break;
case L2CAP_CHAN_CONN_ORIENTED:
if (__le16_to_cpu(la.l2_psm) == L2CAP_PSM_SDP ||
__le16_to_cpu(la.l2_psm) == L2CAP_PSM_RFCOMM)
chan->sec_level = BT_SECURITY_SDP;
break;
case L2CAP_CHAN_RAW:
chan->sec_level = BT_SECURITY_SDP;
break;
}
bacpy(&chan->src, &la.l2_bdaddr);
chan->src_type = la.l2_bdaddr_type;
if (chan->psm && bdaddr_type_is_le(chan->src_type))
chan->mode = L2CAP_MODE_LE_FLOWCTL;
chan->state = BT_BOUND;
sk->sk_state = BT_BOUND;
done:
release_sock(sk);
return err;
}
static int l2cap_sock_connect(struct socket *sock, struct sockaddr *addr,
int alen, int flags)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct sockaddr_l2 la;
int len, err = 0;
BT_DBG("sk %p", sk);
if (!addr || alen < sizeof(addr->sa_family) ||
addr->sa_family != AF_BLUETOOTH)
return -EINVAL;
memset(&la, 0, sizeof(la));
len = min_t(unsigned int, sizeof(la), alen);
memcpy(&la, addr, len);
if (la.l2_cid && la.l2_psm)
return -EINVAL;
if (!bdaddr_type_is_valid(la.l2_bdaddr_type))
return -EINVAL;
/* Check that the socket wasn't bound to something that
* conflicts with the address given to connect(). If chan->src
* is BDADDR_ANY it means bind() was never used, in which case
* chan->src_type and la.l2_bdaddr_type do not need to match.
*/
if (chan->src_type == BDADDR_BREDR && bacmp(&chan->src, BDADDR_ANY) &&
bdaddr_type_is_le(la.l2_bdaddr_type)) {
/* Old user space versions will try to incorrectly bind
* the ATT socket using BDADDR_BREDR. We need to accept
* this and fix up the source address type only when
* both the source CID and destination CID indicate
* ATT. Anything else is an invalid combination.
*/
if (chan->scid != L2CAP_CID_ATT ||
la.l2_cid != __constant_cpu_to_le16(L2CAP_CID_ATT))
return -EINVAL;
/* We don't have the hdev available here to make a
* better decision on random vs public, but since all
* user space versions that exhibit this issue anyway do
* not support random local addresses assuming public
* here is good enough.
*/
chan->src_type = BDADDR_LE_PUBLIC;
}
if (chan->src_type != BDADDR_BREDR && la.l2_bdaddr_type == BDADDR_BREDR)
return -EINVAL;
if (bdaddr_type_is_le(la.l2_bdaddr_type)) {
if (!enable_lecoc && la.l2_psm)
return -EINVAL;
/* We only allow ATT user space socket */
if (la.l2_cid &&
la.l2_cid != __constant_cpu_to_le16(L2CAP_CID_ATT))
return -EINVAL;
}
if (chan->psm && bdaddr_type_is_le(chan->src_type))
chan->mode = L2CAP_MODE_LE_FLOWCTL;
err = l2cap_chan_connect(chan, la.l2_psm, __le16_to_cpu(la.l2_cid),
&la.l2_bdaddr, la.l2_bdaddr_type);
if (err)
return err;
lock_sock(sk);
err = bt_sock_wait_state(sk, BT_CONNECTED,
sock_sndtimeo(sk, flags & O_NONBLOCK));
release_sock(sk);
return err;
}
static int l2cap_sock_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
int err = 0;
BT_DBG("sk %p backlog %d", sk, backlog);
lock_sock(sk);
if (sk->sk_state != BT_BOUND) {
err = -EBADFD;
goto done;
}
if (sk->sk_type != SOCK_SEQPACKET && sk->sk_type != SOCK_STREAM) {
err = -EINVAL;
goto done;
}
switch (chan->mode) {
case L2CAP_MODE_BASIC:
case L2CAP_MODE_LE_FLOWCTL:
break;
case L2CAP_MODE_ERTM:
case L2CAP_MODE_STREAMING:
if (!disable_ertm)
break;
/* fall through */
default:
err = -ENOTSUPP;
goto done;
}
sk->sk_max_ack_backlog = backlog;
sk->sk_ack_backlog = 0;
chan->state = BT_LISTEN;
sk->sk_state = BT_LISTEN;
done:
release_sock(sk);
return err;
}
static int l2cap_sock_accept(struct socket *sock, struct socket *newsock,
int flags)
{
DECLARE_WAITQUEUE(wait, current);
struct sock *sk = sock->sk, *nsk;
long timeo;
int err = 0;
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
BT_DBG("sk %p timeo %ld", sk, timeo);
/* Wait for an incoming connection. (wake-one). */
add_wait_queue_exclusive(sk_sleep(sk), &wait);
while (1) {
set_current_state(TASK_INTERRUPTIBLE);
if (sk->sk_state != BT_LISTEN) {
err = -EBADFD;
break;
}
nsk = bt_accept_dequeue(sk, newsock);
if (nsk)
break;
if (!timeo) {
err = -EAGAIN;
break;
}
if (signal_pending(current)) {
err = sock_intr_errno(timeo);
break;
}
release_sock(sk);
timeo = schedule_timeout(timeo);
lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
}
__set_current_state(TASK_RUNNING);
remove_wait_queue(sk_sleep(sk), &wait);
if (err)
goto done;
newsock->state = SS_CONNECTED;
BT_DBG("new socket %p", nsk);
done:
release_sock(sk);
return err;
}
static int l2cap_sock_getname(struct socket *sock, struct sockaddr *addr,
int *len, int peer)
{
struct sockaddr_l2 *la = (struct sockaddr_l2 *) addr;
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
BT_DBG("sock %p, sk %p", sock, sk);
memset(la, 0, sizeof(struct sockaddr_l2));
addr->sa_family = AF_BLUETOOTH;
*len = sizeof(struct sockaddr_l2);
if (peer) {
la->l2_psm = chan->psm;
bacpy(&la->l2_bdaddr, &chan->dst);
la->l2_cid = cpu_to_le16(chan->dcid);
la->l2_bdaddr_type = chan->dst_type;
} else {
la->l2_psm = chan->sport;
bacpy(&la->l2_bdaddr, &chan->src);
la->l2_cid = cpu_to_le16(chan->scid);
la->l2_bdaddr_type = chan->src_type;
}
return 0;
}
static int l2cap_sock_getsockopt_old(struct socket *sock, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct l2cap_options opts;
struct l2cap_conninfo cinfo;
int len, err = 0;
u32 opt;
BT_DBG("sk %p", sk);
if (get_user(len, optlen))
return -EFAULT;
lock_sock(sk);
switch (optname) {
case L2CAP_OPTIONS:
/* LE sockets should use BT_SNDMTU/BT_RCVMTU, but since
* legacy ATT code depends on getsockopt for
* L2CAP_OPTIONS we need to let this pass.
*/
if (bdaddr_type_is_le(chan->src_type) &&
chan->scid != L2CAP_CID_ATT) {
err = -EINVAL;
break;
}
memset(&opts, 0, sizeof(opts));
opts.imtu = chan->imtu;
opts.omtu = chan->omtu;
opts.flush_to = chan->flush_to;
opts.mode = chan->mode;
opts.fcs = chan->fcs;
opts.max_tx = chan->max_tx;
opts.txwin_size = chan->tx_win;
len = min_t(unsigned int, len, sizeof(opts));
if (copy_to_user(optval, (char *) &opts, len))
err = -EFAULT;
break;
case L2CAP_LM:
switch (chan->sec_level) {
case BT_SECURITY_LOW:
opt = L2CAP_LM_AUTH;
break;
case BT_SECURITY_MEDIUM:
opt = L2CAP_LM_AUTH | L2CAP_LM_ENCRYPT;
break;
case BT_SECURITY_HIGH:
opt = L2CAP_LM_AUTH | L2CAP_LM_ENCRYPT |
L2CAP_LM_SECURE;
break;
default:
opt = 0;
break;
}
if (test_bit(FLAG_ROLE_SWITCH, &chan->flags))
opt |= L2CAP_LM_MASTER;
if (test_bit(FLAG_FORCE_RELIABLE, &chan->flags))
opt |= L2CAP_LM_RELIABLE;
if (put_user(opt, (u32 __user *) optval))
err = -EFAULT;
break;
case L2CAP_CONNINFO:
if (sk->sk_state != BT_CONNECTED &&
!(sk->sk_state == BT_CONNECT2 &&
test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags))) {
err = -ENOTCONN;
break;
}
memset(&cinfo, 0, sizeof(cinfo));
cinfo.hci_handle = chan->conn->hcon->handle;
memcpy(cinfo.dev_class, chan->conn->hcon->dev_class, 3);
len = min_t(unsigned int, len, sizeof(cinfo));
if (copy_to_user(optval, (char *) &cinfo, len))
err = -EFAULT;
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
static int l2cap_sock_getsockopt(struct socket *sock, int level, int optname,
char __user *optval, int __user *optlen)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct bt_security sec;
struct bt_power pwr;
int len, err = 0;
BT_DBG("sk %p", sk);
if (level == SOL_L2CAP)
return l2cap_sock_getsockopt_old(sock, optname, optval, optlen);
if (level != SOL_BLUETOOTH)
return -ENOPROTOOPT;
if (get_user(len, optlen))
return -EFAULT;
lock_sock(sk);
switch (optname) {
case BT_SECURITY:
if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED &&
chan->chan_type != L2CAP_CHAN_RAW) {
err = -EINVAL;
break;
}
memset(&sec, 0, sizeof(sec));
if (chan->conn) {
sec.level = chan->conn->hcon->sec_level;
if (sk->sk_state == BT_CONNECTED)
sec.key_size = chan->conn->hcon->enc_key_size;
} else {
sec.level = chan->sec_level;
}
len = min_t(unsigned int, len, sizeof(sec));
if (copy_to_user(optval, (char *) &sec, len))
err = -EFAULT;
break;
case BT_DEFER_SETUP:
if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
err = -EINVAL;
break;
}
if (put_user(test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags),
(u32 __user *) optval))
err = -EFAULT;
break;
case BT_FLUSHABLE:
if (put_user(test_bit(FLAG_FLUSHABLE, &chan->flags),
(u32 __user *) optval))
err = -EFAULT;
break;
case BT_POWER:
if (sk->sk_type != SOCK_SEQPACKET && sk->sk_type != SOCK_STREAM
&& sk->sk_type != SOCK_RAW) {
err = -EINVAL;
break;
}
pwr.force_active = test_bit(FLAG_FORCE_ACTIVE, &chan->flags);
len = min_t(unsigned int, len, sizeof(pwr));
if (copy_to_user(optval, (char *) &pwr, len))
err = -EFAULT;
break;
case BT_CHANNEL_POLICY:
if (put_user(chan->chan_policy, (u32 __user *) optval))
err = -EFAULT;
break;
case BT_SNDMTU:
if (!enable_lecoc) {
err = -EPROTONOSUPPORT;
break;
}
if (!bdaddr_type_is_le(chan->src_type)) {
err = -EINVAL;
break;
}
if (sk->sk_state != BT_CONNECTED) {
err = -ENOTCONN;
break;
}
if (put_user(chan->omtu, (u16 __user *) optval))
err = -EFAULT;
break;
case BT_RCVMTU:
if (!enable_lecoc) {
err = -EPROTONOSUPPORT;
break;
}
if (!bdaddr_type_is_le(chan->src_type)) {
err = -EINVAL;
break;
}
if (put_user(chan->imtu, (u16 __user *) optval))
err = -EFAULT;
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
static bool l2cap_valid_mtu(struct l2cap_chan *chan, u16 mtu)
{
switch (chan->scid) {
case L2CAP_CID_ATT:
if (mtu < L2CAP_LE_MIN_MTU)
return false;
break;
default:
if (mtu < L2CAP_DEFAULT_MIN_MTU)
return false;
}
return true;
}
static int l2cap_sock_setsockopt_old(struct socket *sock, int optname,
char __user *optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct l2cap_options opts;
int len, err = 0;
u32 opt;
BT_DBG("sk %p", sk);
lock_sock(sk);
switch (optname) {
case L2CAP_OPTIONS:
if (bdaddr_type_is_le(chan->src_type)) {
err = -EINVAL;
break;
}
if (sk->sk_state == BT_CONNECTED) {
err = -EINVAL;
break;
}
opts.imtu = chan->imtu;
opts.omtu = chan->omtu;
opts.flush_to = chan->flush_to;
opts.mode = chan->mode;
opts.fcs = chan->fcs;
opts.max_tx = chan->max_tx;
opts.txwin_size = chan->tx_win;
len = min_t(unsigned int, sizeof(opts), optlen);
if (copy_from_user((char *) &opts, optval, len)) {
err = -EFAULT;
break;
}
if (opts.txwin_size > L2CAP_DEFAULT_EXT_WINDOW) {
err = -EINVAL;
break;
}
if (!l2cap_valid_mtu(chan, opts.imtu)) {
err = -EINVAL;
break;
}
chan->mode = opts.mode;
switch (chan->mode) {
case L2CAP_MODE_LE_FLOWCTL:
break;
case L2CAP_MODE_BASIC:
clear_bit(CONF_STATE2_DEVICE, &chan->conf_state);
break;
case L2CAP_MODE_ERTM:
case L2CAP_MODE_STREAMING:
if (!disable_ertm)
break;
/* fall through */
default:
err = -EINVAL;
break;
}
chan->imtu = opts.imtu;
chan->omtu = opts.omtu;
chan->fcs = opts.fcs;
chan->max_tx = opts.max_tx;
chan->tx_win = opts.txwin_size;
chan->flush_to = opts.flush_to;
break;
case L2CAP_LM:
if (get_user(opt, (u32 __user *) optval)) {
err = -EFAULT;
break;
}
if (opt & L2CAP_LM_AUTH)
chan->sec_level = BT_SECURITY_LOW;
if (opt & L2CAP_LM_ENCRYPT)
chan->sec_level = BT_SECURITY_MEDIUM;
if (opt & L2CAP_LM_SECURE)
chan->sec_level = BT_SECURITY_HIGH;
if (opt & L2CAP_LM_MASTER)
set_bit(FLAG_ROLE_SWITCH, &chan->flags);
else
clear_bit(FLAG_ROLE_SWITCH, &chan->flags);
if (opt & L2CAP_LM_RELIABLE)
set_bit(FLAG_FORCE_RELIABLE, &chan->flags);
else
clear_bit(FLAG_FORCE_RELIABLE, &chan->flags);
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
static int l2cap_sock_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
struct bt_security sec;
struct bt_power pwr;
struct l2cap_conn *conn;
int len, err = 0;
u32 opt;
BT_DBG("sk %p", sk);
if (level == SOL_L2CAP)
return l2cap_sock_setsockopt_old(sock, optname, optval, optlen);
if (level != SOL_BLUETOOTH)
return -ENOPROTOOPT;
lock_sock(sk);
switch (optname) {
case BT_SECURITY:
if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED &&
chan->chan_type != L2CAP_CHAN_RAW) {
err = -EINVAL;
break;
}
sec.level = BT_SECURITY_LOW;
len = min_t(unsigned int, sizeof(sec), optlen);
if (copy_from_user((char *) &sec, optval, len)) {
err = -EFAULT;
break;
}
if (sec.level < BT_SECURITY_LOW ||
sec.level > BT_SECURITY_HIGH) {
err = -EINVAL;
break;
}
chan->sec_level = sec.level;
if (!chan->conn)
break;
conn = chan->conn;
/*change security for LE channels */
if (chan->scid == L2CAP_CID_ATT) {
if (!conn->hcon->out) {
err = -EINVAL;
break;
}
if (smp_conn_security(conn->hcon, sec.level))
break;
sk->sk_state = BT_CONFIG;
chan->state = BT_CONFIG;
/* or for ACL link */
} else if ((sk->sk_state == BT_CONNECT2 &&
test_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags)) ||
sk->sk_state == BT_CONNECTED) {
if (!l2cap_chan_check_security(chan))
set_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags);
else
sk->sk_state_change(sk);
} else {
err = -EINVAL;
}
break;
case BT_DEFER_SETUP:
if (sk->sk_state != BT_BOUND && sk->sk_state != BT_LISTEN) {
err = -EINVAL;
break;
}
if (get_user(opt, (u32 __user *) optval)) {
err = -EFAULT;
break;
}
if (opt) {
set_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
set_bit(FLAG_DEFER_SETUP, &chan->flags);
} else {
clear_bit(BT_SK_DEFER_SETUP, &bt_sk(sk)->flags);
clear_bit(FLAG_DEFER_SETUP, &chan->flags);
}
break;
case BT_FLUSHABLE:
if (get_user(opt, (u32 __user *) optval)) {
err = -EFAULT;
break;
}
if (opt > BT_FLUSHABLE_ON) {
err = -EINVAL;
break;
}
if (opt == BT_FLUSHABLE_OFF) {
conn = chan->conn;
/* proceed further only when we have l2cap_conn and
No Flush support in the LM */
if (!conn || !lmp_no_flush_capable(conn->hcon->hdev)) {
err = -EINVAL;
break;
}
}
if (opt)
set_bit(FLAG_FLUSHABLE, &chan->flags);
else
clear_bit(FLAG_FLUSHABLE, &chan->flags);
break;
case BT_POWER:
if (chan->chan_type != L2CAP_CHAN_CONN_ORIENTED &&
chan->chan_type != L2CAP_CHAN_RAW) {
err = -EINVAL;
break;
}
pwr.force_active = BT_POWER_FORCE_ACTIVE_ON;
len = min_t(unsigned int, sizeof(pwr), optlen);
if (copy_from_user((char *) &pwr, optval, len)) {
err = -EFAULT;
break;
}
if (pwr.force_active)
set_bit(FLAG_FORCE_ACTIVE, &chan->flags);
else
clear_bit(FLAG_FORCE_ACTIVE, &chan->flags);
break;
case BT_CHANNEL_POLICY:
if (get_user(opt, (u32 __user *) optval)) {
err = -EFAULT;
break;
}
if (opt > BT_CHANNEL_POLICY_AMP_PREFERRED) {
err = -EINVAL;
break;
}
if (chan->mode != L2CAP_MODE_ERTM &&
chan->mode != L2CAP_MODE_STREAMING) {
err = -EOPNOTSUPP;
break;
}
chan->chan_policy = (u8) opt;
if (sk->sk_state == BT_CONNECTED &&
chan->move_role == L2CAP_MOVE_ROLE_NONE)
l2cap_move_start(chan);
break;
case BT_SNDMTU:
if (!enable_lecoc) {
err = -EPROTONOSUPPORT;
break;
}
if (!bdaddr_type_is_le(chan->src_type)) {
err = -EINVAL;
break;
}
/* Setting is not supported as it's the remote side that
* decides this.
*/
err = -EPERM;
break;
case BT_RCVMTU:
if (!enable_lecoc) {
err = -EPROTONOSUPPORT;
break;
}
if (!bdaddr_type_is_le(chan->src_type)) {
err = -EINVAL;
break;
}
if (sk->sk_state == BT_CONNECTED) {
err = -EISCONN;
break;
}
if (get_user(opt, (u32 __user *) optval)) {
err = -EFAULT;
break;
}
chan->imtu = opt;
break;
default:
err = -ENOPROTOOPT;
break;
}
release_sock(sk);
return err;
}
static int l2cap_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t len)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
int err;
BT_DBG("sock %p, sk %p", sock, sk);
err = sock_error(sk);
if (err)
return err;
if (msg->msg_flags & MSG_OOB)
return -EOPNOTSUPP;
if (sk->sk_state != BT_CONNECTED)
return -ENOTCONN;
lock_sock(sk);
err = bt_sock_wait_ready(sk, msg->msg_flags);
release_sock(sk);
if (err)
return err;
l2cap_chan_lock(chan);
err = l2cap_chan_send(chan, msg, len, sk->sk_priority);
l2cap_chan_unlock(chan);
return err;
}
static int l2cap_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
struct msghdr *msg, size_t len, int flags)
{
struct sock *sk = sock->sk;
struct l2cap_pinfo *pi = l2cap_pi(sk);
int err;
lock_sock(sk);
if (sk->sk_state == BT_CONNECT2 && test_bit(BT_SK_DEFER_SETUP,
&bt_sk(sk)->flags)) {
if (bdaddr_type_is_le(pi->chan->src_type)) {
sk->sk_state = BT_CONNECTED;
pi->chan->state = BT_CONNECTED;
__l2cap_le_connect_rsp_defer(pi->chan);
} else {
sk->sk_state = BT_CONFIG;
pi->chan->state = BT_CONFIG;
__l2cap_connect_rsp_defer(pi->chan);
}
err = 0;
goto done;
}
release_sock(sk);
if (sock->type == SOCK_STREAM)
err = bt_sock_stream_recvmsg(iocb, sock, msg, len, flags);
else
err = bt_sock_recvmsg(iocb, sock, msg, len, flags);
if (pi->chan->mode != L2CAP_MODE_ERTM)
return err;
/* Attempt to put pending rx data in the socket buffer */
lock_sock(sk);
if (!test_bit(CONN_LOCAL_BUSY, &pi->chan->conn_state))
goto done;
if (pi->rx_busy_skb) {
if (!sock_queue_rcv_skb(sk, pi->rx_busy_skb))
pi->rx_busy_skb = NULL;
else
goto done;
}
/* Restore data flow when half of the receive buffer is
* available. This avoids resending large numbers of
* frames.
*/
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf >> 1)
l2cap_chan_busy(pi->chan, 0);
done:
release_sock(sk);
return err;
}
/* Kill socket (only if zapped and orphan)
* Must be called on unlocked socket.
*/
static void l2cap_sock_kill(struct sock *sk)
{
if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
return;
BT_DBG("sk %p state %s", sk, state_to_string(sk->sk_state));
/* Kill poor orphan */
l2cap_chan_put(l2cap_pi(sk)->chan);
sock_set_flag(sk, SOCK_DEAD);
sock_put(sk);
}
static int __l2cap_wait_ack(struct sock *sk)
{
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
DECLARE_WAITQUEUE(wait, current);
int err = 0;
int timeo = HZ/5;
add_wait_queue(sk_sleep(sk), &wait);
set_current_state(TASK_INTERRUPTIBLE);
while (chan->unacked_frames > 0 && chan->conn) {
if (!timeo)
timeo = HZ/5;
if (signal_pending(current)) {
err = sock_intr_errno(timeo);
break;
}
release_sock(sk);
timeo = schedule_timeout(timeo);
lock_sock(sk);
set_current_state(TASK_INTERRUPTIBLE);
err = sock_error(sk);
if (err)
break;
}
set_current_state(TASK_RUNNING);
remove_wait_queue(sk_sleep(sk), &wait);
return err;
}
static int l2cap_sock_shutdown(struct socket *sock, int how)
{
struct sock *sk = sock->sk;
struct l2cap_chan *chan;
struct l2cap_conn *conn;
int err = 0;
BT_DBG("sock %p, sk %p", sock, sk);
if (!sk)
return 0;
chan = l2cap_pi(sk)->chan;
conn = chan->conn;
if (conn)
mutex_lock(&conn->chan_lock);
l2cap_chan_lock(chan);
lock_sock(sk);
if (!sk->sk_shutdown) {
if (chan->mode == L2CAP_MODE_ERTM)
err = __l2cap_wait_ack(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
release_sock(sk);
l2cap_chan_close(chan, 0);
lock_sock(sk);
if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
err = bt_sock_wait_state(sk, BT_CLOSED,
sk->sk_lingertime);
}
if (!err && sk->sk_err)
err = -sk->sk_err;
release_sock(sk);
l2cap_chan_unlock(chan);
if (conn)
mutex_unlock(&conn->chan_lock);
return err;
}
static int l2cap_sock_release(struct socket *sock)
{
struct sock *sk = sock->sk;
int err;
BT_DBG("sock %p, sk %p", sock, sk);
if (!sk)
return 0;
bt_sock_unlink(&l2cap_sk_list, sk);
err = l2cap_sock_shutdown(sock, 2);
sock_orphan(sk);
l2cap_sock_kill(sk);
return err;
}
static void l2cap_sock_cleanup_listen(struct sock *parent)
{
struct sock *sk;
BT_DBG("parent %p", parent);
/* Close not yet accepted channels */
while ((sk = bt_accept_dequeue(parent, NULL))) {
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
l2cap_chan_lock(chan);
__clear_chan_timer(chan);
l2cap_chan_close(chan, ECONNRESET);
l2cap_chan_unlock(chan);
l2cap_sock_kill(sk);
}
}
static struct l2cap_chan *l2cap_sock_new_connection_cb(struct l2cap_chan *chan)
{
struct sock *sk, *parent = chan->data;
lock_sock(parent);
/* Check for backlog size */
if (sk_acceptq_is_full(parent)) {
BT_DBG("backlog full %d", parent->sk_ack_backlog);
return NULL;
}
sk = l2cap_sock_alloc(sock_net(parent), NULL, BTPROTO_L2CAP,
GFP_ATOMIC);
if (!sk)
return NULL;
bt_sock_reclassify_lock(sk, BTPROTO_L2CAP);
l2cap_sock_init(sk, parent);
bt_accept_enqueue(parent, sk);
release_sock(parent);
return l2cap_pi(sk)->chan;
}
static int l2cap_sock_recv_cb(struct l2cap_chan *chan, struct sk_buff *skb)
{
struct sock *sk = chan->data;
int err;
lock_sock(sk);
if (l2cap_pi(sk)->rx_busy_skb) {
err = -ENOMEM;
goto done;
}
err = sock_queue_rcv_skb(sk, skb);
/* For ERTM, handle one skb that doesn't fit into the recv
* buffer. This is important to do because the data frames
* have already been acked, so the skb cannot be discarded.
*
* Notify the l2cap core that the buffer is full, so the
* LOCAL_BUSY state is entered and no more frames are
* acked and reassembled until there is buffer space
* available.
*/
if (err < 0 && chan->mode == L2CAP_MODE_ERTM) {
l2cap_pi(sk)->rx_busy_skb = skb;
l2cap_chan_busy(chan, 1);
err = 0;
}
done:
release_sock(sk);
return err;
}
static void l2cap_sock_close_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
l2cap_sock_kill(sk);
}
static void l2cap_sock_teardown_cb(struct l2cap_chan *chan, int err)
{
struct sock *sk = chan->data;
struct sock *parent;
lock_sock(sk);
parent = bt_sk(sk)->parent;
sock_set_flag(sk, SOCK_ZAPPED);
switch (chan->state) {
case BT_OPEN:
case BT_BOUND:
case BT_CLOSED:
break;
case BT_LISTEN:
l2cap_sock_cleanup_listen(sk);
sk->sk_state = BT_CLOSED;
chan->state = BT_CLOSED;
break;
default:
sk->sk_state = BT_CLOSED;
chan->state = BT_CLOSED;
sk->sk_err = err;
if (parent) {
bt_accept_unlink(sk);
parent->sk_data_ready(parent, 0);
} else {
sk->sk_state_change(sk);
}
break;
}
release_sock(sk);
}
static void l2cap_sock_state_change_cb(struct l2cap_chan *chan, int state,
int err)
{
struct sock *sk = chan->data;
sk->sk_state = state;
if (err)
sk->sk_err = err;
}
static struct sk_buff *l2cap_sock_alloc_skb_cb(struct l2cap_chan *chan,
unsigned long len, int nb)
{
struct sock *sk = chan->data;
struct sk_buff *skb;
int err;
l2cap_chan_unlock(chan);
skb = bt_skb_send_alloc(sk, len, nb, &err);
l2cap_chan_lock(chan);
if (!skb)
return ERR_PTR(err);
bt_cb(skb)->chan = chan;
return skb;
}
static void l2cap_sock_ready_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
struct sock *parent;
lock_sock(sk);
parent = bt_sk(sk)->parent;
BT_DBG("sk %p, parent %p", sk, parent);
sk->sk_state = BT_CONNECTED;
sk->sk_state_change(sk);
if (parent)
parent->sk_data_ready(parent, 0);
release_sock(sk);
}
static void l2cap_sock_defer_cb(struct l2cap_chan *chan)
{
struct sock *parent, *sk = chan->data;
lock_sock(sk);
parent = bt_sk(sk)->parent;
if (parent)
parent->sk_data_ready(parent, 0);
release_sock(sk);
}
static void l2cap_sock_resume_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
clear_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags);
sk->sk_state_change(sk);
}
static void l2cap_sock_set_shutdown_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
lock_sock(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
release_sock(sk);
}
static long l2cap_sock_get_sndtimeo_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
return sk->sk_sndtimeo;
}
static void l2cap_sock_suspend_cb(struct l2cap_chan *chan)
{
struct sock *sk = chan->data;
set_bit(BT_SK_SUSPEND, &bt_sk(sk)->flags);
sk->sk_state_change(sk);
}
static struct l2cap_ops l2cap_chan_ops = {
.name = "L2CAP Socket Interface",
.new_connection = l2cap_sock_new_connection_cb,
.recv = l2cap_sock_recv_cb,
.close = l2cap_sock_close_cb,
.teardown = l2cap_sock_teardown_cb,
.state_change = l2cap_sock_state_change_cb,
.ready = l2cap_sock_ready_cb,
.defer = l2cap_sock_defer_cb,
.resume = l2cap_sock_resume_cb,
.suspend = l2cap_sock_suspend_cb,
.set_shutdown = l2cap_sock_set_shutdown_cb,
.get_sndtimeo = l2cap_sock_get_sndtimeo_cb,
.alloc_skb = l2cap_sock_alloc_skb_cb,
};
static void l2cap_sock_destruct(struct sock *sk)
{
BT_DBG("sk %p", sk);
if (l2cap_pi(sk)->chan)
l2cap_chan_put(l2cap_pi(sk)->chan);
if (l2cap_pi(sk)->rx_busy_skb) {
kfree_skb(l2cap_pi(sk)->rx_busy_skb);
l2cap_pi(sk)->rx_busy_skb = NULL;
}
skb_queue_purge(&sk->sk_receive_queue);
skb_queue_purge(&sk->sk_write_queue);
}
static void l2cap_skb_msg_name(struct sk_buff *skb, void *msg_name,
int *msg_namelen)
{
DECLARE_SOCKADDR(struct sockaddr_l2 *, la, msg_name);
memset(la, 0, sizeof(struct sockaddr_l2));
la->l2_family = AF_BLUETOOTH;
la->l2_psm = bt_cb(skb)->psm;
bacpy(&la->l2_bdaddr, &bt_cb(skb)->bdaddr);
*msg_namelen = sizeof(struct sockaddr_l2);
}
static void l2cap_sock_init(struct sock *sk, struct sock *parent)
{
struct l2cap_chan *chan = l2cap_pi(sk)->chan;
BT_DBG("sk %p", sk);
if (parent) {
struct l2cap_chan *pchan = l2cap_pi(parent)->chan;
sk->sk_type = parent->sk_type;
bt_sk(sk)->flags = bt_sk(parent)->flags;
chan->chan_type = pchan->chan_type;
chan->imtu = pchan->imtu;
chan->omtu = pchan->omtu;
chan->conf_state = pchan->conf_state;
chan->mode = pchan->mode;
chan->fcs = pchan->fcs;
chan->max_tx = pchan->max_tx;
chan->tx_win = pchan->tx_win;
chan->tx_win_max = pchan->tx_win_max;
chan->sec_level = pchan->sec_level;
chan->flags = pchan->flags;
chan->tx_credits = pchan->tx_credits;
chan->rx_credits = pchan->rx_credits;
security_sk_clone(parent, sk);
} else {
switch (sk->sk_type) {
case SOCK_RAW:
chan->chan_type = L2CAP_CHAN_RAW;
break;
case SOCK_DGRAM:
chan->chan_type = L2CAP_CHAN_CONN_LESS;
bt_sk(sk)->skb_msg_name = l2cap_skb_msg_name;
break;
case SOCK_SEQPACKET:
case SOCK_STREAM:
chan->chan_type = L2CAP_CHAN_CONN_ORIENTED;
break;
}
chan->imtu = L2CAP_DEFAULT_MTU;
chan->omtu = 0;
if (!disable_ertm && sk->sk_type == SOCK_STREAM) {
chan->mode = L2CAP_MODE_ERTM;
set_bit(CONF_STATE2_DEVICE, &chan->conf_state);
} else {
chan->mode = L2CAP_MODE_BASIC;
}
l2cap_chan_set_defaults(chan);
}
/* Default config options */
chan->flush_to = L2CAP_DEFAULT_FLUSH_TO;
chan->data = sk;
chan->ops = &l2cap_chan_ops;
}
static struct proto l2cap_proto = {
.name = "L2CAP",
.owner = THIS_MODULE,
.obj_size = sizeof(struct l2cap_pinfo)
};
static struct sock *l2cap_sock_alloc(struct net *net, struct socket *sock,
int proto, gfp_t prio)
{
struct sock *sk;
struct l2cap_chan *chan;
sk = sk_alloc(net, PF_BLUETOOTH, prio, &l2cap_proto);
if (!sk)
return NULL;
sock_init_data(sock, sk);
INIT_LIST_HEAD(&bt_sk(sk)->accept_q);
sk->sk_destruct = l2cap_sock_destruct;
sk->sk_sndtimeo = L2CAP_CONN_TIMEOUT;
sock_reset_flag(sk, SOCK_ZAPPED);
sk->sk_protocol = proto;
sk->sk_state = BT_OPEN;
chan = l2cap_chan_create();
if (!chan) {
sk_free(sk);
return NULL;
}
l2cap_chan_hold(chan);
l2cap_pi(sk)->chan = chan;
return sk;
}
static int l2cap_sock_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct sock *sk;
BT_DBG("sock %p", sock);
sock->state = SS_UNCONNECTED;
if (sock->type != SOCK_SEQPACKET && sock->type != SOCK_STREAM &&
sock->type != SOCK_DGRAM && sock->type != SOCK_RAW)
return -ESOCKTNOSUPPORT;
if (sock->type == SOCK_RAW && !kern && !capable(CAP_NET_RAW))
return -EPERM;
sock->ops = &l2cap_sock_ops;
sk = l2cap_sock_alloc(net, sock, protocol, GFP_ATOMIC);
if (!sk)
return -ENOMEM;
l2cap_sock_init(sk, NULL);
bt_sock_link(&l2cap_sk_list, sk);
return 0;
}
static const struct proto_ops l2cap_sock_ops = {
.family = PF_BLUETOOTH,
.owner = THIS_MODULE,
.release = l2cap_sock_release,
.bind = l2cap_sock_bind,
.connect = l2cap_sock_connect,
.listen = l2cap_sock_listen,
.accept = l2cap_sock_accept,
.getname = l2cap_sock_getname,
.sendmsg = l2cap_sock_sendmsg,
.recvmsg = l2cap_sock_recvmsg,
.poll = bt_sock_poll,
.ioctl = bt_sock_ioctl,
.mmap = sock_no_mmap,
.socketpair = sock_no_socketpair,
.shutdown = l2cap_sock_shutdown,
.setsockopt = l2cap_sock_setsockopt,
.getsockopt = l2cap_sock_getsockopt
};
static const struct net_proto_family l2cap_sock_family_ops = {
.family = PF_BLUETOOTH,
.owner = THIS_MODULE,
.create = l2cap_sock_create,
};
int __init l2cap_init_sockets(void)
{
int err;
err = proto_register(&l2cap_proto, 0);
if (err < 0)
return err;
err = bt_sock_register(BTPROTO_L2CAP, &l2cap_sock_family_ops);
if (err < 0) {
BT_ERR("L2CAP socket registration failed");
goto error;
}
err = bt_procfs_init(&init_net, "l2cap", &l2cap_sk_list,
NULL);
if (err < 0) {
BT_ERR("Failed to create L2CAP proc file");
bt_sock_unregister(BTPROTO_L2CAP);
goto error;
}
BT_INFO("L2CAP socket layer initialized");
return 0;
error:
proto_unregister(&l2cap_proto);
return err;
}
void l2cap_cleanup_sockets(void)
{
bt_procfs_cleanup(&init_net, "l2cap");
bt_sock_unregister(BTPROTO_L2CAP);
proto_unregister(&l2cap_proto);
}
module_param(enable_lecoc, bool, 0644);
MODULE_PARM_DESC(enable_lecoc, "Enable support for LE CoC");