OpenCloudOS-Kernel/sound/soc/codecs/rt5640.c

2870 lines
88 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* rt5640.c -- RT5640/RT5639 ALSA SoC audio codec driver
*
* Copyright 2011 Realtek Semiconductor Corp.
* Author: Johnny Hsu <johnnyhsu@realtek.com>
* Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/acpi.h>
#include <sound/core.h>
#include <sound/jack.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include "rl6231.h"
#include "rt5640.h"
#define RT5640_DEVICE_ID 0x6231
#define RT5640_PR_RANGE_BASE (0xff + 1)
#define RT5640_PR_SPACING 0x100
#define RT5640_PR_BASE (RT5640_PR_RANGE_BASE + (0 * RT5640_PR_SPACING))
static const struct regmap_range_cfg rt5640_ranges[] = {
{ .name = "PR", .range_min = RT5640_PR_BASE,
.range_max = RT5640_PR_BASE + 0xb4,
.selector_reg = RT5640_PRIV_INDEX,
.selector_mask = 0xff,
.selector_shift = 0x0,
.window_start = RT5640_PRIV_DATA,
.window_len = 0x1, },
};
static const struct reg_sequence init_list[] = {
{RT5640_PR_BASE + 0x3d, 0x3600},
{RT5640_PR_BASE + 0x12, 0x0aa8},
{RT5640_PR_BASE + 0x14, 0x0aaa},
{RT5640_PR_BASE + 0x20, 0x6110},
{RT5640_PR_BASE + 0x21, 0xe0e0},
{RT5640_PR_BASE + 0x23, 0x1804},
};
static const struct reg_default rt5640_reg[] = {
{ 0x00, 0x000e },
{ 0x01, 0xc8c8 },
{ 0x02, 0xc8c8 },
{ 0x03, 0xc8c8 },
{ 0x04, 0x8000 },
{ 0x0d, 0x0000 },
{ 0x0e, 0x0000 },
{ 0x0f, 0x0808 },
{ 0x19, 0xafaf },
{ 0x1a, 0xafaf },
{ 0x1b, 0x0000 },
{ 0x1c, 0x2f2f },
{ 0x1d, 0x2f2f },
{ 0x1e, 0x0000 },
{ 0x27, 0x7060 },
{ 0x28, 0x7070 },
{ 0x29, 0x8080 },
{ 0x2a, 0x5454 },
{ 0x2b, 0x5454 },
{ 0x2c, 0xaa00 },
{ 0x2d, 0x0000 },
{ 0x2e, 0xa000 },
{ 0x2f, 0x0000 },
{ 0x3b, 0x0000 },
{ 0x3c, 0x007f },
{ 0x3d, 0x0000 },
{ 0x3e, 0x007f },
{ 0x45, 0xe000 },
{ 0x46, 0x003e },
{ 0x47, 0x003e },
{ 0x48, 0xf800 },
{ 0x49, 0x3800 },
{ 0x4a, 0x0004 },
{ 0x4c, 0xfc00 },
{ 0x4d, 0x0000 },
{ 0x4f, 0x01ff },
{ 0x50, 0x0000 },
{ 0x51, 0x0000 },
{ 0x52, 0x01ff },
{ 0x53, 0xf000 },
{ 0x61, 0x0000 },
{ 0x62, 0x0000 },
{ 0x63, 0x00c0 },
{ 0x64, 0x0000 },
{ 0x65, 0x0000 },
{ 0x66, 0x0000 },
{ 0x6a, 0x0000 },
{ 0x6c, 0x0000 },
{ 0x70, 0x8000 },
{ 0x71, 0x8000 },
{ 0x72, 0x8000 },
{ 0x73, 0x1114 },
{ 0x74, 0x0c00 },
{ 0x75, 0x1d00 },
{ 0x80, 0x0000 },
{ 0x81, 0x0000 },
{ 0x82, 0x0000 },
{ 0x83, 0x0000 },
{ 0x84, 0x0000 },
{ 0x85, 0x0008 },
{ 0x89, 0x0000 },
{ 0x8a, 0x0000 },
{ 0x8b, 0x0600 },
{ 0x8c, 0x0228 },
{ 0x8d, 0xa000 },
{ 0x8e, 0x0004 },
{ 0x8f, 0x1100 },
{ 0x90, 0x0646 },
{ 0x91, 0x0c00 },
{ 0x92, 0x0000 },
{ 0x93, 0x3000 },
{ 0xb0, 0x2080 },
{ 0xb1, 0x0000 },
{ 0xb4, 0x2206 },
{ 0xb5, 0x1f00 },
{ 0xb6, 0x0000 },
{ 0xb8, 0x034b },
{ 0xb9, 0x0066 },
{ 0xba, 0x000b },
{ 0xbb, 0x0000 },
{ 0xbc, 0x0000 },
{ 0xbd, 0x0000 },
{ 0xbe, 0x0000 },
{ 0xbf, 0x0000 },
{ 0xc0, 0x0400 },
{ 0xc2, 0x0000 },
{ 0xc4, 0x0000 },
{ 0xc5, 0x0000 },
{ 0xc6, 0x2000 },
{ 0xc8, 0x0000 },
{ 0xc9, 0x0000 },
{ 0xca, 0x0000 },
{ 0xcb, 0x0000 },
{ 0xcc, 0x0000 },
{ 0xcf, 0x0013 },
{ 0xd0, 0x0680 },
{ 0xd1, 0x1c17 },
{ 0xd2, 0x8c00 },
{ 0xd3, 0xaa20 },
{ 0xd6, 0x0400 },
{ 0xd9, 0x0809 },
{ 0xfe, 0x10ec },
{ 0xff, 0x6231 },
};
static int rt5640_reset(struct snd_soc_component *component)
{
return snd_soc_component_write(component, RT5640_RESET, 0);
}
static bool rt5640_volatile_register(struct device *dev, unsigned int reg)
{
int i;
for (i = 0; i < ARRAY_SIZE(rt5640_ranges); i++)
if ((reg >= rt5640_ranges[i].window_start &&
reg <= rt5640_ranges[i].window_start +
rt5640_ranges[i].window_len) ||
(reg >= rt5640_ranges[i].range_min &&
reg <= rt5640_ranges[i].range_max))
return true;
switch (reg) {
case RT5640_RESET:
case RT5640_ASRC_5:
case RT5640_EQ_CTRL1:
case RT5640_DRC_AGC_1:
case RT5640_ANC_CTRL1:
case RT5640_IRQ_CTRL2:
case RT5640_INT_IRQ_ST:
case RT5640_DSP_CTRL2:
case RT5640_DSP_CTRL3:
case RT5640_PRIV_INDEX:
case RT5640_PRIV_DATA:
case RT5640_PGM_REG_ARR1:
case RT5640_PGM_REG_ARR3:
case RT5640_VENDOR_ID:
case RT5640_VENDOR_ID1:
case RT5640_VENDOR_ID2:
return true;
default:
return false;
}
}
static bool rt5640_readable_register(struct device *dev, unsigned int reg)
{
int i;
for (i = 0; i < ARRAY_SIZE(rt5640_ranges); i++)
if ((reg >= rt5640_ranges[i].window_start &&
reg <= rt5640_ranges[i].window_start +
rt5640_ranges[i].window_len) ||
(reg >= rt5640_ranges[i].range_min &&
reg <= rt5640_ranges[i].range_max))
return true;
switch (reg) {
case RT5640_RESET:
case RT5640_SPK_VOL:
case RT5640_HP_VOL:
case RT5640_OUTPUT:
case RT5640_MONO_OUT:
case RT5640_IN1_IN2:
case RT5640_IN3_IN4:
case RT5640_INL_INR_VOL:
case RT5640_DAC1_DIG_VOL:
case RT5640_DAC2_DIG_VOL:
case RT5640_DAC2_CTRL:
case RT5640_ADC_DIG_VOL:
case RT5640_ADC_DATA:
case RT5640_ADC_BST_VOL:
case RT5640_STO_ADC_MIXER:
case RT5640_MONO_ADC_MIXER:
case RT5640_AD_DA_MIXER:
case RT5640_STO_DAC_MIXER:
case RT5640_MONO_DAC_MIXER:
case RT5640_DIG_MIXER:
case RT5640_DSP_PATH1:
case RT5640_DSP_PATH2:
case RT5640_DIG_INF_DATA:
case RT5640_REC_L1_MIXER:
case RT5640_REC_L2_MIXER:
case RT5640_REC_R1_MIXER:
case RT5640_REC_R2_MIXER:
case RT5640_HPO_MIXER:
case RT5640_SPK_L_MIXER:
case RT5640_SPK_R_MIXER:
case RT5640_SPO_L_MIXER:
case RT5640_SPO_R_MIXER:
case RT5640_SPO_CLSD_RATIO:
case RT5640_MONO_MIXER:
case RT5640_OUT_L1_MIXER:
case RT5640_OUT_L2_MIXER:
case RT5640_OUT_L3_MIXER:
case RT5640_OUT_R1_MIXER:
case RT5640_OUT_R2_MIXER:
case RT5640_OUT_R3_MIXER:
case RT5640_LOUT_MIXER:
case RT5640_PWR_DIG1:
case RT5640_PWR_DIG2:
case RT5640_PWR_ANLG1:
case RT5640_PWR_ANLG2:
case RT5640_PWR_MIXER:
case RT5640_PWR_VOL:
case RT5640_PRIV_INDEX:
case RT5640_PRIV_DATA:
case RT5640_I2S1_SDP:
case RT5640_I2S2_SDP:
case RT5640_ADDA_CLK1:
case RT5640_ADDA_CLK2:
case RT5640_DMIC:
case RT5640_GLB_CLK:
case RT5640_PLL_CTRL1:
case RT5640_PLL_CTRL2:
case RT5640_ASRC_1:
case RT5640_ASRC_2:
case RT5640_ASRC_3:
case RT5640_ASRC_4:
case RT5640_ASRC_5:
case RT5640_HP_OVCD:
case RT5640_CLS_D_OVCD:
case RT5640_CLS_D_OUT:
case RT5640_DEPOP_M1:
case RT5640_DEPOP_M2:
case RT5640_DEPOP_M3:
case RT5640_CHARGE_PUMP:
case RT5640_PV_DET_SPK_G:
case RT5640_MICBIAS:
case RT5640_EQ_CTRL1:
case RT5640_EQ_CTRL2:
case RT5640_WIND_FILTER:
case RT5640_DRC_AGC_1:
case RT5640_DRC_AGC_2:
case RT5640_DRC_AGC_3:
case RT5640_SVOL_ZC:
case RT5640_ANC_CTRL1:
case RT5640_ANC_CTRL2:
case RT5640_ANC_CTRL3:
case RT5640_JD_CTRL:
case RT5640_ANC_JD:
case RT5640_IRQ_CTRL1:
case RT5640_IRQ_CTRL2:
case RT5640_INT_IRQ_ST:
case RT5640_GPIO_CTRL1:
case RT5640_GPIO_CTRL2:
case RT5640_GPIO_CTRL3:
case RT5640_DSP_CTRL1:
case RT5640_DSP_CTRL2:
case RT5640_DSP_CTRL3:
case RT5640_DSP_CTRL4:
case RT5640_PGM_REG_ARR1:
case RT5640_PGM_REG_ARR2:
case RT5640_PGM_REG_ARR3:
case RT5640_PGM_REG_ARR4:
case RT5640_PGM_REG_ARR5:
case RT5640_SCB_FUNC:
case RT5640_SCB_CTRL:
case RT5640_BASE_BACK:
case RT5640_MP3_PLUS1:
case RT5640_MP3_PLUS2:
case RT5640_3D_HP:
case RT5640_ADJ_HPF:
case RT5640_HP_CALIB_AMP_DET:
case RT5640_HP_CALIB2:
case RT5640_SV_ZCD1:
case RT5640_SV_ZCD2:
case RT5640_DUMMY1:
case RT5640_DUMMY2:
case RT5640_DUMMY3:
case RT5640_VENDOR_ID:
case RT5640_VENDOR_ID1:
case RT5640_VENDOR_ID2:
return true;
default:
return false;
}
}
static const DECLARE_TLV_DB_SCALE(out_vol_tlv, -4650, 150, 0);
static const DECLARE_TLV_DB_MINMAX(dac_vol_tlv, -6562, 0);
static const DECLARE_TLV_DB_SCALE(in_vol_tlv, -3450, 150, 0);
static const DECLARE_TLV_DB_MINMAX(adc_vol_tlv, -1762, 3000);
static const DECLARE_TLV_DB_SCALE(adc_bst_tlv, 0, 1200, 0);
/* {0, +20, +24, +30, +35, +40, +44, +50, +52} dB */
static const DECLARE_TLV_DB_RANGE(bst_tlv,
0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
1, 1, TLV_DB_SCALE_ITEM(2000, 0, 0),
2, 2, TLV_DB_SCALE_ITEM(2400, 0, 0),
3, 5, TLV_DB_SCALE_ITEM(3000, 500, 0),
6, 6, TLV_DB_SCALE_ITEM(4400, 0, 0),
7, 7, TLV_DB_SCALE_ITEM(5000, 0, 0),
8, 8, TLV_DB_SCALE_ITEM(5200, 0, 0)
);
/* Interface data select */
static const char * const rt5640_data_select[] = {
"Normal", "Swap", "left copy to right", "right copy to left"};
static SOC_ENUM_SINGLE_DECL(rt5640_if1_dac_enum, RT5640_DIG_INF_DATA,
RT5640_IF1_DAC_SEL_SFT, rt5640_data_select);
static SOC_ENUM_SINGLE_DECL(rt5640_if1_adc_enum, RT5640_DIG_INF_DATA,
RT5640_IF1_ADC_SEL_SFT, rt5640_data_select);
static SOC_ENUM_SINGLE_DECL(rt5640_if2_dac_enum, RT5640_DIG_INF_DATA,
RT5640_IF2_DAC_SEL_SFT, rt5640_data_select);
static SOC_ENUM_SINGLE_DECL(rt5640_if2_adc_enum, RT5640_DIG_INF_DATA,
RT5640_IF2_ADC_SEL_SFT, rt5640_data_select);
/* Class D speaker gain ratio */
static const char * const rt5640_clsd_spk_ratio[] = {"1.66x", "1.83x", "1.94x",
"2x", "2.11x", "2.22x", "2.33x", "2.44x", "2.55x", "2.66x", "2.77x"};
static SOC_ENUM_SINGLE_DECL(rt5640_clsd_spk_ratio_enum, RT5640_CLS_D_OUT,
RT5640_CLSD_RATIO_SFT, rt5640_clsd_spk_ratio);
static const struct snd_kcontrol_new rt5640_snd_controls[] = {
/* Speaker Output Volume */
SOC_DOUBLE("Speaker Channel Switch", RT5640_SPK_VOL,
RT5640_VOL_L_SFT, RT5640_VOL_R_SFT, 1, 1),
SOC_DOUBLE_TLV("Speaker Playback Volume", RT5640_SPK_VOL,
RT5640_L_VOL_SFT, RT5640_R_VOL_SFT, 39, 1, out_vol_tlv),
/* Headphone Output Volume */
SOC_DOUBLE("HP Channel Switch", RT5640_HP_VOL,
RT5640_VOL_L_SFT, RT5640_VOL_R_SFT, 1, 1),
SOC_DOUBLE_TLV("HP Playback Volume", RT5640_HP_VOL,
RT5640_L_VOL_SFT, RT5640_R_VOL_SFT, 39, 1, out_vol_tlv),
/* OUTPUT Control */
SOC_DOUBLE("OUT Playback Switch", RT5640_OUTPUT,
RT5640_L_MUTE_SFT, RT5640_R_MUTE_SFT, 1, 1),
SOC_DOUBLE("OUT Channel Switch", RT5640_OUTPUT,
RT5640_VOL_L_SFT, RT5640_VOL_R_SFT, 1, 1),
SOC_DOUBLE_TLV("OUT Playback Volume", RT5640_OUTPUT,
RT5640_L_VOL_SFT, RT5640_R_VOL_SFT, 39, 1, out_vol_tlv),
/* DAC Digital Volume */
SOC_DOUBLE("DAC2 Playback Switch", RT5640_DAC2_CTRL,
RT5640_M_DAC_L2_VOL_SFT, RT5640_M_DAC_R2_VOL_SFT, 1, 1),
SOC_DOUBLE_TLV("DAC2 Playback Volume", RT5640_DAC2_DIG_VOL,
RT5640_L_VOL_SFT, RT5640_R_VOL_SFT,
175, 0, dac_vol_tlv),
SOC_DOUBLE_TLV("DAC1 Playback Volume", RT5640_DAC1_DIG_VOL,
RT5640_L_VOL_SFT, RT5640_R_VOL_SFT,
175, 0, dac_vol_tlv),
/* IN1/IN2/IN3 Control */
SOC_SINGLE_TLV("IN1 Boost", RT5640_IN1_IN2,
RT5640_BST_SFT1, 8, 0, bst_tlv),
SOC_SINGLE_TLV("IN2 Boost", RT5640_IN3_IN4,
RT5640_BST_SFT2, 8, 0, bst_tlv),
SOC_SINGLE_TLV("IN3 Boost", RT5640_IN1_IN2,
RT5640_BST_SFT2, 8, 0, bst_tlv),
/* INL/INR Volume Control */
SOC_DOUBLE_TLV("IN Capture Volume", RT5640_INL_INR_VOL,
RT5640_INL_VOL_SFT, RT5640_INR_VOL_SFT,
31, 1, in_vol_tlv),
/* ADC Digital Volume Control */
SOC_DOUBLE("ADC Capture Switch", RT5640_ADC_DIG_VOL,
RT5640_L_MUTE_SFT, RT5640_R_MUTE_SFT, 1, 1),
SOC_DOUBLE_TLV("ADC Capture Volume", RT5640_ADC_DIG_VOL,
RT5640_L_VOL_SFT, RT5640_R_VOL_SFT,
127, 0, adc_vol_tlv),
SOC_DOUBLE("Mono ADC Capture Switch", RT5640_DUMMY1,
RT5640_M_MONO_ADC_L_SFT, RT5640_M_MONO_ADC_R_SFT, 1, 1),
SOC_DOUBLE_TLV("Mono ADC Capture Volume", RT5640_ADC_DATA,
RT5640_L_VOL_SFT, RT5640_R_VOL_SFT,
127, 0, adc_vol_tlv),
/* ADC Boost Volume Control */
SOC_DOUBLE_TLV("ADC Boost Gain", RT5640_ADC_BST_VOL,
RT5640_ADC_L_BST_SFT, RT5640_ADC_R_BST_SFT,
3, 0, adc_bst_tlv),
/* Class D speaker gain ratio */
SOC_ENUM("Class D SPK Ratio Control", rt5640_clsd_spk_ratio_enum),
SOC_ENUM("ADC IF1 Data Switch", rt5640_if1_adc_enum),
SOC_ENUM("DAC IF1 Data Switch", rt5640_if1_dac_enum),
SOC_ENUM("ADC IF2 Data Switch", rt5640_if2_adc_enum),
SOC_ENUM("DAC IF2 Data Switch", rt5640_if2_dac_enum),
};
static const struct snd_kcontrol_new rt5640_specific_snd_controls[] = {
/* MONO Output Control */
SOC_SINGLE("Mono Playback Switch", RT5640_MONO_OUT, RT5640_L_MUTE_SFT,
1, 1),
};
/**
* set_dmic_clk - Set parameter of dmic.
*
* @w: DAPM widget.
* @kcontrol: The kcontrol of this widget.
* @event: Event id.
*
*/
static int set_dmic_clk(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
int idx, rate;
rate = rt5640->sysclk / rl6231_get_pre_div(rt5640->regmap,
RT5640_ADDA_CLK1, RT5640_I2S_PD1_SFT);
idx = rl6231_calc_dmic_clk(rate);
if (idx < 0)
dev_err(component->dev, "Failed to set DMIC clock\n");
else
snd_soc_component_update_bits(component, RT5640_DMIC, RT5640_DMIC_CLK_MASK,
idx << RT5640_DMIC_CLK_SFT);
return idx;
}
static int is_using_asrc(struct snd_soc_dapm_widget *source,
struct snd_soc_dapm_widget *sink)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(source->dapm);
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
if (!rt5640->asrc_en)
return 0;
return 1;
}
/* Digital Mixer */
static const struct snd_kcontrol_new rt5640_sto_adc_l_mix[] = {
SOC_DAPM_SINGLE("ADC1 Switch", RT5640_STO_ADC_MIXER,
RT5640_M_ADC_L1_SFT, 1, 1),
SOC_DAPM_SINGLE("ADC2 Switch", RT5640_STO_ADC_MIXER,
RT5640_M_ADC_L2_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_sto_adc_r_mix[] = {
SOC_DAPM_SINGLE("ADC1 Switch", RT5640_STO_ADC_MIXER,
RT5640_M_ADC_R1_SFT, 1, 1),
SOC_DAPM_SINGLE("ADC2 Switch", RT5640_STO_ADC_MIXER,
RT5640_M_ADC_R2_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_mono_adc_l_mix[] = {
SOC_DAPM_SINGLE("ADC1 Switch", RT5640_MONO_ADC_MIXER,
RT5640_M_MONO_ADC_L1_SFT, 1, 1),
SOC_DAPM_SINGLE("ADC2 Switch", RT5640_MONO_ADC_MIXER,
RT5640_M_MONO_ADC_L2_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_mono_adc_r_mix[] = {
SOC_DAPM_SINGLE("ADC1 Switch", RT5640_MONO_ADC_MIXER,
RT5640_M_MONO_ADC_R1_SFT, 1, 1),
SOC_DAPM_SINGLE("ADC2 Switch", RT5640_MONO_ADC_MIXER,
RT5640_M_MONO_ADC_R2_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_dac_l_mix[] = {
SOC_DAPM_SINGLE("Stereo ADC Switch", RT5640_AD_DA_MIXER,
RT5640_M_ADCMIX_L_SFT, 1, 1),
SOC_DAPM_SINGLE("INF1 Switch", RT5640_AD_DA_MIXER,
RT5640_M_IF1_DAC_L_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_dac_r_mix[] = {
SOC_DAPM_SINGLE("Stereo ADC Switch", RT5640_AD_DA_MIXER,
RT5640_M_ADCMIX_R_SFT, 1, 1),
SOC_DAPM_SINGLE("INF1 Switch", RT5640_AD_DA_MIXER,
RT5640_M_IF1_DAC_R_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_sto_dac_l_mix[] = {
SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_STO_DAC_MIXER,
RT5640_M_DAC_L1_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_STO_DAC_MIXER,
RT5640_M_DAC_L2_SFT, 1, 1),
SOC_DAPM_SINGLE("ANC Switch", RT5640_STO_DAC_MIXER,
RT5640_M_ANC_DAC_L_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_sto_dac_r_mix[] = {
SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_STO_DAC_MIXER,
RT5640_M_DAC_R1_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_STO_DAC_MIXER,
RT5640_M_DAC_R2_SFT, 1, 1),
SOC_DAPM_SINGLE("ANC Switch", RT5640_STO_DAC_MIXER,
RT5640_M_ANC_DAC_R_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5639_sto_dac_l_mix[] = {
SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_STO_DAC_MIXER,
RT5640_M_DAC_L1_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_STO_DAC_MIXER,
RT5640_M_DAC_L2_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5639_sto_dac_r_mix[] = {
SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_STO_DAC_MIXER,
RT5640_M_DAC_R1_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_STO_DAC_MIXER,
RT5640_M_DAC_R2_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_mono_dac_l_mix[] = {
SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_MONO_DAC_MIXER,
RT5640_M_DAC_L1_MONO_L_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_MONO_DAC_MIXER,
RT5640_M_DAC_L2_MONO_L_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_MONO_DAC_MIXER,
RT5640_M_DAC_R2_MONO_L_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_mono_dac_r_mix[] = {
SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_MONO_DAC_MIXER,
RT5640_M_DAC_R1_MONO_R_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_MONO_DAC_MIXER,
RT5640_M_DAC_R2_MONO_R_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_MONO_DAC_MIXER,
RT5640_M_DAC_L2_MONO_R_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_dig_l_mix[] = {
SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_DIG_MIXER,
RT5640_M_STO_L_DAC_L_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_DIG_MIXER,
RT5640_M_DAC_L2_DAC_L_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_dig_r_mix[] = {
SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_DIG_MIXER,
RT5640_M_STO_R_DAC_R_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_DIG_MIXER,
RT5640_M_DAC_R2_DAC_R_SFT, 1, 1),
};
/* Analog Input Mixer */
static const struct snd_kcontrol_new rt5640_rec_l_mix[] = {
SOC_DAPM_SINGLE("HPOL Switch", RT5640_REC_L2_MIXER,
RT5640_M_HP_L_RM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("INL Switch", RT5640_REC_L2_MIXER,
RT5640_M_IN_L_RM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("BST3 Switch", RT5640_REC_L2_MIXER,
RT5640_M_BST2_RM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("BST2 Switch", RT5640_REC_L2_MIXER,
RT5640_M_BST4_RM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("BST1 Switch", RT5640_REC_L2_MIXER,
RT5640_M_BST1_RM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("OUT MIXL Switch", RT5640_REC_L2_MIXER,
RT5640_M_OM_L_RM_L_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_rec_r_mix[] = {
SOC_DAPM_SINGLE("HPOR Switch", RT5640_REC_R2_MIXER,
RT5640_M_HP_R_RM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("INR Switch", RT5640_REC_R2_MIXER,
RT5640_M_IN_R_RM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("BST3 Switch", RT5640_REC_R2_MIXER,
RT5640_M_BST2_RM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("BST2 Switch", RT5640_REC_R2_MIXER,
RT5640_M_BST4_RM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("BST1 Switch", RT5640_REC_R2_MIXER,
RT5640_M_BST1_RM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("OUT MIXR Switch", RT5640_REC_R2_MIXER,
RT5640_M_OM_R_RM_R_SFT, 1, 1),
};
/* Analog Output Mixer */
static const struct snd_kcontrol_new rt5640_spk_l_mix[] = {
SOC_DAPM_SINGLE("REC MIXL Switch", RT5640_SPK_L_MIXER,
RT5640_M_RM_L_SM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("INL Switch", RT5640_SPK_L_MIXER,
RT5640_M_IN_L_SM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_SPK_L_MIXER,
RT5640_M_DAC_L1_SM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_SPK_L_MIXER,
RT5640_M_DAC_L2_SM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("OUT MIXL Switch", RT5640_SPK_L_MIXER,
RT5640_M_OM_L_SM_L_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_spk_r_mix[] = {
SOC_DAPM_SINGLE("REC MIXR Switch", RT5640_SPK_R_MIXER,
RT5640_M_RM_R_SM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("INR Switch", RT5640_SPK_R_MIXER,
RT5640_M_IN_R_SM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_SPK_R_MIXER,
RT5640_M_DAC_R1_SM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_SPK_R_MIXER,
RT5640_M_DAC_R2_SM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("OUT MIXR Switch", RT5640_SPK_R_MIXER,
RT5640_M_OM_R_SM_R_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_out_l_mix[] = {
SOC_DAPM_SINGLE("SPK MIXL Switch", RT5640_OUT_L3_MIXER,
RT5640_M_SM_L_OM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("BST1 Switch", RT5640_OUT_L3_MIXER,
RT5640_M_BST1_OM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("INL Switch", RT5640_OUT_L3_MIXER,
RT5640_M_IN_L_OM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("REC MIXL Switch", RT5640_OUT_L3_MIXER,
RT5640_M_RM_L_OM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_OUT_L3_MIXER,
RT5640_M_DAC_R2_OM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_OUT_L3_MIXER,
RT5640_M_DAC_L2_OM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_OUT_L3_MIXER,
RT5640_M_DAC_L1_OM_L_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_out_r_mix[] = {
SOC_DAPM_SINGLE("SPK MIXR Switch", RT5640_OUT_R3_MIXER,
RT5640_M_SM_L_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("BST2 Switch", RT5640_OUT_R3_MIXER,
RT5640_M_BST4_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("BST1 Switch", RT5640_OUT_R3_MIXER,
RT5640_M_BST1_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("INR Switch", RT5640_OUT_R3_MIXER,
RT5640_M_IN_R_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("REC MIXR Switch", RT5640_OUT_R3_MIXER,
RT5640_M_RM_R_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_OUT_R3_MIXER,
RT5640_M_DAC_L2_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_OUT_R3_MIXER,
RT5640_M_DAC_R2_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_OUT_R3_MIXER,
RT5640_M_DAC_R1_OM_R_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5639_out_l_mix[] = {
SOC_DAPM_SINGLE("BST1 Switch", RT5640_OUT_L3_MIXER,
RT5640_M_BST1_OM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("INL Switch", RT5640_OUT_L3_MIXER,
RT5640_M_IN_L_OM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("REC MIXL Switch", RT5640_OUT_L3_MIXER,
RT5640_M_RM_L_OM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_OUT_L3_MIXER,
RT5640_M_DAC_L1_OM_L_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5639_out_r_mix[] = {
SOC_DAPM_SINGLE("BST2 Switch", RT5640_OUT_R3_MIXER,
RT5640_M_BST4_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("BST1 Switch", RT5640_OUT_R3_MIXER,
RT5640_M_BST1_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("INR Switch", RT5640_OUT_R3_MIXER,
RT5640_M_IN_R_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("REC MIXR Switch", RT5640_OUT_R3_MIXER,
RT5640_M_RM_R_OM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_OUT_R3_MIXER,
RT5640_M_DAC_R1_OM_R_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_spo_l_mix[] = {
SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_SPO_L_MIXER,
RT5640_M_DAC_R1_SPM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_SPO_L_MIXER,
RT5640_M_DAC_L1_SPM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("SPKVOL R Switch", RT5640_SPO_L_MIXER,
RT5640_M_SV_R_SPM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("SPKVOL L Switch", RT5640_SPO_L_MIXER,
RT5640_M_SV_L_SPM_L_SFT, 1, 1),
SOC_DAPM_SINGLE("BST1 Switch", RT5640_SPO_L_MIXER,
RT5640_M_BST1_SPM_L_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_spo_r_mix[] = {
SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_SPO_R_MIXER,
RT5640_M_DAC_R1_SPM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("SPKVOL R Switch", RT5640_SPO_R_MIXER,
RT5640_M_SV_R_SPM_R_SFT, 1, 1),
SOC_DAPM_SINGLE("BST1 Switch", RT5640_SPO_R_MIXER,
RT5640_M_BST1_SPM_R_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_hpo_mix[] = {
SOC_DAPM_SINGLE("HPO MIX DAC2 Switch", RT5640_HPO_MIXER,
RT5640_M_DAC2_HM_SFT, 1, 1),
SOC_DAPM_SINGLE("HPO MIX DAC1 Switch", RT5640_HPO_MIXER,
RT5640_M_DAC1_HM_SFT, 1, 1),
SOC_DAPM_SINGLE("HPO MIX HPVOL Switch", RT5640_HPO_MIXER,
RT5640_M_HPVOL_HM_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5639_hpo_mix[] = {
SOC_DAPM_SINGLE("HPO MIX DAC1 Switch", RT5640_HPO_MIXER,
RT5640_M_DAC1_HM_SFT, 1, 1),
SOC_DAPM_SINGLE("HPO MIX HPVOL Switch", RT5640_HPO_MIXER,
RT5640_M_HPVOL_HM_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_lout_mix[] = {
SOC_DAPM_SINGLE("DAC L1 Switch", RT5640_LOUT_MIXER,
RT5640_M_DAC_L1_LM_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC R1 Switch", RT5640_LOUT_MIXER,
RT5640_M_DAC_R1_LM_SFT, 1, 1),
SOC_DAPM_SINGLE("OUTVOL L Switch", RT5640_LOUT_MIXER,
RT5640_M_OV_L_LM_SFT, 1, 1),
SOC_DAPM_SINGLE("OUTVOL R Switch", RT5640_LOUT_MIXER,
RT5640_M_OV_R_LM_SFT, 1, 1),
};
static const struct snd_kcontrol_new rt5640_mono_mix[] = {
SOC_DAPM_SINGLE("DAC R2 Switch", RT5640_MONO_MIXER,
RT5640_M_DAC_R2_MM_SFT, 1, 1),
SOC_DAPM_SINGLE("DAC L2 Switch", RT5640_MONO_MIXER,
RT5640_M_DAC_L2_MM_SFT, 1, 1),
SOC_DAPM_SINGLE("OUTVOL R Switch", RT5640_MONO_MIXER,
RT5640_M_OV_R_MM_SFT, 1, 1),
SOC_DAPM_SINGLE("OUTVOL L Switch", RT5640_MONO_MIXER,
RT5640_M_OV_L_MM_SFT, 1, 1),
SOC_DAPM_SINGLE("BST1 Switch", RT5640_MONO_MIXER,
RT5640_M_BST1_MM_SFT, 1, 1),
};
static const struct snd_kcontrol_new spk_l_enable_control =
SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5640_SPK_VOL,
RT5640_L_MUTE_SFT, 1, 1);
static const struct snd_kcontrol_new spk_r_enable_control =
SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5640_SPK_VOL,
RT5640_R_MUTE_SFT, 1, 1);
static const struct snd_kcontrol_new hp_l_enable_control =
SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5640_HP_VOL,
RT5640_L_MUTE_SFT, 1, 1);
static const struct snd_kcontrol_new hp_r_enable_control =
SOC_DAPM_SINGLE_AUTODISABLE("Switch", RT5640_HP_VOL,
RT5640_R_MUTE_SFT, 1, 1);
/* Stereo ADC source */
static const char * const rt5640_stereo_adc1_src[] = {
"DIG MIX", "ADC"
};
static SOC_ENUM_SINGLE_DECL(rt5640_stereo_adc1_enum, RT5640_STO_ADC_MIXER,
RT5640_ADC_1_SRC_SFT, rt5640_stereo_adc1_src);
static const struct snd_kcontrol_new rt5640_sto_adc_1_mux =
SOC_DAPM_ENUM("Stereo ADC1 Mux", rt5640_stereo_adc1_enum);
static const char * const rt5640_stereo_adc2_src[] = {
"DMIC1", "DMIC2", "DIG MIX"
};
static SOC_ENUM_SINGLE_DECL(rt5640_stereo_adc2_enum, RT5640_STO_ADC_MIXER,
RT5640_ADC_2_SRC_SFT, rt5640_stereo_adc2_src);
static const struct snd_kcontrol_new rt5640_sto_adc_2_mux =
SOC_DAPM_ENUM("Stereo ADC2 Mux", rt5640_stereo_adc2_enum);
/* Mono ADC source */
static const char * const rt5640_mono_adc_l1_src[] = {
"Mono DAC MIXL", "ADCL"
};
static SOC_ENUM_SINGLE_DECL(rt5640_mono_adc_l1_enum, RT5640_MONO_ADC_MIXER,
RT5640_MONO_ADC_L1_SRC_SFT, rt5640_mono_adc_l1_src);
static const struct snd_kcontrol_new rt5640_mono_adc_l1_mux =
SOC_DAPM_ENUM("Mono ADC1 left source", rt5640_mono_adc_l1_enum);
static const char * const rt5640_mono_adc_l2_src[] = {
"DMIC L1", "DMIC L2", "Mono DAC MIXL"
};
static SOC_ENUM_SINGLE_DECL(rt5640_mono_adc_l2_enum, RT5640_MONO_ADC_MIXER,
RT5640_MONO_ADC_L2_SRC_SFT, rt5640_mono_adc_l2_src);
static const struct snd_kcontrol_new rt5640_mono_adc_l2_mux =
SOC_DAPM_ENUM("Mono ADC2 left source", rt5640_mono_adc_l2_enum);
static const char * const rt5640_mono_adc_r1_src[] = {
"Mono DAC MIXR", "ADCR"
};
static SOC_ENUM_SINGLE_DECL(rt5640_mono_adc_r1_enum, RT5640_MONO_ADC_MIXER,
RT5640_MONO_ADC_R1_SRC_SFT, rt5640_mono_adc_r1_src);
static const struct snd_kcontrol_new rt5640_mono_adc_r1_mux =
SOC_DAPM_ENUM("Mono ADC1 right source", rt5640_mono_adc_r1_enum);
static const char * const rt5640_mono_adc_r2_src[] = {
"DMIC R1", "DMIC R2", "Mono DAC MIXR"
};
static SOC_ENUM_SINGLE_DECL(rt5640_mono_adc_r2_enum, RT5640_MONO_ADC_MIXER,
RT5640_MONO_ADC_R2_SRC_SFT, rt5640_mono_adc_r2_src);
static const struct snd_kcontrol_new rt5640_mono_adc_r2_mux =
SOC_DAPM_ENUM("Mono ADC2 right source", rt5640_mono_adc_r2_enum);
/* DAC2 channel source */
static const char * const rt5640_dac_l2_src[] = {
"IF2", "Base L/R"
};
static int rt5640_dac_l2_values[] = {
0,
3,
};
static SOC_VALUE_ENUM_SINGLE_DECL(rt5640_dac_l2_enum,
RT5640_DSP_PATH2, RT5640_DAC_L2_SEL_SFT,
0x3, rt5640_dac_l2_src, rt5640_dac_l2_values);
static const struct snd_kcontrol_new rt5640_dac_l2_mux =
SOC_DAPM_ENUM("DAC2 left channel source", rt5640_dac_l2_enum);
static const char * const rt5640_dac_r2_src[] = {
"IF2",
};
static int rt5640_dac_r2_values[] = {
0,
};
static SOC_VALUE_ENUM_SINGLE_DECL(rt5640_dac_r2_enum,
RT5640_DSP_PATH2, RT5640_DAC_R2_SEL_SFT,
0x3, rt5640_dac_r2_src, rt5640_dac_r2_values);
static const struct snd_kcontrol_new rt5640_dac_r2_mux =
SOC_DAPM_ENUM("DAC2 right channel source", rt5640_dac_r2_enum);
/* digital interface and iis interface map */
static const char * const rt5640_dai_iis_map[] = {
"1:1|2:2", "1:2|2:1", "1:1|2:1", "1:2|2:2"
};
static int rt5640_dai_iis_map_values[] = {
0,
5,
6,
7,
};
static SOC_VALUE_ENUM_SINGLE_DECL(rt5640_dai_iis_map_enum,
RT5640_I2S1_SDP, RT5640_I2S_IF_SFT,
0x7, rt5640_dai_iis_map,
rt5640_dai_iis_map_values);
static const struct snd_kcontrol_new rt5640_dai_mux =
SOC_DAPM_ENUM("DAI select", rt5640_dai_iis_map_enum);
/* SDI select */
static const char * const rt5640_sdi_sel[] = {
"IF1", "IF2"
};
static SOC_ENUM_SINGLE_DECL(rt5640_sdi_sel_enum, RT5640_I2S2_SDP,
RT5640_I2S2_SDI_SFT, rt5640_sdi_sel);
static const struct snd_kcontrol_new rt5640_sdi_mux =
SOC_DAPM_ENUM("SDI select", rt5640_sdi_sel_enum);
static void hp_amp_power_on(struct snd_soc_component *component)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
/* depop parameters */
regmap_update_bits(rt5640->regmap, RT5640_PR_BASE +
RT5640_CHPUMP_INT_REG1, 0x0700, 0x0200);
regmap_update_bits(rt5640->regmap, RT5640_DEPOP_M2,
RT5640_DEPOP_MASK, RT5640_DEPOP_MAN);
regmap_update_bits(rt5640->regmap, RT5640_DEPOP_M1,
RT5640_HP_CP_MASK | RT5640_HP_SG_MASK | RT5640_HP_CB_MASK,
RT5640_HP_CP_PU | RT5640_HP_SG_DIS | RT5640_HP_CB_PU);
regmap_write(rt5640->regmap, RT5640_PR_BASE + RT5640_HP_DCC_INT1,
0x9f00);
/* headphone amp power on */
regmap_update_bits(rt5640->regmap, RT5640_PWR_ANLG1,
RT5640_PWR_FV1 | RT5640_PWR_FV2, 0);
regmap_update_bits(rt5640->regmap, RT5640_PWR_ANLG1,
RT5640_PWR_HA,
RT5640_PWR_HA);
usleep_range(10000, 15000);
regmap_update_bits(rt5640->regmap, RT5640_PWR_ANLG1,
RT5640_PWR_FV1 | RT5640_PWR_FV2 ,
RT5640_PWR_FV1 | RT5640_PWR_FV2);
}
static void rt5640_pmu_depop(struct snd_soc_component *component)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
regmap_update_bits(rt5640->regmap, RT5640_DEPOP_M2,
RT5640_DEPOP_MASK | RT5640_DIG_DP_MASK,
RT5640_DEPOP_AUTO | RT5640_DIG_DP_EN);
regmap_update_bits(rt5640->regmap, RT5640_CHARGE_PUMP,
RT5640_PM_HP_MASK, RT5640_PM_HP_HV);
regmap_update_bits(rt5640->regmap, RT5640_DEPOP_M3,
RT5640_CP_FQ1_MASK | RT5640_CP_FQ2_MASK | RT5640_CP_FQ3_MASK,
(RT5640_CP_FQ_192_KHZ << RT5640_CP_FQ1_SFT) |
(RT5640_CP_FQ_12_KHZ << RT5640_CP_FQ2_SFT) |
(RT5640_CP_FQ_192_KHZ << RT5640_CP_FQ3_SFT));
regmap_write(rt5640->regmap, RT5640_PR_BASE +
RT5640_MAMP_INT_REG2, 0x1c00);
regmap_update_bits(rt5640->regmap, RT5640_DEPOP_M1,
RT5640_HP_CP_MASK | RT5640_HP_SG_MASK,
RT5640_HP_CP_PD | RT5640_HP_SG_EN);
regmap_update_bits(rt5640->regmap, RT5640_PR_BASE +
RT5640_CHPUMP_INT_REG1, 0x0700, 0x0400);
}
static int rt5640_hp_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
rt5640_pmu_depop(component);
rt5640->hp_mute = false;
break;
case SND_SOC_DAPM_PRE_PMD:
rt5640->hp_mute = true;
msleep(70);
break;
default:
return 0;
}
return 0;
}
static int rt5640_lout_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
hp_amp_power_on(component);
snd_soc_component_update_bits(component, RT5640_PWR_ANLG1,
RT5640_PWR_LM, RT5640_PWR_LM);
snd_soc_component_update_bits(component, RT5640_OUTPUT,
RT5640_L_MUTE | RT5640_R_MUTE, 0);
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_component_update_bits(component, RT5640_OUTPUT,
RT5640_L_MUTE | RT5640_R_MUTE,
RT5640_L_MUTE | RT5640_R_MUTE);
snd_soc_component_update_bits(component, RT5640_PWR_ANLG1,
RT5640_PWR_LM, 0);
break;
default:
return 0;
}
return 0;
}
static int rt5640_hp_power_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
hp_amp_power_on(component);
break;
default:
return 0;
}
return 0;
}
static int rt5640_hp_post_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
if (!rt5640->hp_mute)
msleep(80);
break;
default:
return 0;
}
return 0;
}
static const struct snd_soc_dapm_widget rt5640_dapm_widgets[] = {
/* ASRC */
SND_SOC_DAPM_SUPPLY_S("Stereo Filter ASRC", 1, RT5640_ASRC_1,
15, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY_S("I2S2 Filter ASRC", 1, RT5640_ASRC_1,
12, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY_S("I2S2 ASRC", 1, RT5640_ASRC_1,
11, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY_S("DMIC1 ASRC", 1, RT5640_ASRC_1,
9, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY_S("DMIC2 ASRC", 1, RT5640_ASRC_1,
8, 0, NULL, 0),
/* Input Side */
/* micbias */
SND_SOC_DAPM_SUPPLY("LDO2", RT5640_PWR_ANLG1,
RT5640_PWR_LDO2_BIT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("MICBIAS1", RT5640_PWR_ANLG2,
RT5640_PWR_MB1_BIT, 0, NULL, 0),
/* Input Lines */
SND_SOC_DAPM_INPUT("DMIC1"),
SND_SOC_DAPM_INPUT("DMIC2"),
SND_SOC_DAPM_INPUT("IN1P"),
SND_SOC_DAPM_INPUT("IN1N"),
SND_SOC_DAPM_INPUT("IN2P"),
SND_SOC_DAPM_INPUT("IN2N"),
SND_SOC_DAPM_INPUT("IN3P"),
SND_SOC_DAPM_INPUT("IN3N"),
SND_SOC_DAPM_PGA("DMIC L1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("DMIC R1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("DMIC L2", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("DMIC R2", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DMIC CLK", SND_SOC_NOPM, 0, 0,
set_dmic_clk, SND_SOC_DAPM_PRE_PMU),
SND_SOC_DAPM_SUPPLY("DMIC1 Power", RT5640_DMIC, RT5640_DMIC_1_EN_SFT, 0,
NULL, 0),
SND_SOC_DAPM_SUPPLY("DMIC2 Power", RT5640_DMIC, RT5640_DMIC_2_EN_SFT, 0,
NULL, 0),
/* Boost */
SND_SOC_DAPM_PGA("BST1", RT5640_PWR_ANLG2,
RT5640_PWR_BST1_BIT, 0, NULL, 0),
SND_SOC_DAPM_PGA("BST2", RT5640_PWR_ANLG2,
RT5640_PWR_BST4_BIT, 0, NULL, 0),
SND_SOC_DAPM_PGA("BST3", RT5640_PWR_ANLG2,
RT5640_PWR_BST2_BIT, 0, NULL, 0),
/* Input Volume */
SND_SOC_DAPM_PGA("INL VOL", RT5640_PWR_VOL,
RT5640_PWR_IN_L_BIT, 0, NULL, 0),
SND_SOC_DAPM_PGA("INR VOL", RT5640_PWR_VOL,
RT5640_PWR_IN_R_BIT, 0, NULL, 0),
/* REC Mixer */
SND_SOC_DAPM_MIXER("RECMIXL", RT5640_PWR_MIXER, RT5640_PWR_RM_L_BIT, 0,
rt5640_rec_l_mix, ARRAY_SIZE(rt5640_rec_l_mix)),
SND_SOC_DAPM_MIXER("RECMIXR", RT5640_PWR_MIXER, RT5640_PWR_RM_R_BIT, 0,
rt5640_rec_r_mix, ARRAY_SIZE(rt5640_rec_r_mix)),
/* ADCs */
SND_SOC_DAPM_ADC("ADC L", NULL, RT5640_PWR_DIG1,
RT5640_PWR_ADC_L_BIT, 0),
SND_SOC_DAPM_ADC("ADC R", NULL, RT5640_PWR_DIG1,
RT5640_PWR_ADC_R_BIT, 0),
/* ADC Mux */
SND_SOC_DAPM_MUX("Stereo ADC L2 Mux", SND_SOC_NOPM, 0, 0,
&rt5640_sto_adc_2_mux),
SND_SOC_DAPM_MUX("Stereo ADC R2 Mux", SND_SOC_NOPM, 0, 0,
&rt5640_sto_adc_2_mux),
SND_SOC_DAPM_MUX("Stereo ADC L1 Mux", SND_SOC_NOPM, 0, 0,
&rt5640_sto_adc_1_mux),
SND_SOC_DAPM_MUX("Stereo ADC R1 Mux", SND_SOC_NOPM, 0, 0,
&rt5640_sto_adc_1_mux),
SND_SOC_DAPM_MUX("Mono ADC L2 Mux", SND_SOC_NOPM, 0, 0,
&rt5640_mono_adc_l2_mux),
SND_SOC_DAPM_MUX("Mono ADC L1 Mux", SND_SOC_NOPM, 0, 0,
&rt5640_mono_adc_l1_mux),
SND_SOC_DAPM_MUX("Mono ADC R1 Mux", SND_SOC_NOPM, 0, 0,
&rt5640_mono_adc_r1_mux),
SND_SOC_DAPM_MUX("Mono ADC R2 Mux", SND_SOC_NOPM, 0, 0,
&rt5640_mono_adc_r2_mux),
/* ADC Mixer */
SND_SOC_DAPM_SUPPLY("Stereo Filter", RT5640_PWR_DIG2,
RT5640_PWR_ADC_SF_BIT, 0, NULL, 0),
SND_SOC_DAPM_MIXER("Stereo ADC MIXL", SND_SOC_NOPM, 0, 0,
rt5640_sto_adc_l_mix, ARRAY_SIZE(rt5640_sto_adc_l_mix)),
SND_SOC_DAPM_MIXER("Stereo ADC MIXR", SND_SOC_NOPM, 0, 0,
rt5640_sto_adc_r_mix, ARRAY_SIZE(rt5640_sto_adc_r_mix)),
SND_SOC_DAPM_SUPPLY("Mono Left Filter", RT5640_PWR_DIG2,
RT5640_PWR_ADC_MF_L_BIT, 0, NULL, 0),
SND_SOC_DAPM_MIXER("Mono ADC MIXL", SND_SOC_NOPM, 0, 0,
rt5640_mono_adc_l_mix, ARRAY_SIZE(rt5640_mono_adc_l_mix)),
SND_SOC_DAPM_SUPPLY("Mono Right Filter", RT5640_PWR_DIG2,
RT5640_PWR_ADC_MF_R_BIT, 0, NULL, 0),
SND_SOC_DAPM_MIXER("Mono ADC MIXR", SND_SOC_NOPM, 0, 0,
rt5640_mono_adc_r_mix, ARRAY_SIZE(rt5640_mono_adc_r_mix)),
/* Digital Interface */
SND_SOC_DAPM_SUPPLY("I2S1", RT5640_PWR_DIG1,
RT5640_PWR_I2S1_BIT, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF1 DAC", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF1 DAC L", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF1 DAC R", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF1 ADC", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF1 ADC L", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF1 ADC R", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("I2S2", RT5640_PWR_DIG1,
RT5640_PWR_I2S2_BIT, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF2 DAC", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF2 DAC L", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF2 DAC R", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF2 ADC", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF2 ADC L", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("IF2 ADC R", SND_SOC_NOPM, 0, 0, NULL, 0),
/* Digital Interface Select */
SND_SOC_DAPM_MUX("DAI1 RX Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux),
SND_SOC_DAPM_MUX("DAI1 TX Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux),
SND_SOC_DAPM_MUX("DAI1 IF1 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux),
SND_SOC_DAPM_MUX("DAI1 IF2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux),
SND_SOC_DAPM_MUX("SDI1 TX Mux", SND_SOC_NOPM, 0, 0, &rt5640_sdi_mux),
SND_SOC_DAPM_MUX("DAI2 RX Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux),
SND_SOC_DAPM_MUX("DAI2 TX Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux),
SND_SOC_DAPM_MUX("DAI2 IF1 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux),
SND_SOC_DAPM_MUX("DAI2 IF2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dai_mux),
SND_SOC_DAPM_MUX("SDI2 TX Mux", SND_SOC_NOPM, 0, 0, &rt5640_sdi_mux),
/* Audio Interface */
SND_SOC_DAPM_AIF_IN("AIF1RX", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("AIF1TX", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("AIF2RX", "AIF2 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_OUT("AIF2TX", "AIF2 Capture", 0, SND_SOC_NOPM, 0, 0),
/* Output Side */
/* DAC mixer before sound effect */
SND_SOC_DAPM_MIXER("DAC MIXL", SND_SOC_NOPM, 0, 0,
rt5640_dac_l_mix, ARRAY_SIZE(rt5640_dac_l_mix)),
SND_SOC_DAPM_MIXER("DAC MIXR", SND_SOC_NOPM, 0, 0,
rt5640_dac_r_mix, ARRAY_SIZE(rt5640_dac_r_mix)),
/* DAC Mixer */
SND_SOC_DAPM_MIXER("Mono DAC MIXL", SND_SOC_NOPM, 0, 0,
rt5640_mono_dac_l_mix, ARRAY_SIZE(rt5640_mono_dac_l_mix)),
SND_SOC_DAPM_MIXER("Mono DAC MIXR", SND_SOC_NOPM, 0, 0,
rt5640_mono_dac_r_mix, ARRAY_SIZE(rt5640_mono_dac_r_mix)),
SND_SOC_DAPM_MIXER("DIG MIXL", SND_SOC_NOPM, 0, 0,
rt5640_dig_l_mix, ARRAY_SIZE(rt5640_dig_l_mix)),
SND_SOC_DAPM_MIXER("DIG MIXR", SND_SOC_NOPM, 0, 0,
rt5640_dig_r_mix, ARRAY_SIZE(rt5640_dig_r_mix)),
/* DACs */
SND_SOC_DAPM_DAC("DAC L1", NULL, SND_SOC_NOPM,
0, 0),
SND_SOC_DAPM_DAC("DAC R1", NULL, SND_SOC_NOPM,
0, 0),
SND_SOC_DAPM_SUPPLY("DAC L1 Power", RT5640_PWR_DIG1,
RT5640_PWR_DAC_L1_BIT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAC R1 Power", RT5640_PWR_DIG1,
RT5640_PWR_DAC_R1_BIT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAC L2 Power", RT5640_PWR_DIG1,
RT5640_PWR_DAC_L2_BIT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DAC R2 Power", RT5640_PWR_DIG1,
RT5640_PWR_DAC_R2_BIT, 0, NULL, 0),
/* SPK/OUT Mixer */
SND_SOC_DAPM_MIXER("SPK MIXL", RT5640_PWR_MIXER, RT5640_PWR_SM_L_BIT,
0, rt5640_spk_l_mix, ARRAY_SIZE(rt5640_spk_l_mix)),
SND_SOC_DAPM_MIXER("SPK MIXR", RT5640_PWR_MIXER, RT5640_PWR_SM_R_BIT,
0, rt5640_spk_r_mix, ARRAY_SIZE(rt5640_spk_r_mix)),
/* Ouput Volume */
SND_SOC_DAPM_PGA("SPKVOL L", RT5640_PWR_VOL,
RT5640_PWR_SV_L_BIT, 0, NULL, 0),
SND_SOC_DAPM_PGA("SPKVOL R", RT5640_PWR_VOL,
RT5640_PWR_SV_R_BIT, 0, NULL, 0),
SND_SOC_DAPM_PGA("OUTVOL L", RT5640_PWR_VOL,
RT5640_PWR_OV_L_BIT, 0, NULL, 0),
SND_SOC_DAPM_PGA("OUTVOL R", RT5640_PWR_VOL,
RT5640_PWR_OV_R_BIT, 0, NULL, 0),
SND_SOC_DAPM_PGA("HPOVOL L", RT5640_PWR_VOL,
RT5640_PWR_HV_L_BIT, 0, NULL, 0),
SND_SOC_DAPM_PGA("HPOVOL R", RT5640_PWR_VOL,
RT5640_PWR_HV_R_BIT, 0, NULL, 0),
/* SPO/HPO/LOUT/Mono Mixer */
SND_SOC_DAPM_MIXER("SPOL MIX", SND_SOC_NOPM, 0,
0, rt5640_spo_l_mix, ARRAY_SIZE(rt5640_spo_l_mix)),
SND_SOC_DAPM_MIXER("SPOR MIX", SND_SOC_NOPM, 0,
0, rt5640_spo_r_mix, ARRAY_SIZE(rt5640_spo_r_mix)),
SND_SOC_DAPM_MIXER("LOUT MIX", SND_SOC_NOPM, 0, 0,
rt5640_lout_mix, ARRAY_SIZE(rt5640_lout_mix)),
SND_SOC_DAPM_SUPPLY_S("Improve HP Amp Drv", 1, SND_SOC_NOPM,
0, 0, rt5640_hp_power_event, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_PGA_S("HP Amp", 1, SND_SOC_NOPM, 0, 0,
rt5640_hp_event,
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_PGA_S("LOUT amp", 1, SND_SOC_NOPM, 0, 0,
rt5640_lout_event,
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_SUPPLY("HP L Amp", RT5640_PWR_ANLG1,
RT5640_PWR_HP_L_BIT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("HP R Amp", RT5640_PWR_ANLG1,
RT5640_PWR_HP_R_BIT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Improve SPK Amp Drv", RT5640_PWR_DIG1,
RT5640_PWR_CLS_D_BIT, 0, NULL, 0),
/* Output Switch */
SND_SOC_DAPM_SWITCH("Speaker L Playback", SND_SOC_NOPM, 0, 0,
&spk_l_enable_control),
SND_SOC_DAPM_SWITCH("Speaker R Playback", SND_SOC_NOPM, 0, 0,
&spk_r_enable_control),
SND_SOC_DAPM_SWITCH("HP L Playback", SND_SOC_NOPM, 0, 0,
&hp_l_enable_control),
SND_SOC_DAPM_SWITCH("HP R Playback", SND_SOC_NOPM, 0, 0,
&hp_r_enable_control),
SND_SOC_DAPM_POST("HP Post", rt5640_hp_post_event),
/* Output Lines */
SND_SOC_DAPM_OUTPUT("SPOLP"),
SND_SOC_DAPM_OUTPUT("SPOLN"),
SND_SOC_DAPM_OUTPUT("SPORP"),
SND_SOC_DAPM_OUTPUT("SPORN"),
SND_SOC_DAPM_OUTPUT("HPOL"),
SND_SOC_DAPM_OUTPUT("HPOR"),
SND_SOC_DAPM_OUTPUT("LOUTL"),
SND_SOC_DAPM_OUTPUT("LOUTR"),
};
static const struct snd_soc_dapm_widget rt5640_specific_dapm_widgets[] = {
/* Audio DSP */
SND_SOC_DAPM_PGA("Audio DSP", SND_SOC_NOPM, 0, 0, NULL, 0),
/* ANC */
SND_SOC_DAPM_PGA("ANC", SND_SOC_NOPM, 0, 0, NULL, 0),
/* DAC2 channel Mux */
SND_SOC_DAPM_MUX("DAC L2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dac_l2_mux),
SND_SOC_DAPM_MUX("DAC R2 Mux", SND_SOC_NOPM, 0, 0, &rt5640_dac_r2_mux),
SND_SOC_DAPM_MIXER("Stereo DAC MIXL", SND_SOC_NOPM, 0, 0,
rt5640_sto_dac_l_mix, ARRAY_SIZE(rt5640_sto_dac_l_mix)),
SND_SOC_DAPM_MIXER("Stereo DAC MIXR", SND_SOC_NOPM, 0, 0,
rt5640_sto_dac_r_mix, ARRAY_SIZE(rt5640_sto_dac_r_mix)),
SND_SOC_DAPM_DAC("DAC R2", NULL, SND_SOC_NOPM, 0,
0),
SND_SOC_DAPM_DAC("DAC L2", NULL, SND_SOC_NOPM, 0,
0),
SND_SOC_DAPM_MIXER("OUT MIXL", RT5640_PWR_MIXER, RT5640_PWR_OM_L_BIT,
0, rt5640_out_l_mix, ARRAY_SIZE(rt5640_out_l_mix)),
SND_SOC_DAPM_MIXER("OUT MIXR", RT5640_PWR_MIXER, RT5640_PWR_OM_R_BIT,
0, rt5640_out_r_mix, ARRAY_SIZE(rt5640_out_r_mix)),
SND_SOC_DAPM_MIXER("HPO MIX L", SND_SOC_NOPM, 0, 0,
rt5640_hpo_mix, ARRAY_SIZE(rt5640_hpo_mix)),
SND_SOC_DAPM_MIXER("HPO MIX R", SND_SOC_NOPM, 0, 0,
rt5640_hpo_mix, ARRAY_SIZE(rt5640_hpo_mix)),
SND_SOC_DAPM_MIXER("Mono MIX", RT5640_PWR_ANLG1, RT5640_PWR_MM_BIT, 0,
rt5640_mono_mix, ARRAY_SIZE(rt5640_mono_mix)),
SND_SOC_DAPM_SUPPLY("Improve MONO Amp Drv", RT5640_PWR_ANLG1,
RT5640_PWR_MA_BIT, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("MONOP"),
SND_SOC_DAPM_OUTPUT("MONON"),
};
static const struct snd_soc_dapm_widget rt5639_specific_dapm_widgets[] = {
SND_SOC_DAPM_MIXER("Stereo DAC MIXL", SND_SOC_NOPM, 0, 0,
rt5639_sto_dac_l_mix, ARRAY_SIZE(rt5639_sto_dac_l_mix)),
SND_SOC_DAPM_MIXER("Stereo DAC MIXR", SND_SOC_NOPM, 0, 0,
rt5639_sto_dac_r_mix, ARRAY_SIZE(rt5639_sto_dac_r_mix)),
SND_SOC_DAPM_MIXER("OUT MIXL", RT5640_PWR_MIXER, RT5640_PWR_OM_L_BIT,
0, rt5639_out_l_mix, ARRAY_SIZE(rt5639_out_l_mix)),
SND_SOC_DAPM_MIXER("OUT MIXR", RT5640_PWR_MIXER, RT5640_PWR_OM_R_BIT,
0, rt5639_out_r_mix, ARRAY_SIZE(rt5639_out_r_mix)),
SND_SOC_DAPM_MIXER("HPO MIX L", SND_SOC_NOPM, 0, 0,
rt5639_hpo_mix, ARRAY_SIZE(rt5639_hpo_mix)),
SND_SOC_DAPM_MIXER("HPO MIX R", SND_SOC_NOPM, 0, 0,
rt5639_hpo_mix, ARRAY_SIZE(rt5639_hpo_mix)),
};
static const struct snd_soc_dapm_route rt5640_dapm_routes[] = {
{ "I2S1", NULL, "Stereo Filter ASRC", is_using_asrc },
{ "I2S2", NULL, "I2S2 ASRC", is_using_asrc },
{ "I2S2", NULL, "I2S2 Filter ASRC", is_using_asrc },
{ "DMIC1", NULL, "DMIC1 ASRC", is_using_asrc },
{ "DMIC2", NULL, "DMIC2 ASRC", is_using_asrc },
{"IN1P", NULL, "LDO2"},
{"IN2P", NULL, "LDO2"},
{"IN3P", NULL, "LDO2"},
{"DMIC L1", NULL, "DMIC1"},
{"DMIC R1", NULL, "DMIC1"},
{"DMIC L2", NULL, "DMIC2"},
{"DMIC R2", NULL, "DMIC2"},
{"BST1", NULL, "IN1P"},
{"BST1", NULL, "IN1N"},
{"BST2", NULL, "IN2P"},
{"BST2", NULL, "IN2N"},
{"BST3", NULL, "IN3P"},
{"BST3", NULL, "IN3N"},
{"INL VOL", NULL, "IN2P"},
{"INR VOL", NULL, "IN2N"},
{"RECMIXL", "HPOL Switch", "HPOL"},
{"RECMIXL", "INL Switch", "INL VOL"},
{"RECMIXL", "BST3 Switch", "BST3"},
{"RECMIXL", "BST2 Switch", "BST2"},
{"RECMIXL", "BST1 Switch", "BST1"},
{"RECMIXL", "OUT MIXL Switch", "OUT MIXL"},
{"RECMIXR", "HPOR Switch", "HPOR"},
{"RECMIXR", "INR Switch", "INR VOL"},
{"RECMIXR", "BST3 Switch", "BST3"},
{"RECMIXR", "BST2 Switch", "BST2"},
{"RECMIXR", "BST1 Switch", "BST1"},
{"RECMIXR", "OUT MIXR Switch", "OUT MIXR"},
{"ADC L", NULL, "RECMIXL"},
{"ADC R", NULL, "RECMIXR"},
{"DMIC L1", NULL, "DMIC CLK"},
{"DMIC L1", NULL, "DMIC1 Power"},
{"DMIC R1", NULL, "DMIC CLK"},
{"DMIC R1", NULL, "DMIC1 Power"},
{"DMIC L2", NULL, "DMIC CLK"},
{"DMIC L2", NULL, "DMIC2 Power"},
{"DMIC R2", NULL, "DMIC CLK"},
{"DMIC R2", NULL, "DMIC2 Power"},
{"Stereo ADC L2 Mux", "DMIC1", "DMIC L1"},
{"Stereo ADC L2 Mux", "DMIC2", "DMIC L2"},
{"Stereo ADC L2 Mux", "DIG MIX", "DIG MIXL"},
{"Stereo ADC L1 Mux", "ADC", "ADC L"},
{"Stereo ADC L1 Mux", "DIG MIX", "DIG MIXL"},
{"Stereo ADC R1 Mux", "ADC", "ADC R"},
{"Stereo ADC R1 Mux", "DIG MIX", "DIG MIXR"},
{"Stereo ADC R2 Mux", "DMIC1", "DMIC R1"},
{"Stereo ADC R2 Mux", "DMIC2", "DMIC R2"},
{"Stereo ADC R2 Mux", "DIG MIX", "DIG MIXR"},
{"Mono ADC L2 Mux", "DMIC L1", "DMIC L1"},
{"Mono ADC L2 Mux", "DMIC L2", "DMIC L2"},
{"Mono ADC L2 Mux", "Mono DAC MIXL", "Mono DAC MIXL"},
{"Mono ADC L1 Mux", "Mono DAC MIXL", "Mono DAC MIXL"},
{"Mono ADC L1 Mux", "ADCL", "ADC L"},
{"Mono ADC R1 Mux", "Mono DAC MIXR", "Mono DAC MIXR"},
{"Mono ADC R1 Mux", "ADCR", "ADC R"},
{"Mono ADC R2 Mux", "DMIC R1", "DMIC R1"},
{"Mono ADC R2 Mux", "DMIC R2", "DMIC R2"},
{"Mono ADC R2 Mux", "Mono DAC MIXR", "Mono DAC MIXR"},
{"Stereo ADC MIXL", "ADC1 Switch", "Stereo ADC L1 Mux"},
{"Stereo ADC MIXL", "ADC2 Switch", "Stereo ADC L2 Mux"},
{"Stereo ADC MIXL", NULL, "Stereo Filter"},
{"Stereo ADC MIXR", "ADC1 Switch", "Stereo ADC R1 Mux"},
{"Stereo ADC MIXR", "ADC2 Switch", "Stereo ADC R2 Mux"},
{"Stereo ADC MIXR", NULL, "Stereo Filter"},
{"Mono ADC MIXL", "ADC1 Switch", "Mono ADC L1 Mux"},
{"Mono ADC MIXL", "ADC2 Switch", "Mono ADC L2 Mux"},
{"Mono ADC MIXL", NULL, "Mono Left Filter"},
{"Mono ADC MIXR", "ADC1 Switch", "Mono ADC R1 Mux"},
{"Mono ADC MIXR", "ADC2 Switch", "Mono ADC R2 Mux"},
{"Mono ADC MIXR", NULL, "Mono Right Filter"},
{"IF2 ADC L", NULL, "Mono ADC MIXL"},
{"IF2 ADC R", NULL, "Mono ADC MIXR"},
{"IF1 ADC L", NULL, "Stereo ADC MIXL"},
{"IF1 ADC R", NULL, "Stereo ADC MIXR"},
{"IF1 ADC", NULL, "I2S1"},
{"IF1 ADC", NULL, "IF1 ADC L"},
{"IF1 ADC", NULL, "IF1 ADC R"},
{"IF2 ADC", NULL, "I2S2"},
{"IF2 ADC", NULL, "IF2 ADC L"},
{"IF2 ADC", NULL, "IF2 ADC R"},
{"DAI1 TX Mux", "1:1|2:2", "IF1 ADC"},
{"DAI1 TX Mux", "1:2|2:1", "IF2 ADC"},
{"DAI1 IF1 Mux", "1:1|2:1", "IF1 ADC"},
{"DAI1 IF2 Mux", "1:1|2:1", "IF2 ADC"},
{"SDI1 TX Mux", "IF1", "DAI1 IF1 Mux"},
{"SDI1 TX Mux", "IF2", "DAI1 IF2 Mux"},
{"DAI2 TX Mux", "1:2|2:1", "IF1 ADC"},
{"DAI2 TX Mux", "1:1|2:2", "IF2 ADC"},
{"DAI2 IF1 Mux", "1:2|2:2", "IF1 ADC"},
{"DAI2 IF2 Mux", "1:2|2:2", "IF2 ADC"},
{"SDI2 TX Mux", "IF1", "DAI2 IF1 Mux"},
{"SDI2 TX Mux", "IF2", "DAI2 IF2 Mux"},
{"AIF1TX", NULL, "DAI1 TX Mux"},
{"AIF1TX", NULL, "SDI1 TX Mux"},
{"AIF2TX", NULL, "DAI2 TX Mux"},
{"AIF2TX", NULL, "SDI2 TX Mux"},
{"DAI1 RX Mux", "1:1|2:2", "AIF1RX"},
{"DAI1 RX Mux", "1:1|2:1", "AIF1RX"},
{"DAI1 RX Mux", "1:2|2:1", "AIF2RX"},
{"DAI1 RX Mux", "1:2|2:2", "AIF2RX"},
{"DAI2 RX Mux", "1:2|2:1", "AIF1RX"},
{"DAI2 RX Mux", "1:1|2:1", "AIF1RX"},
{"DAI2 RX Mux", "1:1|2:2", "AIF2RX"},
{"DAI2 RX Mux", "1:2|2:2", "AIF2RX"},
{"IF1 DAC", NULL, "I2S1"},
{"IF1 DAC", NULL, "DAI1 RX Mux"},
{"IF2 DAC", NULL, "I2S2"},
{"IF2 DAC", NULL, "DAI2 RX Mux"},
{"IF1 DAC L", NULL, "IF1 DAC"},
{"IF1 DAC R", NULL, "IF1 DAC"},
{"IF2 DAC L", NULL, "IF2 DAC"},
{"IF2 DAC R", NULL, "IF2 DAC"},
{"DAC MIXL", "Stereo ADC Switch", "Stereo ADC MIXL"},
{"DAC MIXL", "INF1 Switch", "IF1 DAC L"},
{"DAC MIXL", NULL, "DAC L1 Power"},
{"DAC MIXR", "Stereo ADC Switch", "Stereo ADC MIXR"},
{"DAC MIXR", "INF1 Switch", "IF1 DAC R"},
{"DAC MIXR", NULL, "DAC R1 Power"},
{"Stereo DAC MIXL", "DAC L1 Switch", "DAC MIXL"},
{"Stereo DAC MIXR", "DAC R1 Switch", "DAC MIXR"},
{"Mono DAC MIXL", "DAC L1 Switch", "DAC MIXL"},
{"Mono DAC MIXR", "DAC R1 Switch", "DAC MIXR"},
{"DIG MIXL", "DAC L1 Switch", "DAC MIXL"},
{"DIG MIXR", "DAC R1 Switch", "DAC MIXR"},
{"DAC L1", NULL, "Stereo DAC MIXL"},
{"DAC L1", NULL, "DAC L1 Power"},
{"DAC R1", NULL, "Stereo DAC MIXR"},
{"DAC R1", NULL, "DAC R1 Power"},
{"SPK MIXL", "REC MIXL Switch", "RECMIXL"},
{"SPK MIXL", "INL Switch", "INL VOL"},
{"SPK MIXL", "DAC L1 Switch", "DAC L1"},
{"SPK MIXL", "OUT MIXL Switch", "OUT MIXL"},
{"SPK MIXR", "REC MIXR Switch", "RECMIXR"},
{"SPK MIXR", "INR Switch", "INR VOL"},
{"SPK MIXR", "DAC R1 Switch", "DAC R1"},
{"SPK MIXR", "OUT MIXR Switch", "OUT MIXR"},
{"OUT MIXL", "BST1 Switch", "BST1"},
{"OUT MIXL", "INL Switch", "INL VOL"},
{"OUT MIXL", "REC MIXL Switch", "RECMIXL"},
{"OUT MIXL", "DAC L1 Switch", "DAC L1"},
{"OUT MIXR", "BST2 Switch", "BST2"},
{"OUT MIXR", "BST1 Switch", "BST1"},
{"OUT MIXR", "INR Switch", "INR VOL"},
{"OUT MIXR", "REC MIXR Switch", "RECMIXR"},
{"OUT MIXR", "DAC R1 Switch", "DAC R1"},
{"SPKVOL L", NULL, "SPK MIXL"},
{"SPKVOL R", NULL, "SPK MIXR"},
{"HPOVOL L", NULL, "OUT MIXL"},
{"HPOVOL R", NULL, "OUT MIXR"},
{"OUTVOL L", NULL, "OUT MIXL"},
{"OUTVOL R", NULL, "OUT MIXR"},
{"SPOL MIX", "DAC R1 Switch", "DAC R1"},
{"SPOL MIX", "DAC L1 Switch", "DAC L1"},
{"SPOL MIX", "SPKVOL R Switch", "SPKVOL R"},
{"SPOL MIX", "SPKVOL L Switch", "SPKVOL L"},
{"SPOL MIX", "BST1 Switch", "BST1"},
{"SPOR MIX", "DAC R1 Switch", "DAC R1"},
{"SPOR MIX", "SPKVOL R Switch", "SPKVOL R"},
{"SPOR MIX", "BST1 Switch", "BST1"},
{"HPO MIX L", "HPO MIX DAC1 Switch", "DAC L1"},
{"HPO MIX L", "HPO MIX HPVOL Switch", "HPOVOL L"},
{"HPO MIX L", NULL, "HP L Amp"},
{"HPO MIX R", "HPO MIX DAC1 Switch", "DAC R1"},
{"HPO MIX R", "HPO MIX HPVOL Switch", "HPOVOL R"},
{"HPO MIX R", NULL, "HP R Amp"},
{"LOUT MIX", "DAC L1 Switch", "DAC L1"},
{"LOUT MIX", "DAC R1 Switch", "DAC R1"},
{"LOUT MIX", "OUTVOL L Switch", "OUTVOL L"},
{"LOUT MIX", "OUTVOL R Switch", "OUTVOL R"},
{"HP Amp", NULL, "HPO MIX L"},
{"HP Amp", NULL, "HPO MIX R"},
{"Speaker L Playback", "Switch", "SPOL MIX"},
{"Speaker R Playback", "Switch", "SPOR MIX"},
{"SPOLP", NULL, "Speaker L Playback"},
{"SPOLN", NULL, "Speaker L Playback"},
{"SPORP", NULL, "Speaker R Playback"},
{"SPORN", NULL, "Speaker R Playback"},
{"SPOLP", NULL, "Improve SPK Amp Drv"},
{"SPOLN", NULL, "Improve SPK Amp Drv"},
{"SPORP", NULL, "Improve SPK Amp Drv"},
{"SPORN", NULL, "Improve SPK Amp Drv"},
{"HPOL", NULL, "Improve HP Amp Drv"},
{"HPOR", NULL, "Improve HP Amp Drv"},
{"HP L Playback", "Switch", "HP Amp"},
{"HP R Playback", "Switch", "HP Amp"},
{"HPOL", NULL, "HP L Playback"},
{"HPOR", NULL, "HP R Playback"},
{"LOUT amp", NULL, "LOUT MIX"},
{"LOUTL", NULL, "LOUT amp"},
{"LOUTR", NULL, "LOUT amp"},
};
static const struct snd_soc_dapm_route rt5640_specific_dapm_routes[] = {
{"ANC", NULL, "Stereo ADC MIXL"},
{"ANC", NULL, "Stereo ADC MIXR"},
{"Audio DSP", NULL, "DAC MIXL"},
{"Audio DSP", NULL, "DAC MIXR"},
{"DAC L2 Mux", "IF2", "IF2 DAC L"},
{"DAC L2 Mux", "Base L/R", "Audio DSP"},
{"DAC L2 Mux", NULL, "DAC L2 Power"},
{"DAC R2 Mux", "IF2", "IF2 DAC R"},
{"DAC R2 Mux", NULL, "DAC R2 Power"},
{"Stereo DAC MIXL", "DAC L2 Switch", "DAC L2 Mux"},
{"Stereo DAC MIXL", "ANC Switch", "ANC"},
{"Stereo DAC MIXR", "DAC R2 Switch", "DAC R2 Mux"},
{"Stereo DAC MIXR", "ANC Switch", "ANC"},
{"Mono DAC MIXL", "DAC L2 Switch", "DAC L2 Mux"},
{"Mono DAC MIXL", "DAC R2 Switch", "DAC R2 Mux"},
{"Mono DAC MIXR", "DAC R2 Switch", "DAC R2 Mux"},
{"Mono DAC MIXR", "DAC L2 Switch", "DAC L2 Mux"},
{"DIG MIXR", "DAC R2 Switch", "DAC R2 Mux"},
{"DIG MIXL", "DAC L2 Switch", "DAC L2 Mux"},
{"DAC L2", NULL, "Mono DAC MIXL"},
{"DAC L2", NULL, "DAC L2 Power"},
{"DAC R2", NULL, "Mono DAC MIXR"},
{"DAC R2", NULL, "DAC R2 Power"},
{"SPK MIXL", "DAC L2 Switch", "DAC L2"},
{"SPK MIXR", "DAC R2 Switch", "DAC R2"},
{"OUT MIXL", "SPK MIXL Switch", "SPK MIXL"},
{"OUT MIXR", "SPK MIXR Switch", "SPK MIXR"},
{"OUT MIXL", "DAC R2 Switch", "DAC R2"},
{"OUT MIXL", "DAC L2 Switch", "DAC L2"},
{"OUT MIXR", "DAC L2 Switch", "DAC L2"},
{"OUT MIXR", "DAC R2 Switch", "DAC R2"},
{"HPO MIX L", "HPO MIX DAC2 Switch", "DAC L2"},
{"HPO MIX R", "HPO MIX DAC2 Switch", "DAC R2"},
{"Mono MIX", "DAC R2 Switch", "DAC R2"},
{"Mono MIX", "DAC L2 Switch", "DAC L2"},
{"Mono MIX", "OUTVOL R Switch", "OUTVOL R"},
{"Mono MIX", "OUTVOL L Switch", "OUTVOL L"},
{"Mono MIX", "BST1 Switch", "BST1"},
{"MONOP", NULL, "Mono MIX"},
{"MONON", NULL, "Mono MIX"},
{"MONOP", NULL, "Improve MONO Amp Drv"},
};
static const struct snd_soc_dapm_route rt5639_specific_dapm_routes[] = {
{"Stereo DAC MIXL", "DAC L2 Switch", "IF2 DAC L"},
{"Stereo DAC MIXR", "DAC R2 Switch", "IF2 DAC R"},
{"Mono DAC MIXL", "DAC L2 Switch", "IF2 DAC L"},
{"Mono DAC MIXL", "DAC R2 Switch", "IF2 DAC R"},
{"Mono DAC MIXR", "DAC R2 Switch", "IF2 DAC R"},
{"Mono DAC MIXR", "DAC L2 Switch", "IF2 DAC L"},
{"DIG MIXL", "DAC L2 Switch", "IF2 DAC L"},
{"DIG MIXR", "DAC R2 Switch", "IF2 DAC R"},
{"IF2 DAC L", NULL, "DAC L2 Power"},
{"IF2 DAC R", NULL, "DAC R2 Power"},
};
static int get_sdp_info(struct snd_soc_component *component, int dai_id)
{
int ret = 0, val;
if (component == NULL)
return -EINVAL;
val = snd_soc_component_read(component, RT5640_I2S1_SDP);
val = (val & RT5640_I2S_IF_MASK) >> RT5640_I2S_IF_SFT;
switch (dai_id) {
case RT5640_AIF1:
switch (val) {
case RT5640_IF_123:
case RT5640_IF_132:
ret |= RT5640_U_IF1;
break;
case RT5640_IF_113:
ret |= RT5640_U_IF1;
fallthrough;
case RT5640_IF_312:
case RT5640_IF_213:
ret |= RT5640_U_IF2;
break;
}
break;
case RT5640_AIF2:
switch (val) {
case RT5640_IF_231:
case RT5640_IF_213:
ret |= RT5640_U_IF1;
break;
case RT5640_IF_223:
ret |= RT5640_U_IF1;
fallthrough;
case RT5640_IF_123:
case RT5640_IF_321:
ret |= RT5640_U_IF2;
break;
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int rt5640_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params, struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
unsigned int val_len = 0, val_clk, mask_clk;
int dai_sel, pre_div, bclk_ms, frame_size;
rt5640->lrck[dai->id] = params_rate(params);
pre_div = rl6231_get_clk_info(rt5640->sysclk, rt5640->lrck[dai->id]);
if (pre_div < 0) {
dev_err(component->dev, "Unsupported clock setting %d for DAI %d\n",
rt5640->lrck[dai->id], dai->id);
return -EINVAL;
}
frame_size = snd_soc_params_to_frame_size(params);
if (frame_size < 0) {
dev_err(component->dev, "Unsupported frame size: %d\n", frame_size);
return frame_size;
}
if (frame_size > 32)
bclk_ms = 1;
else
bclk_ms = 0;
rt5640->bclk[dai->id] = rt5640->lrck[dai->id] * (32 << bclk_ms);
dev_dbg(dai->dev, "bclk is %dHz and lrck is %dHz\n",
rt5640->bclk[dai->id], rt5640->lrck[dai->id]);
dev_dbg(dai->dev, "bclk_ms is %d and pre_div is %d for iis %d\n",
bclk_ms, pre_div, dai->id);
switch (params_width(params)) {
case 16:
break;
case 20:
val_len |= RT5640_I2S_DL_20;
break;
case 24:
val_len |= RT5640_I2S_DL_24;
break;
case 8:
val_len |= RT5640_I2S_DL_8;
break;
default:
return -EINVAL;
}
dai_sel = get_sdp_info(component, dai->id);
if (dai_sel < 0) {
dev_err(component->dev, "Failed to get sdp info: %d\n", dai_sel);
return -EINVAL;
}
if (dai_sel & RT5640_U_IF1) {
mask_clk = RT5640_I2S_BCLK_MS1_MASK | RT5640_I2S_PD1_MASK;
val_clk = bclk_ms << RT5640_I2S_BCLK_MS1_SFT |
pre_div << RT5640_I2S_PD1_SFT;
snd_soc_component_update_bits(component, RT5640_I2S1_SDP,
RT5640_I2S_DL_MASK, val_len);
snd_soc_component_update_bits(component, RT5640_ADDA_CLK1, mask_clk, val_clk);
}
if (dai_sel & RT5640_U_IF2) {
mask_clk = RT5640_I2S_BCLK_MS2_MASK | RT5640_I2S_PD2_MASK;
val_clk = bclk_ms << RT5640_I2S_BCLK_MS2_SFT |
pre_div << RT5640_I2S_PD2_SFT;
snd_soc_component_update_bits(component, RT5640_I2S2_SDP,
RT5640_I2S_DL_MASK, val_len);
snd_soc_component_update_bits(component, RT5640_ADDA_CLK1, mask_clk, val_clk);
}
return 0;
}
static int rt5640_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
unsigned int reg_val = 0;
int dai_sel;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
rt5640->master[dai->id] = 1;
break;
case SND_SOC_DAIFMT_CBS_CFS:
reg_val |= RT5640_I2S_MS_S;
rt5640->master[dai->id] = 0;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
reg_val |= RT5640_I2S_BP_INV;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
break;
case SND_SOC_DAIFMT_LEFT_J:
reg_val |= RT5640_I2S_DF_LEFT;
break;
case SND_SOC_DAIFMT_DSP_A:
reg_val |= RT5640_I2S_DF_PCM_A;
break;
case SND_SOC_DAIFMT_DSP_B:
reg_val |= RT5640_I2S_DF_PCM_B;
break;
default:
return -EINVAL;
}
dai_sel = get_sdp_info(component, dai->id);
if (dai_sel < 0) {
dev_err(component->dev, "Failed to get sdp info: %d\n", dai_sel);
return -EINVAL;
}
if (dai_sel & RT5640_U_IF1) {
snd_soc_component_update_bits(component, RT5640_I2S1_SDP,
RT5640_I2S_MS_MASK | RT5640_I2S_BP_MASK |
RT5640_I2S_DF_MASK, reg_val);
}
if (dai_sel & RT5640_U_IF2) {
snd_soc_component_update_bits(component, RT5640_I2S2_SDP,
RT5640_I2S_MS_MASK | RT5640_I2S_BP_MASK |
RT5640_I2S_DF_MASK, reg_val);
}
return 0;
}
static int rt5640_set_dai_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = dai->component;
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
unsigned int reg_val = 0;
unsigned int pll_bit = 0;
if (freq == rt5640->sysclk && clk_id == rt5640->sysclk_src)
return 0;
switch (clk_id) {
case RT5640_SCLK_S_MCLK:
reg_val |= RT5640_SCLK_SRC_MCLK;
break;
case RT5640_SCLK_S_PLL1:
reg_val |= RT5640_SCLK_SRC_PLL1;
pll_bit |= RT5640_PWR_PLL;
break;
case RT5640_SCLK_S_RCCLK:
reg_val |= RT5640_SCLK_SRC_RCCLK;
break;
default:
dev_err(component->dev, "Invalid clock id (%d)\n", clk_id);
return -EINVAL;
}
snd_soc_component_update_bits(component, RT5640_PWR_ANLG2,
RT5640_PWR_PLL, pll_bit);
snd_soc_component_update_bits(component, RT5640_GLB_CLK,
RT5640_SCLK_SRC_MASK, reg_val);
rt5640->sysclk = freq;
rt5640->sysclk_src = clk_id;
dev_dbg(dai->dev, "Sysclk is %dHz and clock id is %d\n", freq, clk_id);
return 0;
}
static int rt5640_set_dai_pll(struct snd_soc_dai *dai, int pll_id, int source,
unsigned int freq_in, unsigned int freq_out)
{
struct snd_soc_component *component = dai->component;
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
struct rl6231_pll_code pll_code;
int ret;
if (source == rt5640->pll_src && freq_in == rt5640->pll_in &&
freq_out == rt5640->pll_out)
return 0;
if (!freq_in || !freq_out) {
dev_dbg(component->dev, "PLL disabled\n");
rt5640->pll_in = 0;
rt5640->pll_out = 0;
snd_soc_component_update_bits(component, RT5640_GLB_CLK,
RT5640_SCLK_SRC_MASK, RT5640_SCLK_SRC_MCLK);
return 0;
}
switch (source) {
case RT5640_PLL1_S_MCLK:
snd_soc_component_update_bits(component, RT5640_GLB_CLK,
RT5640_PLL1_SRC_MASK, RT5640_PLL1_SRC_MCLK);
break;
case RT5640_PLL1_S_BCLK1:
snd_soc_component_update_bits(component, RT5640_GLB_CLK,
RT5640_PLL1_SRC_MASK, RT5640_PLL1_SRC_BCLK1);
break;
case RT5640_PLL1_S_BCLK2:
snd_soc_component_update_bits(component, RT5640_GLB_CLK,
RT5640_PLL1_SRC_MASK, RT5640_PLL1_SRC_BCLK2);
break;
default:
dev_err(component->dev, "Unknown PLL source %d\n", source);
return -EINVAL;
}
ret = rl6231_pll_calc(freq_in, freq_out, &pll_code);
if (ret < 0) {
dev_err(component->dev, "Unsupport input clock %d\n", freq_in);
return ret;
}
dev_dbg(component->dev, "bypass=%d m=%d n=%d k=%d\n",
pll_code.m_bp, (pll_code.m_bp ? 0 : pll_code.m_code),
pll_code.n_code, pll_code.k_code);
snd_soc_component_write(component, RT5640_PLL_CTRL1,
(pll_code.n_code << RT5640_PLL_N_SFT) | pll_code.k_code);
snd_soc_component_write(component, RT5640_PLL_CTRL2,
((pll_code.m_bp ? 0 : pll_code.m_code) << RT5640_PLL_M_SFT) |
(pll_code.m_bp << RT5640_PLL_M_BP_SFT));
rt5640->pll_in = freq_in;
rt5640->pll_out = freq_out;
rt5640->pll_src = source;
return 0;
}
static int rt5640_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
int ret;
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
/*
* SND_SOC_BIAS_PREPARE is called while preparing for a
* transition to ON or away from ON. If current bias_level
* is SND_SOC_BIAS_ON, then it is preparing for a transition
* away from ON. Disable the clock in that case, otherwise
* enable it.
*/
if (IS_ERR(rt5640->mclk))
break;
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_ON) {
clk_disable_unprepare(rt5640->mclk);
} else {
ret = clk_prepare_enable(rt5640->mclk);
if (ret)
return ret;
}
break;
case SND_SOC_BIAS_STANDBY:
if (SND_SOC_BIAS_OFF == snd_soc_component_get_bias_level(component)) {
snd_soc_component_update_bits(component, RT5640_PWR_ANLG1,
RT5640_PWR_VREF1 | RT5640_PWR_MB |
RT5640_PWR_BG | RT5640_PWR_VREF2,
RT5640_PWR_VREF1 | RT5640_PWR_MB |
RT5640_PWR_BG | RT5640_PWR_VREF2);
usleep_range(10000, 15000);
snd_soc_component_update_bits(component, RT5640_PWR_ANLG1,
RT5640_PWR_FV1 | RT5640_PWR_FV2,
RT5640_PWR_FV1 | RT5640_PWR_FV2);
snd_soc_component_update_bits(component, RT5640_DUMMY1,
0x0301, 0x0301);
snd_soc_component_update_bits(component, RT5640_MICBIAS,
0x0030, 0x0030);
}
break;
case SND_SOC_BIAS_OFF:
snd_soc_component_write(component, RT5640_DEPOP_M1, 0x0004);
snd_soc_component_write(component, RT5640_DEPOP_M2, 0x1100);
snd_soc_component_update_bits(component, RT5640_DUMMY1, 0x1, 0);
snd_soc_component_write(component, RT5640_PWR_DIG1, 0x0000);
snd_soc_component_write(component, RT5640_PWR_DIG2, 0x0000);
snd_soc_component_write(component, RT5640_PWR_VOL, 0x0000);
snd_soc_component_write(component, RT5640_PWR_MIXER, 0x0000);
snd_soc_component_write(component, RT5640_PWR_ANLG1, 0x0000);
snd_soc_component_write(component, RT5640_PWR_ANLG2, 0x0000);
break;
default:
break;
}
return 0;
}
int rt5640_dmic_enable(struct snd_soc_component *component,
bool dmic1_data_pin, bool dmic2_data_pin)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
regmap_update_bits(rt5640->regmap, RT5640_GPIO_CTRL1,
RT5640_GP2_PIN_MASK, RT5640_GP2_PIN_DMIC1_SCL);
if (dmic1_data_pin) {
regmap_update_bits(rt5640->regmap, RT5640_DMIC,
RT5640_DMIC_1_DP_MASK, RT5640_DMIC_1_DP_GPIO3);
regmap_update_bits(rt5640->regmap, RT5640_GPIO_CTRL1,
RT5640_GP3_PIN_MASK, RT5640_GP3_PIN_DMIC1_SDA);
}
if (dmic2_data_pin) {
regmap_update_bits(rt5640->regmap, RT5640_DMIC,
RT5640_DMIC_2_DP_MASK, RT5640_DMIC_2_DP_GPIO4);
regmap_update_bits(rt5640->regmap, RT5640_GPIO_CTRL1,
RT5640_GP4_PIN_MASK, RT5640_GP4_PIN_DMIC2_SDA);
}
return 0;
}
EXPORT_SYMBOL_GPL(rt5640_dmic_enable);
int rt5640_sel_asrc_clk_src(struct snd_soc_component *component,
unsigned int filter_mask, unsigned int clk_src)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
unsigned int asrc2_mask = 0;
unsigned int asrc2_value = 0;
switch (clk_src) {
case RT5640_CLK_SEL_SYS:
case RT5640_CLK_SEL_ASRC:
break;
default:
return -EINVAL;
}
if (!filter_mask)
return -EINVAL;
if (filter_mask & RT5640_DA_STEREO_FILTER) {
asrc2_mask |= RT5640_STO_DAC_M_MASK;
asrc2_value = (asrc2_value & ~RT5640_STO_DAC_M_MASK)
| (clk_src << RT5640_STO_DAC_M_SFT);
}
if (filter_mask & RT5640_DA_MONO_L_FILTER) {
asrc2_mask |= RT5640_MDA_L_M_MASK;
asrc2_value = (asrc2_value & ~RT5640_MDA_L_M_MASK)
| (clk_src << RT5640_MDA_L_M_SFT);
}
if (filter_mask & RT5640_DA_MONO_R_FILTER) {
asrc2_mask |= RT5640_MDA_R_M_MASK;
asrc2_value = (asrc2_value & ~RT5640_MDA_R_M_MASK)
| (clk_src << RT5640_MDA_R_M_SFT);
}
if (filter_mask & RT5640_AD_STEREO_FILTER) {
asrc2_mask |= RT5640_ADC_M_MASK;
asrc2_value = (asrc2_value & ~RT5640_ADC_M_MASK)
| (clk_src << RT5640_ADC_M_SFT);
}
if (filter_mask & RT5640_AD_MONO_L_FILTER) {
asrc2_mask |= RT5640_MAD_L_M_MASK;
asrc2_value = (asrc2_value & ~RT5640_MAD_L_M_MASK)
| (clk_src << RT5640_MAD_L_M_SFT);
}
if (filter_mask & RT5640_AD_MONO_R_FILTER) {
asrc2_mask |= RT5640_MAD_R_M_MASK;
asrc2_value = (asrc2_value & ~RT5640_MAD_R_M_MASK)
| (clk_src << RT5640_MAD_R_M_SFT);
}
snd_soc_component_update_bits(component, RT5640_ASRC_2,
asrc2_mask, asrc2_value);
if (snd_soc_component_read(component, RT5640_ASRC_2)) {
rt5640->asrc_en = true;
snd_soc_component_update_bits(component, RT5640_JD_CTRL, 0x3, 0x3);
} else {
rt5640->asrc_en = false;
snd_soc_component_update_bits(component, RT5640_JD_CTRL, 0x3, 0x0);
}
return 0;
}
EXPORT_SYMBOL_GPL(rt5640_sel_asrc_clk_src);
static void rt5640_enable_micbias1_for_ovcd(struct snd_soc_component *component)
{
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
snd_soc_dapm_mutex_lock(dapm);
snd_soc_dapm_force_enable_pin_unlocked(dapm, "LDO2");
snd_soc_dapm_force_enable_pin_unlocked(dapm, "MICBIAS1");
/* OVCD is unreliable when used with RCCLK as sysclk-source */
snd_soc_dapm_force_enable_pin_unlocked(dapm, "Platform Clock");
snd_soc_dapm_sync_unlocked(dapm);
snd_soc_dapm_mutex_unlock(dapm);
}
static void rt5640_disable_micbias1_for_ovcd(struct snd_soc_component *component)
{
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
snd_soc_dapm_mutex_lock(dapm);
snd_soc_dapm_disable_pin_unlocked(dapm, "Platform Clock");
snd_soc_dapm_disable_pin_unlocked(dapm, "MICBIAS1");
snd_soc_dapm_disable_pin_unlocked(dapm, "LDO2");
snd_soc_dapm_sync_unlocked(dapm);
snd_soc_dapm_mutex_unlock(dapm);
}
static void rt5640_enable_micbias1_ovcd_irq(struct snd_soc_component *component)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
snd_soc_component_update_bits(component, RT5640_IRQ_CTRL2,
RT5640_IRQ_MB1_OC_MASK, RT5640_IRQ_MB1_OC_NOR);
rt5640->ovcd_irq_enabled = true;
}
static void rt5640_disable_micbias1_ovcd_irq(struct snd_soc_component *component)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
snd_soc_component_update_bits(component, RT5640_IRQ_CTRL2,
RT5640_IRQ_MB1_OC_MASK, RT5640_IRQ_MB1_OC_BP);
rt5640->ovcd_irq_enabled = false;
}
static void rt5640_clear_micbias1_ovcd(struct snd_soc_component *component)
{
snd_soc_component_update_bits(component, RT5640_IRQ_CTRL2,
RT5640_MB1_OC_STATUS, 0);
}
static bool rt5640_micbias1_ovcd(struct snd_soc_component *component)
{
int val;
val = snd_soc_component_read(component, RT5640_IRQ_CTRL2);
dev_dbg(component->dev, "irq ctrl2 %#04x\n", val);
return (val & RT5640_MB1_OC_STATUS);
}
static bool rt5640_jack_inserted(struct snd_soc_component *component)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
int val;
val = snd_soc_component_read(component, RT5640_INT_IRQ_ST);
dev_dbg(component->dev, "irq status %#04x\n", val);
if (rt5640->jd_inverted)
return !(val & RT5640_JD_STATUS);
else
return (val & RT5640_JD_STATUS);
}
/* Jack detect and button-press timings */
#define JACK_SETTLE_TIME 100 /* milli seconds */
#define JACK_DETECT_COUNT 5
#define JACK_DETECT_MAXCOUNT 20 /* Aprox. 2 seconds worth of tries */
#define JACK_UNPLUG_TIME 80 /* milli seconds */
#define BP_POLL_TIME 10 /* milli seconds */
#define BP_POLL_MAXCOUNT 200 /* assume something is wrong after this */
#define BP_THRESHOLD 3
static void rt5640_start_button_press_work(struct snd_soc_component *component)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
rt5640->poll_count = 0;
rt5640->press_count = 0;
rt5640->release_count = 0;
rt5640->pressed = false;
rt5640->press_reported = false;
rt5640_clear_micbias1_ovcd(component);
schedule_delayed_work(&rt5640->bp_work, msecs_to_jiffies(BP_POLL_TIME));
}
static void rt5640_button_press_work(struct work_struct *work)
{
struct rt5640_priv *rt5640 =
container_of(work, struct rt5640_priv, bp_work.work);
struct snd_soc_component *component = rt5640->component;
/* Check the jack was not removed underneath us */
if (!rt5640_jack_inserted(component))
return;
if (rt5640_micbias1_ovcd(component)) {
rt5640->release_count = 0;
rt5640->press_count++;
/* Remember till after JACK_UNPLUG_TIME wait */
if (rt5640->press_count >= BP_THRESHOLD)
rt5640->pressed = true;
rt5640_clear_micbias1_ovcd(component);
} else {
rt5640->press_count = 0;
rt5640->release_count++;
}
/*
* The pins get temporarily shorted on jack unplug, so we poll for
* at least JACK_UNPLUG_TIME milli-seconds before reporting a press.
*/
rt5640->poll_count++;
if (rt5640->poll_count < (JACK_UNPLUG_TIME / BP_POLL_TIME)) {
schedule_delayed_work(&rt5640->bp_work,
msecs_to_jiffies(BP_POLL_TIME));
return;
}
if (rt5640->pressed && !rt5640->press_reported) {
dev_dbg(component->dev, "headset button press\n");
snd_soc_jack_report(rt5640->jack, SND_JACK_BTN_0,
SND_JACK_BTN_0);
rt5640->press_reported = true;
}
if (rt5640->release_count >= BP_THRESHOLD) {
if (rt5640->press_reported) {
dev_dbg(component->dev, "headset button release\n");
snd_soc_jack_report(rt5640->jack, 0, SND_JACK_BTN_0);
}
/* Re-enable OVCD IRQ to detect next press */
rt5640_enable_micbias1_ovcd_irq(component);
return; /* Stop polling */
}
schedule_delayed_work(&rt5640->bp_work, msecs_to_jiffies(BP_POLL_TIME));
}
static int rt5640_detect_headset(struct snd_soc_component *component)
{
int i, headset_count = 0, headphone_count = 0;
/*
* We get the insertion event before the jack is fully inserted at which
* point the second ring on a TRRS connector may short the 2nd ring and
* sleeve contacts, also the overcurrent detection is not entirely
* reliable. So we try several times with a wait in between until we
* detect the same type JACK_DETECT_COUNT times in a row.
*/
for (i = 0; i < JACK_DETECT_MAXCOUNT; i++) {
/* Clear any previous over-current status flag */
rt5640_clear_micbias1_ovcd(component);
msleep(JACK_SETTLE_TIME);
/* Check the jack is still connected before checking ovcd */
if (!rt5640_jack_inserted(component))
return 0;
if (rt5640_micbias1_ovcd(component)) {
/*
* Over current detected, there is a short between the
* 2nd ring contact and the ground, so a TRS connector
* without a mic contact and thus plain headphones.
*/
dev_dbg(component->dev, "jack mic-gnd shorted\n");
headset_count = 0;
headphone_count++;
if (headphone_count == JACK_DETECT_COUNT)
return SND_JACK_HEADPHONE;
} else {
dev_dbg(component->dev, "jack mic-gnd open\n");
headphone_count = 0;
headset_count++;
if (headset_count == JACK_DETECT_COUNT)
return SND_JACK_HEADSET;
}
}
dev_err(component->dev, "Error detecting headset vs headphones, bad contact?, assuming headphones\n");
return SND_JACK_HEADPHONE;
}
static void rt5640_jack_work(struct work_struct *work)
{
struct rt5640_priv *rt5640 =
container_of(work, struct rt5640_priv, jack_work);
struct snd_soc_component *component = rt5640->component;
int status;
if (!rt5640_jack_inserted(component)) {
/* Jack removed, or spurious IRQ? */
if (rt5640->jack->status & SND_JACK_HEADPHONE) {
if (rt5640->jack->status & SND_JACK_MICROPHONE) {
cancel_delayed_work_sync(&rt5640->bp_work);
rt5640_disable_micbias1_ovcd_irq(component);
rt5640_disable_micbias1_for_ovcd(component);
}
snd_soc_jack_report(rt5640->jack, 0,
SND_JACK_HEADSET | SND_JACK_BTN_0);
dev_dbg(component->dev, "jack unplugged\n");
}
} else if (!(rt5640->jack->status & SND_JACK_HEADPHONE)) {
/* Jack inserted */
WARN_ON(rt5640->ovcd_irq_enabled);
rt5640_enable_micbias1_for_ovcd(component);
status = rt5640_detect_headset(component);
if (status == SND_JACK_HEADSET) {
/* Enable ovcd IRQ for button press detect. */
rt5640_enable_micbias1_ovcd_irq(component);
} else {
/* No more need for overcurrent detect. */
rt5640_disable_micbias1_for_ovcd(component);
}
dev_dbg(component->dev, "detect status %#02x\n", status);
snd_soc_jack_report(rt5640->jack, status, SND_JACK_HEADSET);
} else if (rt5640->ovcd_irq_enabled && rt5640_micbias1_ovcd(component)) {
dev_dbg(component->dev, "OVCD IRQ\n");
/*
* The ovcd IRQ keeps firing while the button is pressed, so
* we disable it and start polling the button until released.
*
* The disable will make the IRQ pin 0 again and since we get
* IRQs on both edges (so as to detect both jack plugin and
* unplug) this means we will immediately get another IRQ.
* The ovcd_irq_enabled check above makes the 2ND IRQ a NOP.
*/
rt5640_disable_micbias1_ovcd_irq(component);
rt5640_start_button_press_work(component);
/*
* If the jack-detect IRQ flag goes high (unplug) after our
* above rt5640_jack_inserted() check and before we have
* disabled the OVCD IRQ, the IRQ pin will stay high and as
* we react to edges, we miss the unplug event -> recheck.
*/
queue_work(system_long_wq, &rt5640->jack_work);
}
}
static irqreturn_t rt5640_irq(int irq, void *data)
{
struct rt5640_priv *rt5640 = data;
if (rt5640->jack)
queue_work(system_long_wq, &rt5640->jack_work);
return IRQ_HANDLED;
}
static void rt5640_cancel_work(void *data)
{
struct rt5640_priv *rt5640 = data;
cancel_work_sync(&rt5640->jack_work);
cancel_delayed_work_sync(&rt5640->bp_work);
}
static void rt5640_enable_jack_detect(struct snd_soc_component *component,
struct snd_soc_jack *jack)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
/* Select JD-source */
snd_soc_component_update_bits(component, RT5640_JD_CTRL,
RT5640_JD_MASK, rt5640->jd_src);
/* Selecting GPIO01 as an interrupt */
snd_soc_component_update_bits(component, RT5640_GPIO_CTRL1,
RT5640_GP1_PIN_MASK, RT5640_GP1_PIN_IRQ);
/* Set GPIO1 output */
snd_soc_component_update_bits(component, RT5640_GPIO_CTRL3,
RT5640_GP1_PF_MASK, RT5640_GP1_PF_OUT);
/* Enabling jd2 in general control 1 */
snd_soc_component_write(component, RT5640_DUMMY1, 0x3f41);
/* Enabling jd2 in general control 2 */
snd_soc_component_write(component, RT5640_DUMMY2, 0x4001);
snd_soc_component_write(component, RT5640_PR_BASE + RT5640_BIAS_CUR4,
0xa800 | rt5640->ovcd_sf);
snd_soc_component_update_bits(component, RT5640_MICBIAS,
RT5640_MIC1_OVTH_MASK | RT5640_MIC1_OVCD_MASK,
rt5640->ovcd_th | RT5640_MIC1_OVCD_EN);
/*
* The over-current-detect is only reliable in detecting the absence
* of over-current, when the mic-contact in the jack is short-circuited,
* the hardware periodically retries if it can apply the bias-current
* leading to the ovcd status flip-flopping 1-0-1 with it being 0 about
* 10% of the time, as we poll the ovcd status bit we might hit that
* 10%, so we enable sticky mode and when checking OVCD we clear the
* status, msleep() a bit and then check to get a reliable reading.
*/
snd_soc_component_update_bits(component, RT5640_IRQ_CTRL2,
RT5640_MB1_OC_STKY_MASK, RT5640_MB1_OC_STKY_EN);
/*
* All IRQs get or-ed together, so we need the jack IRQ to report 0
* when a jack is inserted so that the OVCD IRQ then toggles the IRQ
* pin 0/1 instead of it being stuck to 1. So we invert the JD polarity
* on systems where the hardware does not already do this.
*/
if (rt5640->jd_inverted)
snd_soc_component_write(component, RT5640_IRQ_CTRL1,
RT5640_IRQ_JD_NOR);
else
snd_soc_component_write(component, RT5640_IRQ_CTRL1,
RT5640_IRQ_JD_NOR | RT5640_JD_P_INV);
rt5640->jack = jack;
if (rt5640->jack->status & SND_JACK_MICROPHONE) {
rt5640_enable_micbias1_for_ovcd(component);
rt5640_enable_micbias1_ovcd_irq(component);
}
enable_irq(rt5640->irq);
/* sync initial jack state */
queue_work(system_long_wq, &rt5640->jack_work);
}
static void rt5640_disable_jack_detect(struct snd_soc_component *component)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
/*
* soc_remove_component() force-disables jack and thus rt5640->jack
* could be NULL at the time of driver's module unloading.
*/
if (!rt5640->jack)
return;
disable_irq(rt5640->irq);
rt5640_cancel_work(rt5640);
if (rt5640->jack->status & SND_JACK_MICROPHONE) {
rt5640_disable_micbias1_ovcd_irq(component);
rt5640_disable_micbias1_for_ovcd(component);
snd_soc_jack_report(rt5640->jack, 0, SND_JACK_BTN_0);
}
rt5640->jack = NULL;
}
static int rt5640_set_jack(struct snd_soc_component *component,
struct snd_soc_jack *jack, void *data)
{
if (jack)
rt5640_enable_jack_detect(component, jack);
else
rt5640_disable_jack_detect(component);
return 0;
}
static int rt5640_probe(struct snd_soc_component *component)
{
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
u32 dmic1_data_pin = 0;
u32 dmic2_data_pin = 0;
bool dmic_en = false;
u32 val;
/* Check if MCLK provided */
rt5640->mclk = devm_clk_get(component->dev, "mclk");
if (PTR_ERR(rt5640->mclk) == -EPROBE_DEFER)
return -EPROBE_DEFER;
rt5640->component = component;
snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
snd_soc_component_update_bits(component, RT5640_DUMMY1, 0x0301, 0x0301);
snd_soc_component_update_bits(component, RT5640_MICBIAS, 0x0030, 0x0030);
snd_soc_component_update_bits(component, RT5640_DSP_PATH2, 0xfc00, 0x0c00);
switch (snd_soc_component_read(component, RT5640_RESET) & RT5640_ID_MASK) {
case RT5640_ID_5640:
case RT5640_ID_5642:
snd_soc_add_component_controls(component,
rt5640_specific_snd_controls,
ARRAY_SIZE(rt5640_specific_snd_controls));
snd_soc_dapm_new_controls(dapm,
rt5640_specific_dapm_widgets,
ARRAY_SIZE(rt5640_specific_dapm_widgets));
snd_soc_dapm_add_routes(dapm,
rt5640_specific_dapm_routes,
ARRAY_SIZE(rt5640_specific_dapm_routes));
break;
case RT5640_ID_5639:
snd_soc_dapm_new_controls(dapm,
rt5639_specific_dapm_widgets,
ARRAY_SIZE(rt5639_specific_dapm_widgets));
snd_soc_dapm_add_routes(dapm,
rt5639_specific_dapm_routes,
ARRAY_SIZE(rt5639_specific_dapm_routes));
break;
default:
dev_err(component->dev,
"The driver is for RT5639 RT5640 or RT5642 only\n");
return -ENODEV;
}
/*
* Note on some platforms the platform code may need to add device-props
* rather then relying only on properties set by the firmware.
* Therefor the property parsing MUST be done here, rather then from
* rt5640_i2c_probe(), so that the platform-code can attach extra
* properties before calling snd_soc_register_card().
*/
if (device_property_read_bool(component->dev, "realtek,in1-differential"))
snd_soc_component_update_bits(component, RT5640_IN1_IN2,
RT5640_IN_DF1, RT5640_IN_DF1);
if (device_property_read_bool(component->dev, "realtek,in2-differential"))
snd_soc_component_update_bits(component, RT5640_IN3_IN4,
RT5640_IN_DF2, RT5640_IN_DF2);
if (device_property_read_bool(component->dev, "realtek,in3-differential"))
snd_soc_component_update_bits(component, RT5640_IN1_IN2,
RT5640_IN_DF2, RT5640_IN_DF2);
if (device_property_read_u32(component->dev, "realtek,dmic1-data-pin",
&val) == 0 && val) {
dmic1_data_pin = val - 1;
dmic_en = true;
}
if (device_property_read_u32(component->dev, "realtek,dmic2-data-pin",
&val) == 0 && val) {
dmic2_data_pin = val - 1;
dmic_en = true;
}
if (dmic_en)
rt5640_dmic_enable(component, dmic1_data_pin, dmic2_data_pin);
if (device_property_read_u32(component->dev,
"realtek,jack-detect-source", &val) == 0) {
if (val <= RT5640_JD_SRC_GPIO4)
rt5640->jd_src = val << RT5640_JD_SFT;
else
dev_warn(component->dev, "Warning: Invalid jack-detect-source value: %d, leaving jack-detect disabled\n",
val);
}
if (!device_property_read_bool(component->dev, "realtek,jack-detect-not-inverted"))
rt5640->jd_inverted = true;
/*
* Testing on various boards has shown that good defaults for the OVCD
* threshold and scale-factor are 2000µA and 0.75. For an effective
* limit of 1500µA, this seems to be more reliable then 1500µA and 1.0.
*/
rt5640->ovcd_th = RT5640_MIC1_OVTH_2000UA;
rt5640->ovcd_sf = RT5640_MIC_OVCD_SF_0P75;
if (device_property_read_u32(component->dev,
"realtek,over-current-threshold-microamp", &val) == 0) {
switch (val) {
case 600:
rt5640->ovcd_th = RT5640_MIC1_OVTH_600UA;
break;
case 1500:
rt5640->ovcd_th = RT5640_MIC1_OVTH_1500UA;
break;
case 2000:
rt5640->ovcd_th = RT5640_MIC1_OVTH_2000UA;
break;
default:
dev_warn(component->dev, "Warning: Invalid over-current-threshold-microamp value: %d, defaulting to 2000uA\n",
val);
}
}
if (device_property_read_u32(component->dev,
"realtek,over-current-scale-factor", &val) == 0) {
if (val <= RT5640_OVCD_SF_1P5)
rt5640->ovcd_sf = val << RT5640_MIC_OVCD_SF_SFT;
else
dev_warn(component->dev, "Warning: Invalid over-current-scale-factor value: %d, defaulting to 0.75\n",
val);
}
return 0;
}
static void rt5640_remove(struct snd_soc_component *component)
{
rt5640_reset(component);
}
#ifdef CONFIG_PM
static int rt5640_suspend(struct snd_soc_component *component)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
rt5640_reset(component);
regcache_cache_only(rt5640->regmap, true);
regcache_mark_dirty(rt5640->regmap);
if (gpio_is_valid(rt5640->ldo1_en))
gpio_set_value_cansleep(rt5640->ldo1_en, 0);
return 0;
}
static int rt5640_resume(struct snd_soc_component *component)
{
struct rt5640_priv *rt5640 = snd_soc_component_get_drvdata(component);
if (gpio_is_valid(rt5640->ldo1_en)) {
gpio_set_value_cansleep(rt5640->ldo1_en, 1);
msleep(400);
}
regcache_cache_only(rt5640->regmap, false);
regcache_sync(rt5640->regmap);
return 0;
}
#else
#define rt5640_suspend NULL
#define rt5640_resume NULL
#endif
#define RT5640_STEREO_RATES SNDRV_PCM_RATE_8000_96000
#define RT5640_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S8)
static const struct snd_soc_dai_ops rt5640_aif_dai_ops = {
.hw_params = rt5640_hw_params,
.set_fmt = rt5640_set_dai_fmt,
.set_sysclk = rt5640_set_dai_sysclk,
.set_pll = rt5640_set_dai_pll,
};
static struct snd_soc_dai_driver rt5640_dai[] = {
{
.name = "rt5640-aif1",
.id = RT5640_AIF1,
.playback = {
.stream_name = "AIF1 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = RT5640_STEREO_RATES,
.formats = RT5640_FORMATS,
},
.capture = {
.stream_name = "AIF1 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = RT5640_STEREO_RATES,
.formats = RT5640_FORMATS,
},
.ops = &rt5640_aif_dai_ops,
},
{
.name = "rt5640-aif2",
.id = RT5640_AIF2,
.playback = {
.stream_name = "AIF2 Playback",
.channels_min = 1,
.channels_max = 2,
.rates = RT5640_STEREO_RATES,
.formats = RT5640_FORMATS,
},
.capture = {
.stream_name = "AIF2 Capture",
.channels_min = 1,
.channels_max = 2,
.rates = RT5640_STEREO_RATES,
.formats = RT5640_FORMATS,
},
.ops = &rt5640_aif_dai_ops,
},
};
static const struct snd_soc_component_driver soc_component_dev_rt5640 = {
.probe = rt5640_probe,
.remove = rt5640_remove,
.suspend = rt5640_suspend,
.resume = rt5640_resume,
.set_bias_level = rt5640_set_bias_level,
.set_jack = rt5640_set_jack,
.controls = rt5640_snd_controls,
.num_controls = ARRAY_SIZE(rt5640_snd_controls),
.dapm_widgets = rt5640_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(rt5640_dapm_widgets),
.dapm_routes = rt5640_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(rt5640_dapm_routes),
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct regmap_config rt5640_regmap = {
.reg_bits = 8,
.val_bits = 16,
.use_single_read = true,
.use_single_write = true,
.max_register = RT5640_VENDOR_ID2 + 1 + (ARRAY_SIZE(rt5640_ranges) *
RT5640_PR_SPACING),
.volatile_reg = rt5640_volatile_register,
.readable_reg = rt5640_readable_register,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = rt5640_reg,
.num_reg_defaults = ARRAY_SIZE(rt5640_reg),
.ranges = rt5640_ranges,
.num_ranges = ARRAY_SIZE(rt5640_ranges),
};
static const struct i2c_device_id rt5640_i2c_id[] = {
{ "rt5640", 0 },
{ "rt5639", 0 },
{ "rt5642", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, rt5640_i2c_id);
#if defined(CONFIG_OF)
static const struct of_device_id rt5640_of_match[] = {
{ .compatible = "realtek,rt5639", },
{ .compatible = "realtek,rt5640", },
{},
};
MODULE_DEVICE_TABLE(of, rt5640_of_match);
#endif
#ifdef CONFIG_ACPI
static const struct acpi_device_id rt5640_acpi_match[] = {
{ "INT33CA", 0 },
{ "10EC3276", 0 },
{ "10EC5640", 0 },
{ "10EC5642", 0 },
{ "INTCCFFD", 0 },
{ },
};
MODULE_DEVICE_TABLE(acpi, rt5640_acpi_match);
#endif
static int rt5640_parse_dt(struct rt5640_priv *rt5640, struct device_node *np)
{
rt5640->ldo1_en = of_get_named_gpio(np, "realtek,ldo1-en-gpios", 0);
/*
* LDO1_EN is optional (it may be statically tied on the board).
* -ENOENT means that the property doesn't exist, i.e. there is no
* GPIO, so is not an error. Any other error code means the property
* exists, but could not be parsed.
*/
if (!gpio_is_valid(rt5640->ldo1_en) &&
(rt5640->ldo1_en != -ENOENT))
return rt5640->ldo1_en;
return 0;
}
static int rt5640_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct rt5640_priv *rt5640;
int ret;
unsigned int val;
rt5640 = devm_kzalloc(&i2c->dev,
sizeof(struct rt5640_priv),
GFP_KERNEL);
if (NULL == rt5640)
return -ENOMEM;
i2c_set_clientdata(i2c, rt5640);
if (i2c->dev.of_node) {
ret = rt5640_parse_dt(rt5640, i2c->dev.of_node);
if (ret)
return ret;
} else
rt5640->ldo1_en = -EINVAL;
rt5640->regmap = devm_regmap_init_i2c(i2c, &rt5640_regmap);
if (IS_ERR(rt5640->regmap)) {
ret = PTR_ERR(rt5640->regmap);
dev_err(&i2c->dev, "Failed to allocate register map: %d\n",
ret);
return ret;
}
if (gpio_is_valid(rt5640->ldo1_en)) {
ret = devm_gpio_request_one(&i2c->dev, rt5640->ldo1_en,
GPIOF_OUT_INIT_HIGH,
"RT5640 LDO1_EN");
if (ret < 0) {
dev_err(&i2c->dev, "Failed to request LDO1_EN %d: %d\n",
rt5640->ldo1_en, ret);
return ret;
}
msleep(400);
}
regmap_read(rt5640->regmap, RT5640_VENDOR_ID2, &val);
if (val != RT5640_DEVICE_ID) {
dev_err(&i2c->dev,
"Device with ID register %#x is not rt5640/39\n", val);
return -ENODEV;
}
regmap_write(rt5640->regmap, RT5640_RESET, 0);
ret = regmap_register_patch(rt5640->regmap, init_list,
ARRAY_SIZE(init_list));
if (ret != 0)
dev_warn(&i2c->dev, "Failed to apply regmap patch: %d\n", ret);
regmap_update_bits(rt5640->regmap, RT5640_DUMMY1,
RT5640_MCLK_DET, RT5640_MCLK_DET);
rt5640->hp_mute = true;
rt5640->irq = i2c->irq;
INIT_DELAYED_WORK(&rt5640->bp_work, rt5640_button_press_work);
INIT_WORK(&rt5640->jack_work, rt5640_jack_work);
/* Make sure work is stopped on probe-error / remove */
ret = devm_add_action_or_reset(&i2c->dev, rt5640_cancel_work, rt5640);
if (ret)
return ret;
ret = devm_request_irq(&i2c->dev, rt5640->irq, rt5640_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING
| IRQF_ONESHOT, "rt5640", rt5640);
if (ret == 0) {
/* Gets re-enabled by rt5640_set_jack() */
disable_irq(rt5640->irq);
} else {
dev_warn(&i2c->dev, "Failed to reguest IRQ %d: %d\n",
rt5640->irq, ret);
rt5640->irq = -ENXIO;
}
return devm_snd_soc_register_component(&i2c->dev,
&soc_component_dev_rt5640,
rt5640_dai, ARRAY_SIZE(rt5640_dai));
}
static struct i2c_driver rt5640_i2c_driver = {
.driver = {
.name = "rt5640",
.acpi_match_table = ACPI_PTR(rt5640_acpi_match),
.of_match_table = of_match_ptr(rt5640_of_match),
},
.probe = rt5640_i2c_probe,
.id_table = rt5640_i2c_id,
};
module_i2c_driver(rt5640_i2c_driver);
MODULE_DESCRIPTION("ASoC RT5640/RT5639 driver");
MODULE_AUTHOR("Johnny Hsu <johnnyhsu@realtek.com>");
MODULE_LICENSE("GPL v2");