2265 lines
58 KiB
C
2265 lines
58 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (c) 2006, Intel Corporation.
|
|
*
|
|
* Copyright (C) 2006-2008 Intel Corporation
|
|
* Author: Ashok Raj <ashok.raj@intel.com>
|
|
* Author: Shaohua Li <shaohua.li@intel.com>
|
|
* Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
|
|
*
|
|
* This file implements early detection/parsing of Remapping Devices
|
|
* reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
|
|
* tables.
|
|
*
|
|
* These routines are used by both DMA-remapping and Interrupt-remapping
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "DMAR: " fmt
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/dmar.h>
|
|
#include <linux/iova.h>
|
|
#include <linux/intel-iommu.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/tboot.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/limits.h>
|
|
#include <asm/irq_remapping.h>
|
|
#include <asm/iommu_table.h>
|
|
|
|
#include "../irq_remapping.h"
|
|
|
|
typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
|
|
struct dmar_res_callback {
|
|
dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
|
|
void *arg[ACPI_DMAR_TYPE_RESERVED];
|
|
bool ignore_unhandled;
|
|
bool print_entry;
|
|
};
|
|
|
|
/*
|
|
* Assumptions:
|
|
* 1) The hotplug framework guarentees that DMAR unit will be hot-added
|
|
* before IO devices managed by that unit.
|
|
* 2) The hotplug framework guarantees that DMAR unit will be hot-removed
|
|
* after IO devices managed by that unit.
|
|
* 3) Hotplug events are rare.
|
|
*
|
|
* Locking rules for DMA and interrupt remapping related global data structures:
|
|
* 1) Use dmar_global_lock in process context
|
|
* 2) Use RCU in interrupt context
|
|
*/
|
|
DECLARE_RWSEM(dmar_global_lock);
|
|
LIST_HEAD(dmar_drhd_units);
|
|
|
|
struct acpi_table_header * __initdata dmar_tbl;
|
|
static int dmar_dev_scope_status = 1;
|
|
static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
|
|
|
|
static int alloc_iommu(struct dmar_drhd_unit *drhd);
|
|
static void free_iommu(struct intel_iommu *iommu);
|
|
|
|
extern const struct iommu_ops intel_iommu_ops;
|
|
|
|
static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
|
|
{
|
|
/*
|
|
* add INCLUDE_ALL at the tail, so scan the list will find it at
|
|
* the very end.
|
|
*/
|
|
if (drhd->include_all)
|
|
list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
|
|
else
|
|
list_add_rcu(&drhd->list, &dmar_drhd_units);
|
|
}
|
|
|
|
void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
|
|
{
|
|
struct acpi_dmar_device_scope *scope;
|
|
|
|
*cnt = 0;
|
|
while (start < end) {
|
|
scope = start;
|
|
if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
|
|
scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
|
|
scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
|
|
(*cnt)++;
|
|
else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
|
|
scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
|
|
pr_warn("Unsupported device scope\n");
|
|
}
|
|
start += scope->length;
|
|
}
|
|
if (*cnt == 0)
|
|
return NULL;
|
|
|
|
return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
|
|
}
|
|
|
|
void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
|
|
{
|
|
int i;
|
|
struct device *tmp_dev;
|
|
|
|
if (*devices && *cnt) {
|
|
for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
|
|
put_device(tmp_dev);
|
|
kfree(*devices);
|
|
}
|
|
|
|
*devices = NULL;
|
|
*cnt = 0;
|
|
}
|
|
|
|
/* Optimize out kzalloc()/kfree() for normal cases */
|
|
static char dmar_pci_notify_info_buf[64];
|
|
|
|
static struct dmar_pci_notify_info *
|
|
dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
|
|
{
|
|
int level = 0;
|
|
size_t size;
|
|
struct pci_dev *tmp;
|
|
struct dmar_pci_notify_info *info;
|
|
|
|
BUG_ON(dev->is_virtfn);
|
|
|
|
/*
|
|
* Ignore devices that have a domain number higher than what can
|
|
* be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
|
|
*/
|
|
if (pci_domain_nr(dev->bus) > U16_MAX)
|
|
return NULL;
|
|
|
|
/* Only generate path[] for device addition event */
|
|
if (event == BUS_NOTIFY_ADD_DEVICE)
|
|
for (tmp = dev; tmp; tmp = tmp->bus->self)
|
|
level++;
|
|
|
|
size = struct_size(info, path, level);
|
|
if (size <= sizeof(dmar_pci_notify_info_buf)) {
|
|
info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
|
|
} else {
|
|
info = kzalloc(size, GFP_KERNEL);
|
|
if (!info) {
|
|
pr_warn("Out of memory when allocating notify_info "
|
|
"for %s.\n", pci_name(dev));
|
|
if (dmar_dev_scope_status == 0)
|
|
dmar_dev_scope_status = -ENOMEM;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
info->event = event;
|
|
info->dev = dev;
|
|
info->seg = pci_domain_nr(dev->bus);
|
|
info->level = level;
|
|
if (event == BUS_NOTIFY_ADD_DEVICE) {
|
|
for (tmp = dev; tmp; tmp = tmp->bus->self) {
|
|
level--;
|
|
info->path[level].bus = tmp->bus->number;
|
|
info->path[level].device = PCI_SLOT(tmp->devfn);
|
|
info->path[level].function = PCI_FUNC(tmp->devfn);
|
|
if (pci_is_root_bus(tmp->bus))
|
|
info->bus = tmp->bus->number;
|
|
}
|
|
}
|
|
|
|
return info;
|
|
}
|
|
|
|
static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
|
|
{
|
|
if ((void *)info != dmar_pci_notify_info_buf)
|
|
kfree(info);
|
|
}
|
|
|
|
static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
|
|
struct acpi_dmar_pci_path *path, int count)
|
|
{
|
|
int i;
|
|
|
|
if (info->bus != bus)
|
|
goto fallback;
|
|
if (info->level != count)
|
|
goto fallback;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
if (path[i].device != info->path[i].device ||
|
|
path[i].function != info->path[i].function)
|
|
goto fallback;
|
|
}
|
|
|
|
return true;
|
|
|
|
fallback:
|
|
|
|
if (count != 1)
|
|
return false;
|
|
|
|
i = info->level - 1;
|
|
if (bus == info->path[i].bus &&
|
|
path[0].device == info->path[i].device &&
|
|
path[0].function == info->path[i].function) {
|
|
pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
|
|
bus, path[0].device, path[0].function);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
|
|
int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
|
|
void *start, void*end, u16 segment,
|
|
struct dmar_dev_scope *devices,
|
|
int devices_cnt)
|
|
{
|
|
int i, level;
|
|
struct device *tmp, *dev = &info->dev->dev;
|
|
struct acpi_dmar_device_scope *scope;
|
|
struct acpi_dmar_pci_path *path;
|
|
|
|
if (segment != info->seg)
|
|
return 0;
|
|
|
|
for (; start < end; start += scope->length) {
|
|
scope = start;
|
|
if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
|
|
scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
|
|
continue;
|
|
|
|
path = (struct acpi_dmar_pci_path *)(scope + 1);
|
|
level = (scope->length - sizeof(*scope)) / sizeof(*path);
|
|
if (!dmar_match_pci_path(info, scope->bus, path, level))
|
|
continue;
|
|
|
|
/*
|
|
* We expect devices with endpoint scope to have normal PCI
|
|
* headers, and devices with bridge scope to have bridge PCI
|
|
* headers. However PCI NTB devices may be listed in the
|
|
* DMAR table with bridge scope, even though they have a
|
|
* normal PCI header. NTB devices are identified by class
|
|
* "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
|
|
* for this special case.
|
|
*/
|
|
if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
|
|
info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
|
|
(scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
|
|
(info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
|
|
info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
|
|
pr_warn("Device scope type does not match for %s\n",
|
|
pci_name(info->dev));
|
|
return -EINVAL;
|
|
}
|
|
|
|
for_each_dev_scope(devices, devices_cnt, i, tmp)
|
|
if (tmp == NULL) {
|
|
devices[i].bus = info->dev->bus->number;
|
|
devices[i].devfn = info->dev->devfn;
|
|
rcu_assign_pointer(devices[i].dev,
|
|
get_device(dev));
|
|
return 1;
|
|
}
|
|
BUG_ON(i >= devices_cnt);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
|
|
struct dmar_dev_scope *devices, int count)
|
|
{
|
|
int index;
|
|
struct device *tmp;
|
|
|
|
if (info->seg != segment)
|
|
return 0;
|
|
|
|
for_each_active_dev_scope(devices, count, index, tmp)
|
|
if (tmp == &info->dev->dev) {
|
|
RCU_INIT_POINTER(devices[index].dev, NULL);
|
|
synchronize_rcu();
|
|
put_device(tmp);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
|
|
{
|
|
int ret = 0;
|
|
struct dmar_drhd_unit *dmaru;
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
|
|
for_each_drhd_unit(dmaru) {
|
|
if (dmaru->include_all)
|
|
continue;
|
|
|
|
drhd = container_of(dmaru->hdr,
|
|
struct acpi_dmar_hardware_unit, header);
|
|
ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
|
|
((void *)drhd) + drhd->header.length,
|
|
dmaru->segment,
|
|
dmaru->devices, dmaru->devices_cnt);
|
|
if (ret)
|
|
break;
|
|
}
|
|
if (ret >= 0)
|
|
ret = dmar_iommu_notify_scope_dev(info);
|
|
if (ret < 0 && dmar_dev_scope_status == 0)
|
|
dmar_dev_scope_status = ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
|
|
{
|
|
struct dmar_drhd_unit *dmaru;
|
|
|
|
for_each_drhd_unit(dmaru)
|
|
if (dmar_remove_dev_scope(info, dmaru->segment,
|
|
dmaru->devices, dmaru->devices_cnt))
|
|
break;
|
|
dmar_iommu_notify_scope_dev(info);
|
|
}
|
|
|
|
static int dmar_pci_bus_notifier(struct notifier_block *nb,
|
|
unsigned long action, void *data)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(data);
|
|
struct dmar_pci_notify_info *info;
|
|
|
|
/* Only care about add/remove events for physical functions.
|
|
* For VFs we actually do the lookup based on the corresponding
|
|
* PF in device_to_iommu() anyway. */
|
|
if (pdev->is_virtfn)
|
|
return NOTIFY_DONE;
|
|
if (action != BUS_NOTIFY_ADD_DEVICE &&
|
|
action != BUS_NOTIFY_REMOVED_DEVICE)
|
|
return NOTIFY_DONE;
|
|
|
|
info = dmar_alloc_pci_notify_info(pdev, action);
|
|
if (!info)
|
|
return NOTIFY_DONE;
|
|
|
|
down_write(&dmar_global_lock);
|
|
if (action == BUS_NOTIFY_ADD_DEVICE)
|
|
dmar_pci_bus_add_dev(info);
|
|
else if (action == BUS_NOTIFY_REMOVED_DEVICE)
|
|
dmar_pci_bus_del_dev(info);
|
|
up_write(&dmar_global_lock);
|
|
|
|
dmar_free_pci_notify_info(info);
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block dmar_pci_bus_nb = {
|
|
.notifier_call = dmar_pci_bus_notifier,
|
|
.priority = INT_MIN,
|
|
};
|
|
|
|
static struct dmar_drhd_unit *
|
|
dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
|
|
{
|
|
struct dmar_drhd_unit *dmaru;
|
|
|
|
list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
|
|
dmar_rcu_check())
|
|
if (dmaru->segment == drhd->segment &&
|
|
dmaru->reg_base_addr == drhd->address)
|
|
return dmaru;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
|
|
* structure which uniquely represent one DMA remapping hardware unit
|
|
* present in the platform
|
|
*/
|
|
static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
|
|
{
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
struct dmar_drhd_unit *dmaru;
|
|
int ret;
|
|
|
|
drhd = (struct acpi_dmar_hardware_unit *)header;
|
|
dmaru = dmar_find_dmaru(drhd);
|
|
if (dmaru)
|
|
goto out;
|
|
|
|
dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
|
|
if (!dmaru)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* If header is allocated from slab by ACPI _DSM method, we need to
|
|
* copy the content because the memory buffer will be freed on return.
|
|
*/
|
|
dmaru->hdr = (void *)(dmaru + 1);
|
|
memcpy(dmaru->hdr, header, header->length);
|
|
dmaru->reg_base_addr = drhd->address;
|
|
dmaru->segment = drhd->segment;
|
|
dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
|
|
dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
|
|
((void *)drhd) + drhd->header.length,
|
|
&dmaru->devices_cnt);
|
|
if (dmaru->devices_cnt && dmaru->devices == NULL) {
|
|
kfree(dmaru);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = alloc_iommu(dmaru);
|
|
if (ret) {
|
|
dmar_free_dev_scope(&dmaru->devices,
|
|
&dmaru->devices_cnt);
|
|
kfree(dmaru);
|
|
return ret;
|
|
}
|
|
dmar_register_drhd_unit(dmaru);
|
|
|
|
out:
|
|
if (arg)
|
|
(*(int *)arg)++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
|
|
{
|
|
if (dmaru->devices && dmaru->devices_cnt)
|
|
dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
|
|
if (dmaru->iommu)
|
|
free_iommu(dmaru->iommu);
|
|
kfree(dmaru);
|
|
}
|
|
|
|
static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
|
|
void *arg)
|
|
{
|
|
struct acpi_dmar_andd *andd = (void *)header;
|
|
|
|
/* Check for NUL termination within the designated length */
|
|
if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
|
|
pr_warn(FW_BUG
|
|
"Your BIOS is broken; ANDD object name is not NUL-terminated\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
|
|
return -EINVAL;
|
|
}
|
|
pr_info("ANDD device: %x name: %s\n", andd->device_number,
|
|
andd->device_name);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
|
|
{
|
|
struct acpi_dmar_rhsa *rhsa;
|
|
struct dmar_drhd_unit *drhd;
|
|
|
|
rhsa = (struct acpi_dmar_rhsa *)header;
|
|
for_each_drhd_unit(drhd) {
|
|
if (drhd->reg_base_addr == rhsa->base_address) {
|
|
int node = acpi_map_pxm_to_node(rhsa->proximity_domain);
|
|
|
|
if (!node_online(node))
|
|
node = NUMA_NO_NODE;
|
|
drhd->iommu->node = node;
|
|
return 0;
|
|
}
|
|
}
|
|
pr_warn(FW_BUG
|
|
"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
rhsa->base_address,
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#define dmar_parse_one_rhsa dmar_res_noop
|
|
#endif
|
|
|
|
static void
|
|
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
|
|
{
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
struct acpi_dmar_reserved_memory *rmrr;
|
|
struct acpi_dmar_atsr *atsr;
|
|
struct acpi_dmar_rhsa *rhsa;
|
|
|
|
switch (header->type) {
|
|
case ACPI_DMAR_TYPE_HARDWARE_UNIT:
|
|
drhd = container_of(header, struct acpi_dmar_hardware_unit,
|
|
header);
|
|
pr_info("DRHD base: %#016Lx flags: %#x\n",
|
|
(unsigned long long)drhd->address, drhd->flags);
|
|
break;
|
|
case ACPI_DMAR_TYPE_RESERVED_MEMORY:
|
|
rmrr = container_of(header, struct acpi_dmar_reserved_memory,
|
|
header);
|
|
pr_info("RMRR base: %#016Lx end: %#016Lx\n",
|
|
(unsigned long long)rmrr->base_address,
|
|
(unsigned long long)rmrr->end_address);
|
|
break;
|
|
case ACPI_DMAR_TYPE_ROOT_ATS:
|
|
atsr = container_of(header, struct acpi_dmar_atsr, header);
|
|
pr_info("ATSR flags: %#x\n", atsr->flags);
|
|
break;
|
|
case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
|
|
rhsa = container_of(header, struct acpi_dmar_rhsa, header);
|
|
pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
|
|
(unsigned long long)rhsa->base_address,
|
|
rhsa->proximity_domain);
|
|
break;
|
|
case ACPI_DMAR_TYPE_NAMESPACE:
|
|
/* We don't print this here because we need to sanity-check
|
|
it first. So print it in dmar_parse_one_andd() instead. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* dmar_table_detect - checks to see if the platform supports DMAR devices
|
|
*/
|
|
static int __init dmar_table_detect(void)
|
|
{
|
|
acpi_status status = AE_OK;
|
|
|
|
/* if we could find DMAR table, then there are DMAR devices */
|
|
status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
|
|
|
|
if (ACPI_SUCCESS(status) && !dmar_tbl) {
|
|
pr_warn("Unable to map DMAR\n");
|
|
status = AE_NOT_FOUND;
|
|
}
|
|
|
|
return ACPI_SUCCESS(status) ? 0 : -ENOENT;
|
|
}
|
|
|
|
static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
|
|
size_t len, struct dmar_res_callback *cb)
|
|
{
|
|
struct acpi_dmar_header *iter, *next;
|
|
struct acpi_dmar_header *end = ((void *)start) + len;
|
|
|
|
for (iter = start; iter < end; iter = next) {
|
|
next = (void *)iter + iter->length;
|
|
if (iter->length == 0) {
|
|
/* Avoid looping forever on bad ACPI tables */
|
|
pr_debug(FW_BUG "Invalid 0-length structure\n");
|
|
break;
|
|
} else if (next > end) {
|
|
/* Avoid passing table end */
|
|
pr_warn(FW_BUG "Record passes table end\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cb->print_entry)
|
|
dmar_table_print_dmar_entry(iter);
|
|
|
|
if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
|
|
/* continue for forward compatibility */
|
|
pr_debug("Unknown DMAR structure type %d\n",
|
|
iter->type);
|
|
} else if (cb->cb[iter->type]) {
|
|
int ret;
|
|
|
|
ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
|
|
if (ret)
|
|
return ret;
|
|
} else if (!cb->ignore_unhandled) {
|
|
pr_warn("No handler for DMAR structure type %d\n",
|
|
iter->type);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
|
|
struct dmar_res_callback *cb)
|
|
{
|
|
return dmar_walk_remapping_entries((void *)(dmar + 1),
|
|
dmar->header.length - sizeof(*dmar), cb);
|
|
}
|
|
|
|
/**
|
|
* parse_dmar_table - parses the DMA reporting table
|
|
*/
|
|
static int __init
|
|
parse_dmar_table(void)
|
|
{
|
|
struct acpi_table_dmar *dmar;
|
|
int drhd_count = 0;
|
|
int ret;
|
|
struct dmar_res_callback cb = {
|
|
.print_entry = true,
|
|
.ignore_unhandled = true,
|
|
.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
|
|
.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
|
|
.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
|
|
.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
|
|
.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
|
|
.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
|
|
};
|
|
|
|
/*
|
|
* Do it again, earlier dmar_tbl mapping could be mapped with
|
|
* fixed map.
|
|
*/
|
|
dmar_table_detect();
|
|
|
|
/*
|
|
* ACPI tables may not be DMA protected by tboot, so use DMAR copy
|
|
* SINIT saved in SinitMleData in TXT heap (which is DMA protected)
|
|
*/
|
|
dmar_tbl = tboot_get_dmar_table(dmar_tbl);
|
|
|
|
dmar = (struct acpi_table_dmar *)dmar_tbl;
|
|
if (!dmar)
|
|
return -ENODEV;
|
|
|
|
if (dmar->width < PAGE_SHIFT - 1) {
|
|
pr_warn("Invalid DMAR haw\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pr_info("Host address width %d\n", dmar->width + 1);
|
|
ret = dmar_walk_dmar_table(dmar, &cb);
|
|
if (ret == 0 && drhd_count == 0)
|
|
pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dmar_pci_device_match(struct dmar_dev_scope devices[],
|
|
int cnt, struct pci_dev *dev)
|
|
{
|
|
int index;
|
|
struct device *tmp;
|
|
|
|
while (dev) {
|
|
for_each_active_dev_scope(devices, cnt, index, tmp)
|
|
if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
|
|
return 1;
|
|
|
|
/* Check our parent */
|
|
dev = dev->bus->self;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct dmar_drhd_unit *
|
|
dmar_find_matched_drhd_unit(struct pci_dev *dev)
|
|
{
|
|
struct dmar_drhd_unit *dmaru;
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
|
|
dev = pci_physfn(dev);
|
|
|
|
rcu_read_lock();
|
|
for_each_drhd_unit(dmaru) {
|
|
drhd = container_of(dmaru->hdr,
|
|
struct acpi_dmar_hardware_unit,
|
|
header);
|
|
|
|
if (dmaru->include_all &&
|
|
drhd->segment == pci_domain_nr(dev->bus))
|
|
goto out;
|
|
|
|
if (dmar_pci_device_match(dmaru->devices,
|
|
dmaru->devices_cnt, dev))
|
|
goto out;
|
|
}
|
|
dmaru = NULL;
|
|
out:
|
|
rcu_read_unlock();
|
|
|
|
return dmaru;
|
|
}
|
|
|
|
static void __init dmar_acpi_insert_dev_scope(u8 device_number,
|
|
struct acpi_device *adev)
|
|
{
|
|
struct dmar_drhd_unit *dmaru;
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
struct acpi_dmar_device_scope *scope;
|
|
struct device *tmp;
|
|
int i;
|
|
struct acpi_dmar_pci_path *path;
|
|
|
|
for_each_drhd_unit(dmaru) {
|
|
drhd = container_of(dmaru->hdr,
|
|
struct acpi_dmar_hardware_unit,
|
|
header);
|
|
|
|
for (scope = (void *)(drhd + 1);
|
|
(unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
|
|
scope = ((void *)scope) + scope->length) {
|
|
if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
|
|
continue;
|
|
if (scope->enumeration_id != device_number)
|
|
continue;
|
|
|
|
path = (void *)(scope + 1);
|
|
pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
|
|
dev_name(&adev->dev), dmaru->reg_base_addr,
|
|
scope->bus, path->device, path->function);
|
|
for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
|
|
if (tmp == NULL) {
|
|
dmaru->devices[i].bus = scope->bus;
|
|
dmaru->devices[i].devfn = PCI_DEVFN(path->device,
|
|
path->function);
|
|
rcu_assign_pointer(dmaru->devices[i].dev,
|
|
get_device(&adev->dev));
|
|
return;
|
|
}
|
|
BUG_ON(i >= dmaru->devices_cnt);
|
|
}
|
|
}
|
|
pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
|
|
device_number, dev_name(&adev->dev));
|
|
}
|
|
|
|
static int __init dmar_acpi_dev_scope_init(void)
|
|
{
|
|
struct acpi_dmar_andd *andd;
|
|
|
|
if (dmar_tbl == NULL)
|
|
return -ENODEV;
|
|
|
|
for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
|
|
((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
|
|
andd = ((void *)andd) + andd->header.length) {
|
|
if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
|
|
acpi_handle h;
|
|
struct acpi_device *adev;
|
|
|
|
if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
|
|
andd->device_name,
|
|
&h))) {
|
|
pr_err("Failed to find handle for ACPI object %s\n",
|
|
andd->device_name);
|
|
continue;
|
|
}
|
|
if (acpi_bus_get_device(h, &adev)) {
|
|
pr_err("Failed to get device for ACPI object %s\n",
|
|
andd->device_name);
|
|
continue;
|
|
}
|
|
dmar_acpi_insert_dev_scope(andd->device_number, adev);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __init dmar_dev_scope_init(void)
|
|
{
|
|
struct pci_dev *dev = NULL;
|
|
struct dmar_pci_notify_info *info;
|
|
|
|
if (dmar_dev_scope_status != 1)
|
|
return dmar_dev_scope_status;
|
|
|
|
if (list_empty(&dmar_drhd_units)) {
|
|
dmar_dev_scope_status = -ENODEV;
|
|
} else {
|
|
dmar_dev_scope_status = 0;
|
|
|
|
dmar_acpi_dev_scope_init();
|
|
|
|
for_each_pci_dev(dev) {
|
|
if (dev->is_virtfn)
|
|
continue;
|
|
|
|
info = dmar_alloc_pci_notify_info(dev,
|
|
BUS_NOTIFY_ADD_DEVICE);
|
|
if (!info) {
|
|
return dmar_dev_scope_status;
|
|
} else {
|
|
dmar_pci_bus_add_dev(info);
|
|
dmar_free_pci_notify_info(info);
|
|
}
|
|
}
|
|
}
|
|
|
|
return dmar_dev_scope_status;
|
|
}
|
|
|
|
void __init dmar_register_bus_notifier(void)
|
|
{
|
|
bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
|
|
}
|
|
|
|
|
|
int __init dmar_table_init(void)
|
|
{
|
|
static int dmar_table_initialized;
|
|
int ret;
|
|
|
|
if (dmar_table_initialized == 0) {
|
|
ret = parse_dmar_table();
|
|
if (ret < 0) {
|
|
if (ret != -ENODEV)
|
|
pr_info("Parse DMAR table failure.\n");
|
|
} else if (list_empty(&dmar_drhd_units)) {
|
|
pr_info("No DMAR devices found\n");
|
|
ret = -ENODEV;
|
|
}
|
|
|
|
if (ret < 0)
|
|
dmar_table_initialized = ret;
|
|
else
|
|
dmar_table_initialized = 1;
|
|
}
|
|
|
|
return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
|
|
}
|
|
|
|
static void warn_invalid_dmar(u64 addr, const char *message)
|
|
{
|
|
pr_warn_once(FW_BUG
|
|
"Your BIOS is broken; DMAR reported at address %llx%s!\n"
|
|
"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
|
|
addr, message,
|
|
dmi_get_system_info(DMI_BIOS_VENDOR),
|
|
dmi_get_system_info(DMI_BIOS_VERSION),
|
|
dmi_get_system_info(DMI_PRODUCT_VERSION));
|
|
add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
|
|
}
|
|
|
|
static int __ref
|
|
dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
|
|
{
|
|
struct acpi_dmar_hardware_unit *drhd;
|
|
void __iomem *addr;
|
|
u64 cap, ecap;
|
|
|
|
drhd = (void *)entry;
|
|
if (!drhd->address) {
|
|
warn_invalid_dmar(0, "");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (arg)
|
|
addr = ioremap(drhd->address, VTD_PAGE_SIZE);
|
|
else
|
|
addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
|
|
if (!addr) {
|
|
pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
|
|
return -EINVAL;
|
|
}
|
|
|
|
cap = dmar_readq(addr + DMAR_CAP_REG);
|
|
ecap = dmar_readq(addr + DMAR_ECAP_REG);
|
|
|
|
if (arg)
|
|
iounmap(addr);
|
|
else
|
|
early_iounmap(addr, VTD_PAGE_SIZE);
|
|
|
|
if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
|
|
warn_invalid_dmar(drhd->address, " returns all ones");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init detect_intel_iommu(void)
|
|
{
|
|
int ret;
|
|
struct dmar_res_callback validate_drhd_cb = {
|
|
.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
|
|
.ignore_unhandled = true,
|
|
};
|
|
|
|
down_write(&dmar_global_lock);
|
|
ret = dmar_table_detect();
|
|
if (!ret)
|
|
ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
|
|
&validate_drhd_cb);
|
|
if (!ret && !no_iommu && !iommu_detected && !dmar_disabled) {
|
|
iommu_detected = 1;
|
|
/* Make sure ACS will be enabled */
|
|
pci_request_acs();
|
|
}
|
|
|
|
#ifdef CONFIG_X86
|
|
if (!ret) {
|
|
x86_init.iommu.iommu_init = intel_iommu_init;
|
|
x86_platform.iommu_shutdown = intel_iommu_shutdown;
|
|
}
|
|
|
|
#endif
|
|
|
|
if (dmar_tbl) {
|
|
acpi_put_table(dmar_tbl);
|
|
dmar_tbl = NULL;
|
|
}
|
|
up_write(&dmar_global_lock);
|
|
|
|
return ret ? ret : 1;
|
|
}
|
|
|
|
static void unmap_iommu(struct intel_iommu *iommu)
|
|
{
|
|
iounmap(iommu->reg);
|
|
release_mem_region(iommu->reg_phys, iommu->reg_size);
|
|
}
|
|
|
|
/**
|
|
* map_iommu: map the iommu's registers
|
|
* @iommu: the iommu to map
|
|
* @phys_addr: the physical address of the base resgister
|
|
*
|
|
* Memory map the iommu's registers. Start w/ a single page, and
|
|
* possibly expand if that turns out to be insufficent.
|
|
*/
|
|
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
|
|
{
|
|
int map_size, err=0;
|
|
|
|
iommu->reg_phys = phys_addr;
|
|
iommu->reg_size = VTD_PAGE_SIZE;
|
|
|
|
if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
|
|
pr_err("Can't reserve memory\n");
|
|
err = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
|
|
if (!iommu->reg) {
|
|
pr_err("Can't map the region\n");
|
|
err = -ENOMEM;
|
|
goto release;
|
|
}
|
|
|
|
iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
|
|
iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
|
|
|
|
if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
|
|
err = -EINVAL;
|
|
warn_invalid_dmar(phys_addr, " returns all ones");
|
|
goto unmap;
|
|
}
|
|
iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
|
|
|
|
/* the registers might be more than one page */
|
|
map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
|
|
cap_max_fault_reg_offset(iommu->cap));
|
|
map_size = VTD_PAGE_ALIGN(map_size);
|
|
if (map_size > iommu->reg_size) {
|
|
iounmap(iommu->reg);
|
|
release_mem_region(iommu->reg_phys, iommu->reg_size);
|
|
iommu->reg_size = map_size;
|
|
if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
|
|
iommu->name)) {
|
|
pr_err("Can't reserve memory\n");
|
|
err = -EBUSY;
|
|
goto out;
|
|
}
|
|
iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
|
|
if (!iommu->reg) {
|
|
pr_err("Can't map the region\n");
|
|
err = -ENOMEM;
|
|
goto release;
|
|
}
|
|
}
|
|
err = 0;
|
|
goto out;
|
|
|
|
unmap:
|
|
iounmap(iommu->reg);
|
|
release:
|
|
release_mem_region(iommu->reg_phys, iommu->reg_size);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int dmar_alloc_seq_id(struct intel_iommu *iommu)
|
|
{
|
|
iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
|
|
DMAR_UNITS_SUPPORTED);
|
|
if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
|
|
iommu->seq_id = -1;
|
|
} else {
|
|
set_bit(iommu->seq_id, dmar_seq_ids);
|
|
sprintf(iommu->name, "dmar%d", iommu->seq_id);
|
|
}
|
|
|
|
return iommu->seq_id;
|
|
}
|
|
|
|
static void dmar_free_seq_id(struct intel_iommu *iommu)
|
|
{
|
|
if (iommu->seq_id >= 0) {
|
|
clear_bit(iommu->seq_id, dmar_seq_ids);
|
|
iommu->seq_id = -1;
|
|
}
|
|
}
|
|
|
|
static int alloc_iommu(struct dmar_drhd_unit *drhd)
|
|
{
|
|
struct intel_iommu *iommu;
|
|
u32 ver, sts;
|
|
int agaw = 0;
|
|
int msagaw = 0;
|
|
int err;
|
|
|
|
if (!drhd->reg_base_addr) {
|
|
warn_invalid_dmar(0, "");
|
|
return -EINVAL;
|
|
}
|
|
|
|
iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
|
|
if (!iommu)
|
|
return -ENOMEM;
|
|
|
|
if (dmar_alloc_seq_id(iommu) < 0) {
|
|
pr_err("Failed to allocate seq_id\n");
|
|
err = -ENOSPC;
|
|
goto error;
|
|
}
|
|
|
|
err = map_iommu(iommu, drhd->reg_base_addr);
|
|
if (err) {
|
|
pr_err("Failed to map %s\n", iommu->name);
|
|
goto error_free_seq_id;
|
|
}
|
|
|
|
err = -EINVAL;
|
|
agaw = iommu_calculate_agaw(iommu);
|
|
if (agaw < 0) {
|
|
pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
|
|
iommu->seq_id);
|
|
goto err_unmap;
|
|
}
|
|
msagaw = iommu_calculate_max_sagaw(iommu);
|
|
if (msagaw < 0) {
|
|
pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
|
|
iommu->seq_id);
|
|
goto err_unmap;
|
|
}
|
|
iommu->agaw = agaw;
|
|
iommu->msagaw = msagaw;
|
|
iommu->segment = drhd->segment;
|
|
|
|
iommu->node = NUMA_NO_NODE;
|
|
|
|
ver = readl(iommu->reg + DMAR_VER_REG);
|
|
pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
|
|
iommu->name,
|
|
(unsigned long long)drhd->reg_base_addr,
|
|
DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
|
|
(unsigned long long)iommu->cap,
|
|
(unsigned long long)iommu->ecap);
|
|
|
|
/* Reflect status in gcmd */
|
|
sts = readl(iommu->reg + DMAR_GSTS_REG);
|
|
if (sts & DMA_GSTS_IRES)
|
|
iommu->gcmd |= DMA_GCMD_IRE;
|
|
if (sts & DMA_GSTS_TES)
|
|
iommu->gcmd |= DMA_GCMD_TE;
|
|
if (sts & DMA_GSTS_QIES)
|
|
iommu->gcmd |= DMA_GCMD_QIE;
|
|
|
|
raw_spin_lock_init(&iommu->register_lock);
|
|
|
|
if (intel_iommu_enabled) {
|
|
err = iommu_device_sysfs_add(&iommu->iommu, NULL,
|
|
intel_iommu_groups,
|
|
"%s", iommu->name);
|
|
if (err)
|
|
goto err_unmap;
|
|
|
|
iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
|
|
|
|
err = iommu_device_register(&iommu->iommu);
|
|
if (err)
|
|
goto err_unmap;
|
|
}
|
|
|
|
drhd->iommu = iommu;
|
|
|
|
return 0;
|
|
|
|
err_unmap:
|
|
unmap_iommu(iommu);
|
|
error_free_seq_id:
|
|
dmar_free_seq_id(iommu);
|
|
error:
|
|
kfree(iommu);
|
|
return err;
|
|
}
|
|
|
|
static void free_iommu(struct intel_iommu *iommu)
|
|
{
|
|
if (intel_iommu_enabled) {
|
|
iommu_device_unregister(&iommu->iommu);
|
|
iommu_device_sysfs_remove(&iommu->iommu);
|
|
}
|
|
|
|
if (iommu->irq) {
|
|
if (iommu->pr_irq) {
|
|
free_irq(iommu->pr_irq, iommu);
|
|
dmar_free_hwirq(iommu->pr_irq);
|
|
iommu->pr_irq = 0;
|
|
}
|
|
free_irq(iommu->irq, iommu);
|
|
dmar_free_hwirq(iommu->irq);
|
|
iommu->irq = 0;
|
|
}
|
|
|
|
if (iommu->qi) {
|
|
free_page((unsigned long)iommu->qi->desc);
|
|
kfree(iommu->qi->desc_status);
|
|
kfree(iommu->qi);
|
|
}
|
|
|
|
if (iommu->reg)
|
|
unmap_iommu(iommu);
|
|
|
|
dmar_free_seq_id(iommu);
|
|
kfree(iommu);
|
|
}
|
|
|
|
/*
|
|
* Reclaim all the submitted descriptors which have completed its work.
|
|
*/
|
|
static inline void reclaim_free_desc(struct q_inval *qi)
|
|
{
|
|
while (qi->desc_status[qi->free_tail] == QI_DONE ||
|
|
qi->desc_status[qi->free_tail] == QI_ABORT) {
|
|
qi->desc_status[qi->free_tail] = QI_FREE;
|
|
qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
|
|
qi->free_cnt++;
|
|
}
|
|
}
|
|
|
|
static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
|
|
{
|
|
u32 fault;
|
|
int head, tail;
|
|
struct q_inval *qi = iommu->qi;
|
|
int shift = qi_shift(iommu);
|
|
|
|
if (qi->desc_status[wait_index] == QI_ABORT)
|
|
return -EAGAIN;
|
|
|
|
fault = readl(iommu->reg + DMAR_FSTS_REG);
|
|
|
|
/*
|
|
* If IQE happens, the head points to the descriptor associated
|
|
* with the error. No new descriptors are fetched until the IQE
|
|
* is cleared.
|
|
*/
|
|
if (fault & DMA_FSTS_IQE) {
|
|
head = readl(iommu->reg + DMAR_IQH_REG);
|
|
if ((head >> shift) == index) {
|
|
struct qi_desc *desc = qi->desc + head;
|
|
|
|
/*
|
|
* desc->qw2 and desc->qw3 are either reserved or
|
|
* used by software as private data. We won't print
|
|
* out these two qw's for security consideration.
|
|
*/
|
|
pr_err("VT-d detected invalid descriptor: qw0 = %llx, qw1 = %llx\n",
|
|
(unsigned long long)desc->qw0,
|
|
(unsigned long long)desc->qw1);
|
|
memcpy(desc, qi->desc + (wait_index << shift),
|
|
1 << shift);
|
|
writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If ITE happens, all pending wait_desc commands are aborted.
|
|
* No new descriptors are fetched until the ITE is cleared.
|
|
*/
|
|
if (fault & DMA_FSTS_ITE) {
|
|
head = readl(iommu->reg + DMAR_IQH_REG);
|
|
head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
|
|
head |= 1;
|
|
tail = readl(iommu->reg + DMAR_IQT_REG);
|
|
tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
|
|
|
|
writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
|
|
|
|
do {
|
|
if (qi->desc_status[head] == QI_IN_USE)
|
|
qi->desc_status[head] = QI_ABORT;
|
|
head = (head - 2 + QI_LENGTH) % QI_LENGTH;
|
|
} while (head != tail);
|
|
|
|
if (qi->desc_status[wait_index] == QI_ABORT)
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (fault & DMA_FSTS_ICE)
|
|
writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function to submit invalidation descriptors of all types to the queued
|
|
* invalidation interface(QI). Multiple descriptors can be submitted at a
|
|
* time, a wait descriptor will be appended to each submission to ensure
|
|
* hardware has completed the invalidation before return. Wait descriptors
|
|
* can be part of the submission but it will not be polled for completion.
|
|
*/
|
|
int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
|
|
unsigned int count, unsigned long options)
|
|
{
|
|
struct q_inval *qi = iommu->qi;
|
|
struct qi_desc wait_desc;
|
|
int wait_index, index;
|
|
unsigned long flags;
|
|
int offset, shift;
|
|
int rc, i;
|
|
|
|
if (!qi)
|
|
return 0;
|
|
|
|
restart:
|
|
rc = 0;
|
|
|
|
raw_spin_lock_irqsave(&qi->q_lock, flags);
|
|
/*
|
|
* Check if we have enough empty slots in the queue to submit,
|
|
* the calculation is based on:
|
|
* # of desc + 1 wait desc + 1 space between head and tail
|
|
*/
|
|
while (qi->free_cnt < count + 2) {
|
|
raw_spin_unlock_irqrestore(&qi->q_lock, flags);
|
|
cpu_relax();
|
|
raw_spin_lock_irqsave(&qi->q_lock, flags);
|
|
}
|
|
|
|
index = qi->free_head;
|
|
wait_index = (index + count) % QI_LENGTH;
|
|
shift = qi_shift(iommu);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
offset = ((index + i) % QI_LENGTH) << shift;
|
|
memcpy(qi->desc + offset, &desc[i], 1 << shift);
|
|
qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
|
|
}
|
|
qi->desc_status[wait_index] = QI_IN_USE;
|
|
|
|
wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
|
|
QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
|
|
if (options & QI_OPT_WAIT_DRAIN)
|
|
wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
|
|
wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
|
|
wait_desc.qw2 = 0;
|
|
wait_desc.qw3 = 0;
|
|
|
|
offset = wait_index << shift;
|
|
memcpy(qi->desc + offset, &wait_desc, 1 << shift);
|
|
|
|
qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
|
|
qi->free_cnt -= count + 1;
|
|
|
|
/*
|
|
* update the HW tail register indicating the presence of
|
|
* new descriptors.
|
|
*/
|
|
writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
|
|
|
|
while (qi->desc_status[wait_index] != QI_DONE) {
|
|
/*
|
|
* We will leave the interrupts disabled, to prevent interrupt
|
|
* context to queue another cmd while a cmd is already submitted
|
|
* and waiting for completion on this cpu. This is to avoid
|
|
* a deadlock where the interrupt context can wait indefinitely
|
|
* for free slots in the queue.
|
|
*/
|
|
rc = qi_check_fault(iommu, index, wait_index);
|
|
if (rc)
|
|
break;
|
|
|
|
raw_spin_unlock(&qi->q_lock);
|
|
cpu_relax();
|
|
raw_spin_lock(&qi->q_lock);
|
|
}
|
|
|
|
for (i = 0; i < count; i++)
|
|
qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
|
|
|
|
reclaim_free_desc(qi);
|
|
raw_spin_unlock_irqrestore(&qi->q_lock, flags);
|
|
|
|
if (rc == -EAGAIN)
|
|
goto restart;
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Flush the global interrupt entry cache.
|
|
*/
|
|
void qi_global_iec(struct intel_iommu *iommu)
|
|
{
|
|
struct qi_desc desc;
|
|
|
|
desc.qw0 = QI_IEC_TYPE;
|
|
desc.qw1 = 0;
|
|
desc.qw2 = 0;
|
|
desc.qw3 = 0;
|
|
|
|
/* should never fail */
|
|
qi_submit_sync(iommu, &desc, 1, 0);
|
|
}
|
|
|
|
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
|
|
u64 type)
|
|
{
|
|
struct qi_desc desc;
|
|
|
|
desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
|
|
| QI_CC_GRAN(type) | QI_CC_TYPE;
|
|
desc.qw1 = 0;
|
|
desc.qw2 = 0;
|
|
desc.qw3 = 0;
|
|
|
|
qi_submit_sync(iommu, &desc, 1, 0);
|
|
}
|
|
|
|
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
|
|
unsigned int size_order, u64 type)
|
|
{
|
|
u8 dw = 0, dr = 0;
|
|
|
|
struct qi_desc desc;
|
|
int ih = 0;
|
|
|
|
if (cap_write_drain(iommu->cap))
|
|
dw = 1;
|
|
|
|
if (cap_read_drain(iommu->cap))
|
|
dr = 1;
|
|
|
|
desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
|
|
| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
|
|
desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
|
|
| QI_IOTLB_AM(size_order);
|
|
desc.qw2 = 0;
|
|
desc.qw3 = 0;
|
|
|
|
qi_submit_sync(iommu, &desc, 1, 0);
|
|
}
|
|
|
|
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
|
|
u16 qdep, u64 addr, unsigned mask)
|
|
{
|
|
struct qi_desc desc;
|
|
|
|
if (mask) {
|
|
addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
|
|
desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
|
|
} else
|
|
desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
|
|
|
|
if (qdep >= QI_DEV_IOTLB_MAX_INVS)
|
|
qdep = 0;
|
|
|
|
desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
|
|
QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
|
|
desc.qw2 = 0;
|
|
desc.qw3 = 0;
|
|
|
|
qi_submit_sync(iommu, &desc, 1, 0);
|
|
}
|
|
|
|
/* PASID-based IOTLB invalidation */
|
|
void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
|
|
unsigned long npages, bool ih)
|
|
{
|
|
struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
|
|
|
|
/*
|
|
* npages == -1 means a PASID-selective invalidation, otherwise,
|
|
* a positive value for Page-selective-within-PASID invalidation.
|
|
* 0 is not a valid input.
|
|
*/
|
|
if (WARN_ON(!npages)) {
|
|
pr_err("Invalid input npages = %ld\n", npages);
|
|
return;
|
|
}
|
|
|
|
if (npages == -1) {
|
|
desc.qw0 = QI_EIOTLB_PASID(pasid) |
|
|
QI_EIOTLB_DID(did) |
|
|
QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
|
|
QI_EIOTLB_TYPE;
|
|
desc.qw1 = 0;
|
|
} else {
|
|
int mask = ilog2(__roundup_pow_of_two(npages));
|
|
unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
|
|
|
|
if (WARN_ON_ONCE(!ALIGN(addr, align)))
|
|
addr &= ~(align - 1);
|
|
|
|
desc.qw0 = QI_EIOTLB_PASID(pasid) |
|
|
QI_EIOTLB_DID(did) |
|
|
QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
|
|
QI_EIOTLB_TYPE;
|
|
desc.qw1 = QI_EIOTLB_ADDR(addr) |
|
|
QI_EIOTLB_IH(ih) |
|
|
QI_EIOTLB_AM(mask);
|
|
}
|
|
|
|
qi_submit_sync(iommu, &desc, 1, 0);
|
|
}
|
|
|
|
/* PASID-based device IOTLB Invalidate */
|
|
void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
|
|
u32 pasid, u16 qdep, u64 addr,
|
|
unsigned int size_order, u64 granu)
|
|
{
|
|
unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
|
|
struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
|
|
|
|
desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
|
|
QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
|
|
QI_DEV_IOTLB_PFSID(pfsid);
|
|
desc.qw1 = QI_DEV_EIOTLB_GLOB(granu);
|
|
|
|
/*
|
|
* If S bit is 0, we only flush a single page. If S bit is set,
|
|
* The least significant zero bit indicates the invalidation address
|
|
* range. VT-d spec 6.5.2.6.
|
|
* e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
|
|
* size order = 0 is PAGE_SIZE 4KB
|
|
* Max Invs Pending (MIP) is set to 0 for now until we have DIT in
|
|
* ECAP.
|
|
*/
|
|
desc.qw1 |= addr & ~mask;
|
|
if (size_order)
|
|
desc.qw1 |= QI_DEV_EIOTLB_SIZE;
|
|
|
|
qi_submit_sync(iommu, &desc, 1, 0);
|
|
}
|
|
|
|
void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
|
|
u64 granu, int pasid)
|
|
{
|
|
struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
|
|
|
|
desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
|
|
QI_PC_GRAN(granu) | QI_PC_TYPE;
|
|
qi_submit_sync(iommu, &desc, 1, 0);
|
|
}
|
|
|
|
/*
|
|
* Disable Queued Invalidation interface.
|
|
*/
|
|
void dmar_disable_qi(struct intel_iommu *iommu)
|
|
{
|
|
unsigned long flags;
|
|
u32 sts;
|
|
cycles_t start_time = get_cycles();
|
|
|
|
if (!ecap_qis(iommu->ecap))
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
|
|
sts = readl(iommu->reg + DMAR_GSTS_REG);
|
|
if (!(sts & DMA_GSTS_QIES))
|
|
goto end;
|
|
|
|
/*
|
|
* Give a chance to HW to complete the pending invalidation requests.
|
|
*/
|
|
while ((readl(iommu->reg + DMAR_IQT_REG) !=
|
|
readl(iommu->reg + DMAR_IQH_REG)) &&
|
|
(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
|
|
cpu_relax();
|
|
|
|
iommu->gcmd &= ~DMA_GCMD_QIE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
|
|
!(sts & DMA_GSTS_QIES), sts);
|
|
end:
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Enable queued invalidation.
|
|
*/
|
|
static void __dmar_enable_qi(struct intel_iommu *iommu)
|
|
{
|
|
u32 sts;
|
|
unsigned long flags;
|
|
struct q_inval *qi = iommu->qi;
|
|
u64 val = virt_to_phys(qi->desc);
|
|
|
|
qi->free_head = qi->free_tail = 0;
|
|
qi->free_cnt = QI_LENGTH;
|
|
|
|
/*
|
|
* Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
|
|
* is present.
|
|
*/
|
|
if (ecap_smts(iommu->ecap))
|
|
val |= (1 << 11) | 1;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flags);
|
|
|
|
/* write zero to the tail reg */
|
|
writel(0, iommu->reg + DMAR_IQT_REG);
|
|
|
|
dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
|
|
|
|
iommu->gcmd |= DMA_GCMD_QIE;
|
|
writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
|
|
|
|
/* Make sure hardware complete it */
|
|
IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Enable Queued Invalidation interface. This is a must to support
|
|
* interrupt-remapping. Also used by DMA-remapping, which replaces
|
|
* register based IOTLB invalidation.
|
|
*/
|
|
int dmar_enable_qi(struct intel_iommu *iommu)
|
|
{
|
|
struct q_inval *qi;
|
|
struct page *desc_page;
|
|
|
|
if (!ecap_qis(iommu->ecap))
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* queued invalidation is already setup and enabled.
|
|
*/
|
|
if (iommu->qi)
|
|
return 0;
|
|
|
|
iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
|
|
if (!iommu->qi)
|
|
return -ENOMEM;
|
|
|
|
qi = iommu->qi;
|
|
|
|
/*
|
|
* Need two pages to accommodate 256 descriptors of 256 bits each
|
|
* if the remapping hardware supports scalable mode translation.
|
|
*/
|
|
desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
|
|
!!ecap_smts(iommu->ecap));
|
|
if (!desc_page) {
|
|
kfree(qi);
|
|
iommu->qi = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
qi->desc = page_address(desc_page);
|
|
|
|
qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
|
|
if (!qi->desc_status) {
|
|
free_page((unsigned long) qi->desc);
|
|
kfree(qi);
|
|
iommu->qi = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
raw_spin_lock_init(&qi->q_lock);
|
|
|
|
__dmar_enable_qi(iommu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* iommu interrupt handling. Most stuff are MSI-like. */
|
|
|
|
enum faulttype {
|
|
DMA_REMAP,
|
|
INTR_REMAP,
|
|
UNKNOWN,
|
|
};
|
|
|
|
static const char *dma_remap_fault_reasons[] =
|
|
{
|
|
"Software",
|
|
"Present bit in root entry is clear",
|
|
"Present bit in context entry is clear",
|
|
"Invalid context entry",
|
|
"Access beyond MGAW",
|
|
"PTE Write access is not set",
|
|
"PTE Read access is not set",
|
|
"Next page table ptr is invalid",
|
|
"Root table address invalid",
|
|
"Context table ptr is invalid",
|
|
"non-zero reserved fields in RTP",
|
|
"non-zero reserved fields in CTP",
|
|
"non-zero reserved fields in PTE",
|
|
"PCE for translation request specifies blocking",
|
|
};
|
|
|
|
static const char * const dma_remap_sm_fault_reasons[] = {
|
|
"SM: Invalid Root Table Address",
|
|
"SM: TTM 0 for request with PASID",
|
|
"SM: TTM 0 for page group request",
|
|
"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
|
|
"SM: Error attempting to access Root Entry",
|
|
"SM: Present bit in Root Entry is clear",
|
|
"SM: Non-zero reserved field set in Root Entry",
|
|
"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
|
|
"SM: Error attempting to access Context Entry",
|
|
"SM: Present bit in Context Entry is clear",
|
|
"SM: Non-zero reserved field set in the Context Entry",
|
|
"SM: Invalid Context Entry",
|
|
"SM: DTE field in Context Entry is clear",
|
|
"SM: PASID Enable field in Context Entry is clear",
|
|
"SM: PASID is larger than the max in Context Entry",
|
|
"SM: PRE field in Context-Entry is clear",
|
|
"SM: RID_PASID field error in Context-Entry",
|
|
"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
|
|
"SM: Error attempting to access the PASID Directory Entry",
|
|
"SM: Present bit in Directory Entry is clear",
|
|
"SM: Non-zero reserved field set in PASID Directory Entry",
|
|
"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
|
|
"SM: Error attempting to access PASID Table Entry",
|
|
"SM: Present bit in PASID Table Entry is clear",
|
|
"SM: Non-zero reserved field set in PASID Table Entry",
|
|
"SM: Invalid Scalable-Mode PASID Table Entry",
|
|
"SM: ERE field is clear in PASID Table Entry",
|
|
"SM: SRE field is clear in PASID Table Entry",
|
|
"Unknown", "Unknown",/* 0x5E-0x5F */
|
|
"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
|
|
"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
|
|
"SM: Error attempting to access first-level paging entry",
|
|
"SM: Present bit in first-level paging entry is clear",
|
|
"SM: Non-zero reserved field set in first-level paging entry",
|
|
"SM: Error attempting to access FL-PML4 entry",
|
|
"SM: First-level entry address beyond MGAW in Nested translation",
|
|
"SM: Read permission error in FL-PML4 entry in Nested translation",
|
|
"SM: Read permission error in first-level paging entry in Nested translation",
|
|
"SM: Write permission error in first-level paging entry in Nested translation",
|
|
"SM: Error attempting to access second-level paging entry",
|
|
"SM: Read/Write permission error in second-level paging entry",
|
|
"SM: Non-zero reserved field set in second-level paging entry",
|
|
"SM: Invalid second-level page table pointer",
|
|
"SM: A/D bit update needed in second-level entry when set up in no snoop",
|
|
"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
|
|
"SM: Address in first-level translation is not canonical",
|
|
"SM: U/S set 0 for first-level translation with user privilege",
|
|
"SM: No execute permission for request with PASID and ER=1",
|
|
"SM: Address beyond the DMA hardware max",
|
|
"SM: Second-level entry address beyond the max",
|
|
"SM: No write permission for Write/AtomicOp request",
|
|
"SM: No read permission for Read/AtomicOp request",
|
|
"SM: Invalid address-interrupt address",
|
|
"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
|
|
"SM: A/D bit update needed in first-level entry when set up in no snoop",
|
|
};
|
|
|
|
static const char *irq_remap_fault_reasons[] =
|
|
{
|
|
"Detected reserved fields in the decoded interrupt-remapped request",
|
|
"Interrupt index exceeded the interrupt-remapping table size",
|
|
"Present field in the IRTE entry is clear",
|
|
"Error accessing interrupt-remapping table pointed by IRTA_REG",
|
|
"Detected reserved fields in the IRTE entry",
|
|
"Blocked a compatibility format interrupt request",
|
|
"Blocked an interrupt request due to source-id verification failure",
|
|
};
|
|
|
|
static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
|
|
{
|
|
if (fault_reason >= 0x20 && (fault_reason - 0x20 <
|
|
ARRAY_SIZE(irq_remap_fault_reasons))) {
|
|
*fault_type = INTR_REMAP;
|
|
return irq_remap_fault_reasons[fault_reason - 0x20];
|
|
} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
|
|
ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
|
|
*fault_type = DMA_REMAP;
|
|
return dma_remap_sm_fault_reasons[fault_reason - 0x30];
|
|
} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
|
|
*fault_type = DMA_REMAP;
|
|
return dma_remap_fault_reasons[fault_reason];
|
|
} else {
|
|
*fault_type = UNKNOWN;
|
|
return "Unknown";
|
|
}
|
|
}
|
|
|
|
|
|
static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
|
|
{
|
|
if (iommu->irq == irq)
|
|
return DMAR_FECTL_REG;
|
|
else if (iommu->pr_irq == irq)
|
|
return DMAR_PECTL_REG;
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
void dmar_msi_unmask(struct irq_data *data)
|
|
{
|
|
struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
|
|
int reg = dmar_msi_reg(iommu, data->irq);
|
|
unsigned long flag;
|
|
|
|
/* unmask it */
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(0, iommu->reg + reg);
|
|
/* Read a reg to force flush the post write */
|
|
readl(iommu->reg + reg);
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_mask(struct irq_data *data)
|
|
{
|
|
struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
|
|
int reg = dmar_msi_reg(iommu, data->irq);
|
|
unsigned long flag;
|
|
|
|
/* mask it */
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(DMA_FECTL_IM, iommu->reg + reg);
|
|
/* Read a reg to force flush the post write */
|
|
readl(iommu->reg + reg);
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_write(int irq, struct msi_msg *msg)
|
|
{
|
|
struct intel_iommu *iommu = irq_get_handler_data(irq);
|
|
int reg = dmar_msi_reg(iommu, irq);
|
|
unsigned long flag;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
writel(msg->data, iommu->reg + reg + 4);
|
|
writel(msg->address_lo, iommu->reg + reg + 8);
|
|
writel(msg->address_hi, iommu->reg + reg + 12);
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
void dmar_msi_read(int irq, struct msi_msg *msg)
|
|
{
|
|
struct intel_iommu *iommu = irq_get_handler_data(irq);
|
|
int reg = dmar_msi_reg(iommu, irq);
|
|
unsigned long flag;
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
msg->data = readl(iommu->reg + reg + 4);
|
|
msg->address_lo = readl(iommu->reg + reg + 8);
|
|
msg->address_hi = readl(iommu->reg + reg + 12);
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
}
|
|
|
|
static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
|
|
u8 fault_reason, int pasid, u16 source_id,
|
|
unsigned long long addr)
|
|
{
|
|
const char *reason;
|
|
int fault_type;
|
|
|
|
reason = dmar_get_fault_reason(fault_reason, &fault_type);
|
|
|
|
if (fault_type == INTR_REMAP)
|
|
pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index %llx [fault reason %02d] %s\n",
|
|
source_id >> 8, PCI_SLOT(source_id & 0xFF),
|
|
PCI_FUNC(source_id & 0xFF), addr >> 48,
|
|
fault_reason, reason);
|
|
else
|
|
pr_err("[%s] Request device [%02x:%02x.%d] PASID %x fault addr %llx [fault reason %02d] %s\n",
|
|
type ? "DMA Read" : "DMA Write",
|
|
source_id >> 8, PCI_SLOT(source_id & 0xFF),
|
|
PCI_FUNC(source_id & 0xFF), pasid, addr,
|
|
fault_reason, reason);
|
|
return 0;
|
|
}
|
|
|
|
#define PRIMARY_FAULT_REG_LEN (16)
|
|
irqreturn_t dmar_fault(int irq, void *dev_id)
|
|
{
|
|
struct intel_iommu *iommu = dev_id;
|
|
int reg, fault_index;
|
|
u32 fault_status;
|
|
unsigned long flag;
|
|
static DEFINE_RATELIMIT_STATE(rs,
|
|
DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
fault_status = readl(iommu->reg + DMAR_FSTS_REG);
|
|
if (fault_status && __ratelimit(&rs))
|
|
pr_err("DRHD: handling fault status reg %x\n", fault_status);
|
|
|
|
/* TBD: ignore advanced fault log currently */
|
|
if (!(fault_status & DMA_FSTS_PPF))
|
|
goto unlock_exit;
|
|
|
|
fault_index = dma_fsts_fault_record_index(fault_status);
|
|
reg = cap_fault_reg_offset(iommu->cap);
|
|
while (1) {
|
|
/* Disable printing, simply clear the fault when ratelimited */
|
|
bool ratelimited = !__ratelimit(&rs);
|
|
u8 fault_reason;
|
|
u16 source_id;
|
|
u64 guest_addr;
|
|
int type, pasid;
|
|
u32 data;
|
|
bool pasid_present;
|
|
|
|
/* highest 32 bits */
|
|
data = readl(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 12);
|
|
if (!(data & DMA_FRCD_F))
|
|
break;
|
|
|
|
if (!ratelimited) {
|
|
fault_reason = dma_frcd_fault_reason(data);
|
|
type = dma_frcd_type(data);
|
|
|
|
pasid = dma_frcd_pasid_value(data);
|
|
data = readl(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 8);
|
|
source_id = dma_frcd_source_id(data);
|
|
|
|
pasid_present = dma_frcd_pasid_present(data);
|
|
guest_addr = dmar_readq(iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN);
|
|
guest_addr = dma_frcd_page_addr(guest_addr);
|
|
}
|
|
|
|
/* clear the fault */
|
|
writel(DMA_FRCD_F, iommu->reg + reg +
|
|
fault_index * PRIMARY_FAULT_REG_LEN + 12);
|
|
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
|
|
if (!ratelimited)
|
|
/* Using pasid -1 if pasid is not present */
|
|
dmar_fault_do_one(iommu, type, fault_reason,
|
|
pasid_present ? pasid : -1,
|
|
source_id, guest_addr);
|
|
|
|
fault_index++;
|
|
if (fault_index >= cap_num_fault_regs(iommu->cap))
|
|
fault_index = 0;
|
|
raw_spin_lock_irqsave(&iommu->register_lock, flag);
|
|
}
|
|
|
|
writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
|
|
iommu->reg + DMAR_FSTS_REG);
|
|
|
|
unlock_exit:
|
|
raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
int dmar_set_interrupt(struct intel_iommu *iommu)
|
|
{
|
|
int irq, ret;
|
|
|
|
/*
|
|
* Check if the fault interrupt is already initialized.
|
|
*/
|
|
if (iommu->irq)
|
|
return 0;
|
|
|
|
irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
|
|
if (irq > 0) {
|
|
iommu->irq = irq;
|
|
} else {
|
|
pr_err("No free IRQ vectors\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
|
|
if (ret)
|
|
pr_err("Can't request irq\n");
|
|
return ret;
|
|
}
|
|
|
|
int __init enable_drhd_fault_handling(void)
|
|
{
|
|
struct dmar_drhd_unit *drhd;
|
|
struct intel_iommu *iommu;
|
|
|
|
/*
|
|
* Enable fault control interrupt.
|
|
*/
|
|
for_each_iommu(iommu, drhd) {
|
|
u32 fault_status;
|
|
int ret = dmar_set_interrupt(iommu);
|
|
|
|
if (ret) {
|
|
pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
|
|
(unsigned long long)drhd->reg_base_addr, ret);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Clear any previous faults.
|
|
*/
|
|
dmar_fault(iommu->irq, iommu);
|
|
fault_status = readl(iommu->reg + DMAR_FSTS_REG);
|
|
writel(fault_status, iommu->reg + DMAR_FSTS_REG);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Re-enable Queued Invalidation interface.
|
|
*/
|
|
int dmar_reenable_qi(struct intel_iommu *iommu)
|
|
{
|
|
if (!ecap_qis(iommu->ecap))
|
|
return -ENOENT;
|
|
|
|
if (!iommu->qi)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* First disable queued invalidation.
|
|
*/
|
|
dmar_disable_qi(iommu);
|
|
/*
|
|
* Then enable queued invalidation again. Since there is no pending
|
|
* invalidation requests now, it's safe to re-enable queued
|
|
* invalidation.
|
|
*/
|
|
__dmar_enable_qi(iommu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check interrupt remapping support in DMAR table description.
|
|
*/
|
|
int __init dmar_ir_support(void)
|
|
{
|
|
struct acpi_table_dmar *dmar;
|
|
dmar = (struct acpi_table_dmar *)dmar_tbl;
|
|
if (!dmar)
|
|
return 0;
|
|
return dmar->flags & 0x1;
|
|
}
|
|
|
|
/* Check whether DMAR units are in use */
|
|
static inline bool dmar_in_use(void)
|
|
{
|
|
return irq_remapping_enabled || intel_iommu_enabled;
|
|
}
|
|
|
|
static int __init dmar_free_unused_resources(void)
|
|
{
|
|
struct dmar_drhd_unit *dmaru, *dmaru_n;
|
|
|
|
if (dmar_in_use())
|
|
return 0;
|
|
|
|
if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
|
|
bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
|
|
|
|
down_write(&dmar_global_lock);
|
|
list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
|
|
list_del(&dmaru->list);
|
|
dmar_free_drhd(dmaru);
|
|
}
|
|
up_write(&dmar_global_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
late_initcall(dmar_free_unused_resources);
|
|
IOMMU_INIT_POST(detect_intel_iommu);
|
|
|
|
/*
|
|
* DMAR Hotplug Support
|
|
* For more details, please refer to Intel(R) Virtualization Technology
|
|
* for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
|
|
* "Remapping Hardware Unit Hot Plug".
|
|
*/
|
|
static guid_t dmar_hp_guid =
|
|
GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
|
|
0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
|
|
|
|
/*
|
|
* Currently there's only one revision and BIOS will not check the revision id,
|
|
* so use 0 for safety.
|
|
*/
|
|
#define DMAR_DSM_REV_ID 0
|
|
#define DMAR_DSM_FUNC_DRHD 1
|
|
#define DMAR_DSM_FUNC_ATSR 2
|
|
#define DMAR_DSM_FUNC_RHSA 3
|
|
|
|
static inline bool dmar_detect_dsm(acpi_handle handle, int func)
|
|
{
|
|
return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
|
|
}
|
|
|
|
static int dmar_walk_dsm_resource(acpi_handle handle, int func,
|
|
dmar_res_handler_t handler, void *arg)
|
|
{
|
|
int ret = -ENODEV;
|
|
union acpi_object *obj;
|
|
struct acpi_dmar_header *start;
|
|
struct dmar_res_callback callback;
|
|
static int res_type[] = {
|
|
[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
|
|
[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
|
|
[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
|
|
};
|
|
|
|
if (!dmar_detect_dsm(handle, func))
|
|
return 0;
|
|
|
|
obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
|
|
func, NULL, ACPI_TYPE_BUFFER);
|
|
if (!obj)
|
|
return -ENODEV;
|
|
|
|
memset(&callback, 0, sizeof(callback));
|
|
callback.cb[res_type[func]] = handler;
|
|
callback.arg[res_type[func]] = arg;
|
|
start = (struct acpi_dmar_header *)obj->buffer.pointer;
|
|
ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
|
|
|
|
ACPI_FREE(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
|
|
{
|
|
int ret;
|
|
struct dmar_drhd_unit *dmaru;
|
|
|
|
dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
|
|
if (!dmaru)
|
|
return -ENODEV;
|
|
|
|
ret = dmar_ir_hotplug(dmaru, true);
|
|
if (ret == 0)
|
|
ret = dmar_iommu_hotplug(dmaru, true);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
|
|
{
|
|
int i, ret;
|
|
struct device *dev;
|
|
struct dmar_drhd_unit *dmaru;
|
|
|
|
dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
|
|
if (!dmaru)
|
|
return 0;
|
|
|
|
/*
|
|
* All PCI devices managed by this unit should have been destroyed.
|
|
*/
|
|
if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
|
|
for_each_active_dev_scope(dmaru->devices,
|
|
dmaru->devices_cnt, i, dev)
|
|
return -EBUSY;
|
|
}
|
|
|
|
ret = dmar_ir_hotplug(dmaru, false);
|
|
if (ret == 0)
|
|
ret = dmar_iommu_hotplug(dmaru, false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
|
|
{
|
|
struct dmar_drhd_unit *dmaru;
|
|
|
|
dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
|
|
if (dmaru) {
|
|
list_del_rcu(&dmaru->list);
|
|
synchronize_rcu();
|
|
dmar_free_drhd(dmaru);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dmar_hotplug_insert(acpi_handle handle)
|
|
{
|
|
int ret;
|
|
int drhd_count = 0;
|
|
|
|
ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
|
|
&dmar_validate_one_drhd, (void *)1);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
|
|
&dmar_parse_one_drhd, (void *)&drhd_count);
|
|
if (ret == 0 && drhd_count == 0) {
|
|
pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
|
|
goto out;
|
|
} else if (ret) {
|
|
goto release_drhd;
|
|
}
|
|
|
|
ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
|
|
&dmar_parse_one_rhsa, NULL);
|
|
if (ret)
|
|
goto release_drhd;
|
|
|
|
ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
|
|
&dmar_parse_one_atsr, NULL);
|
|
if (ret)
|
|
goto release_atsr;
|
|
|
|
ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
|
|
&dmar_hp_add_drhd, NULL);
|
|
if (!ret)
|
|
return 0;
|
|
|
|
dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
|
|
&dmar_hp_remove_drhd, NULL);
|
|
release_atsr:
|
|
dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
|
|
&dmar_release_one_atsr, NULL);
|
|
release_drhd:
|
|
dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
|
|
&dmar_hp_release_drhd, NULL);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int dmar_hotplug_remove(acpi_handle handle)
|
|
{
|
|
int ret;
|
|
|
|
ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
|
|
&dmar_check_one_atsr, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
|
|
&dmar_hp_remove_drhd, NULL);
|
|
if (ret == 0) {
|
|
WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
|
|
&dmar_release_one_atsr, NULL));
|
|
WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
|
|
&dmar_hp_release_drhd, NULL));
|
|
} else {
|
|
dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
|
|
&dmar_hp_add_drhd, NULL);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
|
|
void *context, void **retval)
|
|
{
|
|
acpi_handle *phdl = retval;
|
|
|
|
if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
|
|
*phdl = handle;
|
|
return AE_CTRL_TERMINATE;
|
|
}
|
|
|
|
return AE_OK;
|
|
}
|
|
|
|
static int dmar_device_hotplug(acpi_handle handle, bool insert)
|
|
{
|
|
int ret;
|
|
acpi_handle tmp = NULL;
|
|
acpi_status status;
|
|
|
|
if (!dmar_in_use())
|
|
return 0;
|
|
|
|
if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
|
|
tmp = handle;
|
|
} else {
|
|
status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
|
|
ACPI_UINT32_MAX,
|
|
dmar_get_dsm_handle,
|
|
NULL, NULL, &tmp);
|
|
if (ACPI_FAILURE(status)) {
|
|
pr_warn("Failed to locate _DSM method.\n");
|
|
return -ENXIO;
|
|
}
|
|
}
|
|
if (tmp == NULL)
|
|
return 0;
|
|
|
|
down_write(&dmar_global_lock);
|
|
if (insert)
|
|
ret = dmar_hotplug_insert(tmp);
|
|
else
|
|
ret = dmar_hotplug_remove(tmp);
|
|
up_write(&dmar_global_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int dmar_device_add(acpi_handle handle)
|
|
{
|
|
return dmar_device_hotplug(handle, true);
|
|
}
|
|
|
|
int dmar_device_remove(acpi_handle handle)
|
|
{
|
|
return dmar_device_hotplug(handle, false);
|
|
}
|
|
|
|
/*
|
|
* dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
|
|
*
|
|
* Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
|
|
* the ACPI DMAR table. This means that the platform boot firmware has made
|
|
* sure no device can issue DMA outside of RMRR regions.
|
|
*/
|
|
bool dmar_platform_optin(void)
|
|
{
|
|
struct acpi_table_dmar *dmar;
|
|
acpi_status status;
|
|
bool ret;
|
|
|
|
status = acpi_get_table(ACPI_SIG_DMAR, 0,
|
|
(struct acpi_table_header **)&dmar);
|
|
if (ACPI_FAILURE(status))
|
|
return false;
|
|
|
|
ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
|
|
acpi_put_table((struct acpi_table_header *)dmar);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dmar_platform_optin);
|