OpenCloudOS-Kernel/drivers/net/ethernet/mscc/ocelot_devlink.c

886 lines
27 KiB
C

// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Copyright 2020-2021 NXP Semiconductors
*/
#include <net/devlink.h>
#include "ocelot.h"
/* The queue system tracks four resource consumptions:
* Resource 0: Memory tracked per source port
* Resource 1: Frame references tracked per source port
* Resource 2: Memory tracked per destination port
* Resource 3: Frame references tracked per destination port
*/
#define OCELOT_RESOURCE_SZ 256
#define OCELOT_NUM_RESOURCES 4
#define BUF_xxxx_I (0 * OCELOT_RESOURCE_SZ)
#define REF_xxxx_I (1 * OCELOT_RESOURCE_SZ)
#define BUF_xxxx_E (2 * OCELOT_RESOURCE_SZ)
#define REF_xxxx_E (3 * OCELOT_RESOURCE_SZ)
/* For each resource type there are 4 types of watermarks:
* Q_RSRV: reservation per QoS class per port
* PRIO_SHR: sharing watermark per QoS class across all ports
* P_RSRV: reservation per port
* COL_SHR: sharing watermark per color (drop precedence) across all ports
*/
#define xxx_Q_RSRV_x 0
#define xxx_PRIO_SHR_x 216
#define xxx_P_RSRV_x 224
#define xxx_COL_SHR_x 254
/* Reservation Watermarks
* ----------------------
*
* For setting up the reserved areas, egress watermarks exist per port and per
* QoS class for both ingress and egress.
*/
/* Amount of packet buffer
* | per QoS class
* | | reserved
* | | | per egress port
* | | | |
* V V v v
* BUF_Q_RSRV_E
*/
#define BUF_Q_RSRV_E(port, prio) \
(BUF_xxxx_E + xxx_Q_RSRV_x + OCELOT_NUM_TC * (port) + (prio))
/* Amount of packet buffer
* | for all port's traffic classes
* | | reserved
* | | | per egress port
* | | | |
* V V v v
* BUF_P_RSRV_E
*/
#define BUF_P_RSRV_E(port) \
(BUF_xxxx_E + xxx_P_RSRV_x + (port))
/* Amount of packet buffer
* | per QoS class
* | | reserved
* | | | per ingress port
* | | | |
* V V v v
* BUF_Q_RSRV_I
*/
#define BUF_Q_RSRV_I(port, prio) \
(BUF_xxxx_I + xxx_Q_RSRV_x + OCELOT_NUM_TC * (port) + (prio))
/* Amount of packet buffer
* | for all port's traffic classes
* | | reserved
* | | | per ingress port
* | | | |
* V V v v
* BUF_P_RSRV_I
*/
#define BUF_P_RSRV_I(port) \
(BUF_xxxx_I + xxx_P_RSRV_x + (port))
/* Amount of frame references
* | per QoS class
* | | reserved
* | | | per egress port
* | | | |
* V V v v
* REF_Q_RSRV_E
*/
#define REF_Q_RSRV_E(port, prio) \
(REF_xxxx_E + xxx_Q_RSRV_x + OCELOT_NUM_TC * (port) + (prio))
/* Amount of frame references
* | for all port's traffic classes
* | | reserved
* | | | per egress port
* | | | |
* V V v v
* REF_P_RSRV_E
*/
#define REF_P_RSRV_E(port) \
(REF_xxxx_E + xxx_P_RSRV_x + (port))
/* Amount of frame references
* | per QoS class
* | | reserved
* | | | per ingress port
* | | | |
* V V v v
* REF_Q_RSRV_I
*/
#define REF_Q_RSRV_I(port, prio) \
(REF_xxxx_I + xxx_Q_RSRV_x + OCELOT_NUM_TC * (port) + (prio))
/* Amount of frame references
* | for all port's traffic classes
* | | reserved
* | | | per ingress port
* | | | |
* V V v v
* REF_P_RSRV_I
*/
#define REF_P_RSRV_I(port) \
(REF_xxxx_I + xxx_P_RSRV_x + (port))
/* Sharing Watermarks
* ------------------
*
* The shared memory area is shared between all ports.
*/
/* Amount of buffer
* | per QoS class
* | | from the shared memory area
* | | | for egress traffic
* | | | |
* V V v v
* BUF_PRIO_SHR_E
*/
#define BUF_PRIO_SHR_E(prio) \
(BUF_xxxx_E + xxx_PRIO_SHR_x + (prio))
/* Amount of buffer
* | per color (drop precedence level)
* | | from the shared memory area
* | | | for egress traffic
* | | | |
* V V v v
* BUF_COL_SHR_E
*/
#define BUF_COL_SHR_E(dp) \
(BUF_xxxx_E + xxx_COL_SHR_x + (1 - (dp)))
/* Amount of buffer
* | per QoS class
* | | from the shared memory area
* | | | for ingress traffic
* | | | |
* V V v v
* BUF_PRIO_SHR_I
*/
#define BUF_PRIO_SHR_I(prio) \
(BUF_xxxx_I + xxx_PRIO_SHR_x + (prio))
/* Amount of buffer
* | per color (drop precedence level)
* | | from the shared memory area
* | | | for ingress traffic
* | | | |
* V V v v
* BUF_COL_SHR_I
*/
#define BUF_COL_SHR_I(dp) \
(BUF_xxxx_I + xxx_COL_SHR_x + (1 - (dp)))
/* Amount of frame references
* | per QoS class
* | | from the shared area
* | | | for egress traffic
* | | | |
* V V v v
* REF_PRIO_SHR_E
*/
#define REF_PRIO_SHR_E(prio) \
(REF_xxxx_E + xxx_PRIO_SHR_x + (prio))
/* Amount of frame references
* | per color (drop precedence level)
* | | from the shared area
* | | | for egress traffic
* | | | |
* V V v v
* REF_COL_SHR_E
*/
#define REF_COL_SHR_E(dp) \
(REF_xxxx_E + xxx_COL_SHR_x + (1 - (dp)))
/* Amount of frame references
* | per QoS class
* | | from the shared area
* | | | for ingress traffic
* | | | |
* V V v v
* REF_PRIO_SHR_I
*/
#define REF_PRIO_SHR_I(prio) \
(REF_xxxx_I + xxx_PRIO_SHR_x + (prio))
/* Amount of frame references
* | per color (drop precedence level)
* | | from the shared area
* | | | for ingress traffic
* | | | |
* V V v v
* REF_COL_SHR_I
*/
#define REF_COL_SHR_I(dp) \
(REF_xxxx_I + xxx_COL_SHR_x + (1 - (dp)))
static u32 ocelot_wm_read(struct ocelot *ocelot, int index)
{
int wm = ocelot_read_gix(ocelot, QSYS_RES_CFG, index);
return ocelot->ops->wm_dec(wm);
}
static void ocelot_wm_write(struct ocelot *ocelot, int index, u32 val)
{
u32 wm = ocelot->ops->wm_enc(val);
ocelot_write_gix(ocelot, wm, QSYS_RES_CFG, index);
}
static void ocelot_wm_status(struct ocelot *ocelot, int index, u32 *inuse,
u32 *maxuse)
{
int res_stat = ocelot_read_gix(ocelot, QSYS_RES_STAT, index);
return ocelot->ops->wm_stat(res_stat, inuse, maxuse);
}
/* The hardware comes out of reset with strange defaults: the sum of all
* reservations for frame memory is larger than the total buffer size.
* One has to wonder how can the reservation watermarks still guarantee
* anything under congestion.
* Bring some sense into the hardware by changing the defaults to disable all
* reservations and rely only on the sharing watermark for frames with drop
* precedence 0. The user can still explicitly request reservations per port
* and per port-tc through devlink-sb.
*/
static void ocelot_disable_reservation_watermarks(struct ocelot *ocelot,
int port)
{
int prio;
for (prio = 0; prio < OCELOT_NUM_TC; prio++) {
ocelot_wm_write(ocelot, BUF_Q_RSRV_I(port, prio), 0);
ocelot_wm_write(ocelot, BUF_Q_RSRV_E(port, prio), 0);
ocelot_wm_write(ocelot, REF_Q_RSRV_I(port, prio), 0);
ocelot_wm_write(ocelot, REF_Q_RSRV_E(port, prio), 0);
}
ocelot_wm_write(ocelot, BUF_P_RSRV_I(port), 0);
ocelot_wm_write(ocelot, BUF_P_RSRV_E(port), 0);
ocelot_wm_write(ocelot, REF_P_RSRV_I(port), 0);
ocelot_wm_write(ocelot, REF_P_RSRV_E(port), 0);
}
/* We want the sharing watermarks to consume all nonreserved resources, for
* efficient resource utilization (a single traffic flow should be able to use
* up the entire buffer space and frame resources as long as there's no
* interference).
* The switch has 10 sharing watermarks per lookup: 8 per traffic class and 2
* per color (drop precedence).
* The trouble with configuring these sharing watermarks is that:
* (1) There's a risk that we overcommit the resources if we configure
* (a) all 8 per-TC sharing watermarks to the max
* (b) all 2 per-color sharing watermarks to the max
* (2) There's a risk that we undercommit the resources if we configure
* (a) all 8 per-TC sharing watermarks to "max / 8"
* (b) all 2 per-color sharing watermarks to "max / 2"
* So for Linux, let's just disable the sharing watermarks per traffic class
* (setting them to 0 will make them always exceeded), and rely only on the
* sharing watermark for drop priority 0. So frames with drop priority set to 1
* by QoS classification or policing will still be allowed, but only as long as
* the port and port-TC reservations are not exceeded.
*/
static void ocelot_disable_tc_sharing_watermarks(struct ocelot *ocelot)
{
int prio;
for (prio = 0; prio < OCELOT_NUM_TC; prio++) {
ocelot_wm_write(ocelot, BUF_PRIO_SHR_I(prio), 0);
ocelot_wm_write(ocelot, BUF_PRIO_SHR_E(prio), 0);
ocelot_wm_write(ocelot, REF_PRIO_SHR_I(prio), 0);
ocelot_wm_write(ocelot, REF_PRIO_SHR_E(prio), 0);
}
}
static void ocelot_get_buf_rsrv(struct ocelot *ocelot, u32 *buf_rsrv_i,
u32 *buf_rsrv_e)
{
int port, prio;
*buf_rsrv_i = 0;
*buf_rsrv_e = 0;
for (port = 0; port <= ocelot->num_phys_ports; port++) {
for (prio = 0; prio < OCELOT_NUM_TC; prio++) {
*buf_rsrv_i += ocelot_wm_read(ocelot,
BUF_Q_RSRV_I(port, prio));
*buf_rsrv_e += ocelot_wm_read(ocelot,
BUF_Q_RSRV_E(port, prio));
}
*buf_rsrv_i += ocelot_wm_read(ocelot, BUF_P_RSRV_I(port));
*buf_rsrv_e += ocelot_wm_read(ocelot, BUF_P_RSRV_E(port));
}
*buf_rsrv_i *= OCELOT_BUFFER_CELL_SZ;
*buf_rsrv_e *= OCELOT_BUFFER_CELL_SZ;
}
static void ocelot_get_ref_rsrv(struct ocelot *ocelot, u32 *ref_rsrv_i,
u32 *ref_rsrv_e)
{
int port, prio;
*ref_rsrv_i = 0;
*ref_rsrv_e = 0;
for (port = 0; port <= ocelot->num_phys_ports; port++) {
for (prio = 0; prio < OCELOT_NUM_TC; prio++) {
*ref_rsrv_i += ocelot_wm_read(ocelot,
REF_Q_RSRV_I(port, prio));
*ref_rsrv_e += ocelot_wm_read(ocelot,
REF_Q_RSRV_E(port, prio));
}
*ref_rsrv_i += ocelot_wm_read(ocelot, REF_P_RSRV_I(port));
*ref_rsrv_e += ocelot_wm_read(ocelot, REF_P_RSRV_E(port));
}
}
/* Calculate all reservations, then set up the sharing watermark for DP=0 to
* consume the remaining resources up to the pool's configured size.
*/
static void ocelot_setup_sharing_watermarks(struct ocelot *ocelot)
{
u32 buf_rsrv_i, buf_rsrv_e;
u32 ref_rsrv_i, ref_rsrv_e;
u32 buf_shr_i, buf_shr_e;
u32 ref_shr_i, ref_shr_e;
ocelot_get_buf_rsrv(ocelot, &buf_rsrv_i, &buf_rsrv_e);
ocelot_get_ref_rsrv(ocelot, &ref_rsrv_i, &ref_rsrv_e);
buf_shr_i = ocelot->pool_size[OCELOT_SB_BUF][OCELOT_SB_POOL_ING] -
buf_rsrv_i;
buf_shr_e = ocelot->pool_size[OCELOT_SB_BUF][OCELOT_SB_POOL_EGR] -
buf_rsrv_e;
ref_shr_i = ocelot->pool_size[OCELOT_SB_REF][OCELOT_SB_POOL_ING] -
ref_rsrv_i;
ref_shr_e = ocelot->pool_size[OCELOT_SB_REF][OCELOT_SB_POOL_EGR] -
ref_rsrv_e;
buf_shr_i /= OCELOT_BUFFER_CELL_SZ;
buf_shr_e /= OCELOT_BUFFER_CELL_SZ;
ocelot_wm_write(ocelot, BUF_COL_SHR_I(0), buf_shr_i);
ocelot_wm_write(ocelot, BUF_COL_SHR_E(0), buf_shr_e);
ocelot_wm_write(ocelot, REF_COL_SHR_E(0), ref_shr_e);
ocelot_wm_write(ocelot, REF_COL_SHR_I(0), ref_shr_i);
ocelot_wm_write(ocelot, BUF_COL_SHR_I(1), 0);
ocelot_wm_write(ocelot, BUF_COL_SHR_E(1), 0);
ocelot_wm_write(ocelot, REF_COL_SHR_E(1), 0);
ocelot_wm_write(ocelot, REF_COL_SHR_I(1), 0);
}
/* Ensure that all reservations can be enforced */
static int ocelot_watermark_validate(struct ocelot *ocelot,
struct netlink_ext_ack *extack)
{
u32 buf_rsrv_i, buf_rsrv_e;
u32 ref_rsrv_i, ref_rsrv_e;
ocelot_get_buf_rsrv(ocelot, &buf_rsrv_i, &buf_rsrv_e);
ocelot_get_ref_rsrv(ocelot, &ref_rsrv_i, &ref_rsrv_e);
if (buf_rsrv_i > ocelot->pool_size[OCELOT_SB_BUF][OCELOT_SB_POOL_ING]) {
NL_SET_ERR_MSG_MOD(extack,
"Ingress frame reservations exceed pool size");
return -ERANGE;
}
if (buf_rsrv_e > ocelot->pool_size[OCELOT_SB_BUF][OCELOT_SB_POOL_EGR]) {
NL_SET_ERR_MSG_MOD(extack,
"Egress frame reservations exceed pool size");
return -ERANGE;
}
if (ref_rsrv_i > ocelot->pool_size[OCELOT_SB_REF][OCELOT_SB_POOL_ING]) {
NL_SET_ERR_MSG_MOD(extack,
"Ingress reference reservations exceed pool size");
return -ERANGE;
}
if (ref_rsrv_e > ocelot->pool_size[OCELOT_SB_REF][OCELOT_SB_POOL_EGR]) {
NL_SET_ERR_MSG_MOD(extack,
"Egress reference reservations exceed pool size");
return -ERANGE;
}
return 0;
}
/* The hardware works like this:
*
* Frame forwarding decision taken
* |
* v
* +--------------------+--------------------+--------------------+
* | | | |
* v v v v
* Ingress memory Egress memory Ingress frame Egress frame
* check check reference check reference check
* | | | |
* v v v v
* BUF_Q_RSRV_I ok BUF_Q_RSRV_E ok REF_Q_RSRV_I ok REF_Q_RSRV_E ok
*(src port, prio) -+ (dst port, prio) -+ (src port, prio) -+ (dst port, prio) -+
* | | | | | | | |
* |exceeded | |exceeded | |exceeded | |exceeded |
* v | v | v | v |
* BUF_P_RSRV_I ok| BUF_P_RSRV_E ok| REF_P_RSRV_I ok| REF_P_RSRV_E ok|
* (src port) ----+ (dst port) ----+ (src port) ----+ (dst port) -----+
* | | | | | | | |
* |exceeded | |exceeded | |exceeded | |exceeded |
* v | v | v | v |
* BUF_PRIO_SHR_I ok| BUF_PRIO_SHR_E ok| REF_PRIO_SHR_I ok| REF_PRIO_SHR_E ok|
* (prio) ------+ (prio) ------+ (prio) ------+ (prio) -------+
* | | | | | | | |
* |exceeded | |exceeded | |exceeded | |exceeded |
* v | v | v | v |
* BUF_COL_SHR_I ok| BUF_COL_SHR_E ok| REF_COL_SHR_I ok| REF_COL_SHR_E ok|
* (dp) -------+ (dp) -------+ (dp) -------+ (dp) --------+
* | | | | | | | |
* |exceeded | |exceeded | |exceeded | |exceeded |
* v v v v v v v v
* fail success fail success fail success fail success
* | | | | | | | |
* v v v v v v v v
* +-----+----+ +-----+----+ +-----+----+ +-----+-----+
* | | | |
* +-------> OR <-------+ +-------> OR <-------+
* | |
* v v
* +----------------> AND <-----------------+
* |
* v
* FIFO drop / accept
*
* We are modeling each of the 4 parallel lookups as a devlink-sb pool.
* At least one (ingress or egress) memory pool and one (ingress or egress)
* frame reference pool need to have resources for frame acceptance to succeed.
*
* The following watermarks are controlled explicitly through devlink-sb:
* BUF_Q_RSRV_I, BUF_Q_RSRV_E, REF_Q_RSRV_I, REF_Q_RSRV_E
* BUF_P_RSRV_I, BUF_P_RSRV_E, REF_P_RSRV_I, REF_P_RSRV_E
* The following watermarks are controlled implicitly through devlink-sb:
* BUF_COL_SHR_I, BUF_COL_SHR_E, REF_COL_SHR_I, REF_COL_SHR_E
* The following watermarks are unused and disabled:
* BUF_PRIO_SHR_I, BUF_PRIO_SHR_E, REF_PRIO_SHR_I, REF_PRIO_SHR_E
*
* This function overrides the hardware defaults with more sane ones (no
* reservations by default, let sharing use all resources) and disables the
* unused watermarks.
*/
static void ocelot_watermark_init(struct ocelot *ocelot)
{
int all_tcs = GENMASK(OCELOT_NUM_TC - 1, 0);
int port;
ocelot_write(ocelot, all_tcs, QSYS_RES_QOS_MODE);
for (port = 0; port <= ocelot->num_phys_ports; port++)
ocelot_disable_reservation_watermarks(ocelot, port);
ocelot_disable_tc_sharing_watermarks(ocelot);
ocelot_setup_sharing_watermarks(ocelot);
}
/* Pool size and type are fixed up at runtime. Keeping this structure to
* look up the cell size multipliers.
*/
static const struct devlink_sb_pool_info ocelot_sb_pool[] = {
[OCELOT_SB_BUF] = {
.cell_size = OCELOT_BUFFER_CELL_SZ,
.threshold_type = DEVLINK_SB_THRESHOLD_TYPE_STATIC,
},
[OCELOT_SB_REF] = {
.cell_size = 1,
.threshold_type = DEVLINK_SB_THRESHOLD_TYPE_STATIC,
},
};
/* Returns the pool size configured through ocelot_sb_pool_set */
int ocelot_sb_pool_get(struct ocelot *ocelot, unsigned int sb_index,
u16 pool_index,
struct devlink_sb_pool_info *pool_info)
{
if (sb_index >= OCELOT_SB_NUM)
return -ENODEV;
if (pool_index >= OCELOT_SB_POOL_NUM)
return -ENODEV;
*pool_info = ocelot_sb_pool[sb_index];
pool_info->size = ocelot->pool_size[sb_index][pool_index];
if (pool_index)
pool_info->pool_type = DEVLINK_SB_POOL_TYPE_INGRESS;
else
pool_info->pool_type = DEVLINK_SB_POOL_TYPE_EGRESS;
return 0;
}
EXPORT_SYMBOL(ocelot_sb_pool_get);
/* The pool size received here configures the total amount of resources used on
* ingress (or on egress, depending upon the pool index). The pool size, minus
* the values for the port and port-tc reservations, is written into the
* COL_SHR(dp=0) sharing watermark.
*/
int ocelot_sb_pool_set(struct ocelot *ocelot, unsigned int sb_index,
u16 pool_index, u32 size,
enum devlink_sb_threshold_type threshold_type,
struct netlink_ext_ack *extack)
{
u32 old_pool_size;
int err;
if (sb_index >= OCELOT_SB_NUM) {
NL_SET_ERR_MSG_MOD(extack,
"Invalid sb, use 0 for buffers and 1 for frame references");
return -ENODEV;
}
if (pool_index >= OCELOT_SB_POOL_NUM) {
NL_SET_ERR_MSG_MOD(extack,
"Invalid pool, use 0 for ingress and 1 for egress");
return -ENODEV;
}
if (threshold_type != DEVLINK_SB_THRESHOLD_TYPE_STATIC) {
NL_SET_ERR_MSG_MOD(extack,
"Only static threshold supported");
return -EOPNOTSUPP;
}
old_pool_size = ocelot->pool_size[sb_index][pool_index];
ocelot->pool_size[sb_index][pool_index] = size;
err = ocelot_watermark_validate(ocelot, extack);
if (err) {
ocelot->pool_size[sb_index][pool_index] = old_pool_size;
return err;
}
ocelot_setup_sharing_watermarks(ocelot);
return 0;
}
EXPORT_SYMBOL(ocelot_sb_pool_set);
/* This retrieves the configuration made with ocelot_sb_port_pool_set */
int ocelot_sb_port_pool_get(struct ocelot *ocelot, int port,
unsigned int sb_index, u16 pool_index,
u32 *p_threshold)
{
int wm_index;
switch (sb_index) {
case OCELOT_SB_BUF:
if (pool_index == OCELOT_SB_POOL_ING)
wm_index = BUF_P_RSRV_I(port);
else
wm_index = BUF_P_RSRV_E(port);
break;
case OCELOT_SB_REF:
if (pool_index == OCELOT_SB_POOL_ING)
wm_index = REF_P_RSRV_I(port);
else
wm_index = REF_P_RSRV_E(port);
break;
default:
return -ENODEV;
}
*p_threshold = ocelot_wm_read(ocelot, wm_index);
*p_threshold *= ocelot_sb_pool[sb_index].cell_size;
return 0;
}
EXPORT_SYMBOL(ocelot_sb_port_pool_get);
/* This configures the P_RSRV per-port reserved resource watermark */
int ocelot_sb_port_pool_set(struct ocelot *ocelot, int port,
unsigned int sb_index, u16 pool_index,
u32 threshold, struct netlink_ext_ack *extack)
{
int wm_index, err;
u32 old_thr;
switch (sb_index) {
case OCELOT_SB_BUF:
if (pool_index == OCELOT_SB_POOL_ING)
wm_index = BUF_P_RSRV_I(port);
else
wm_index = BUF_P_RSRV_E(port);
break;
case OCELOT_SB_REF:
if (pool_index == OCELOT_SB_POOL_ING)
wm_index = REF_P_RSRV_I(port);
else
wm_index = REF_P_RSRV_E(port);
break;
default:
NL_SET_ERR_MSG_MOD(extack, "Invalid shared buffer");
return -ENODEV;
}
threshold /= ocelot_sb_pool[sb_index].cell_size;
old_thr = ocelot_wm_read(ocelot, wm_index);
ocelot_wm_write(ocelot, wm_index, threshold);
err = ocelot_watermark_validate(ocelot, extack);
if (err) {
ocelot_wm_write(ocelot, wm_index, old_thr);
return err;
}
ocelot_setup_sharing_watermarks(ocelot);
return 0;
}
EXPORT_SYMBOL(ocelot_sb_port_pool_set);
/* This retrieves the configuration done by ocelot_sb_tc_pool_bind_set */
int ocelot_sb_tc_pool_bind_get(struct ocelot *ocelot, int port,
unsigned int sb_index, u16 tc_index,
enum devlink_sb_pool_type pool_type,
u16 *p_pool_index, u32 *p_threshold)
{
int wm_index;
switch (sb_index) {
case OCELOT_SB_BUF:
if (pool_type == DEVLINK_SB_POOL_TYPE_INGRESS)
wm_index = BUF_Q_RSRV_I(port, tc_index);
else
wm_index = BUF_Q_RSRV_E(port, tc_index);
break;
case OCELOT_SB_REF:
if (pool_type == DEVLINK_SB_POOL_TYPE_INGRESS)
wm_index = REF_Q_RSRV_I(port, tc_index);
else
wm_index = REF_Q_RSRV_E(port, tc_index);
break;
default:
return -ENODEV;
}
*p_threshold = ocelot_wm_read(ocelot, wm_index);
*p_threshold *= ocelot_sb_pool[sb_index].cell_size;
if (pool_type == DEVLINK_SB_POOL_TYPE_INGRESS)
*p_pool_index = 0;
else
*p_pool_index = 1;
return 0;
}
EXPORT_SYMBOL(ocelot_sb_tc_pool_bind_get);
/* This configures the Q_RSRV per-port-tc reserved resource watermark */
int ocelot_sb_tc_pool_bind_set(struct ocelot *ocelot, int port,
unsigned int sb_index, u16 tc_index,
enum devlink_sb_pool_type pool_type,
u16 pool_index, u32 threshold,
struct netlink_ext_ack *extack)
{
int wm_index, err;
u32 old_thr;
/* Paranoid check? */
if (pool_index == OCELOT_SB_POOL_ING &&
pool_type != DEVLINK_SB_POOL_TYPE_INGRESS)
return -EINVAL;
if (pool_index == OCELOT_SB_POOL_EGR &&
pool_type != DEVLINK_SB_POOL_TYPE_EGRESS)
return -EINVAL;
switch (sb_index) {
case OCELOT_SB_BUF:
if (pool_type == DEVLINK_SB_POOL_TYPE_INGRESS)
wm_index = BUF_Q_RSRV_I(port, tc_index);
else
wm_index = BUF_Q_RSRV_E(port, tc_index);
break;
case OCELOT_SB_REF:
if (pool_type == DEVLINK_SB_POOL_TYPE_INGRESS)
wm_index = REF_Q_RSRV_I(port, tc_index);
else
wm_index = REF_Q_RSRV_E(port, tc_index);
break;
default:
NL_SET_ERR_MSG_MOD(extack, "Invalid shared buffer");
return -ENODEV;
}
threshold /= ocelot_sb_pool[sb_index].cell_size;
old_thr = ocelot_wm_read(ocelot, wm_index);
ocelot_wm_write(ocelot, wm_index, threshold);
err = ocelot_watermark_validate(ocelot, extack);
if (err) {
ocelot_wm_write(ocelot, wm_index, old_thr);
return err;
}
ocelot_setup_sharing_watermarks(ocelot);
return 0;
}
EXPORT_SYMBOL(ocelot_sb_tc_pool_bind_set);
/* The hardware does not support atomic snapshots, we'll read out the
* occupancy registers individually and have this as just a stub.
*/
int ocelot_sb_occ_snapshot(struct ocelot *ocelot, unsigned int sb_index)
{
return 0;
}
EXPORT_SYMBOL(ocelot_sb_occ_snapshot);
/* The watermark occupancy registers are cleared upon read,
* so let's read them.
*/
int ocelot_sb_occ_max_clear(struct ocelot *ocelot, unsigned int sb_index)
{
u32 inuse, maxuse;
int port, prio;
switch (sb_index) {
case OCELOT_SB_BUF:
for (port = 0; port <= ocelot->num_phys_ports; port++) {
for (prio = 0; prio < OCELOT_NUM_TC; prio++) {
ocelot_wm_status(ocelot, BUF_Q_RSRV_I(port, prio),
&inuse, &maxuse);
ocelot_wm_status(ocelot, BUF_Q_RSRV_E(port, prio),
&inuse, &maxuse);
}
ocelot_wm_status(ocelot, BUF_P_RSRV_I(port),
&inuse, &maxuse);
ocelot_wm_status(ocelot, BUF_P_RSRV_E(port),
&inuse, &maxuse);
}
break;
case OCELOT_SB_REF:
for (port = 0; port <= ocelot->num_phys_ports; port++) {
for (prio = 0; prio < OCELOT_NUM_TC; prio++) {
ocelot_wm_status(ocelot, REF_Q_RSRV_I(port, prio),
&inuse, &maxuse);
ocelot_wm_status(ocelot, REF_Q_RSRV_E(port, prio),
&inuse, &maxuse);
}
ocelot_wm_status(ocelot, REF_P_RSRV_I(port),
&inuse, &maxuse);
ocelot_wm_status(ocelot, REF_P_RSRV_E(port),
&inuse, &maxuse);
}
break;
default:
return -ENODEV;
}
return 0;
}
EXPORT_SYMBOL(ocelot_sb_occ_max_clear);
/* This retrieves the watermark occupancy for per-port P_RSRV watermarks */
int ocelot_sb_occ_port_pool_get(struct ocelot *ocelot, int port,
unsigned int sb_index, u16 pool_index,
u32 *p_cur, u32 *p_max)
{
int wm_index;
switch (sb_index) {
case OCELOT_SB_BUF:
if (pool_index == OCELOT_SB_POOL_ING)
wm_index = BUF_P_RSRV_I(port);
else
wm_index = BUF_P_RSRV_E(port);
break;
case OCELOT_SB_REF:
if (pool_index == OCELOT_SB_POOL_ING)
wm_index = REF_P_RSRV_I(port);
else
wm_index = REF_P_RSRV_E(port);
break;
default:
return -ENODEV;
}
ocelot_wm_status(ocelot, wm_index, p_cur, p_max);
*p_cur *= ocelot_sb_pool[sb_index].cell_size;
*p_max *= ocelot_sb_pool[sb_index].cell_size;
return 0;
}
EXPORT_SYMBOL(ocelot_sb_occ_port_pool_get);
/* This retrieves the watermark occupancy for per-port-tc Q_RSRV watermarks */
int ocelot_sb_occ_tc_port_bind_get(struct ocelot *ocelot, int port,
unsigned int sb_index, u16 tc_index,
enum devlink_sb_pool_type pool_type,
u32 *p_cur, u32 *p_max)
{
int wm_index;
switch (sb_index) {
case OCELOT_SB_BUF:
if (pool_type == DEVLINK_SB_POOL_TYPE_INGRESS)
wm_index = BUF_Q_RSRV_I(port, tc_index);
else
wm_index = BUF_Q_RSRV_E(port, tc_index);
break;
case OCELOT_SB_REF:
if (pool_type == DEVLINK_SB_POOL_TYPE_INGRESS)
wm_index = REF_Q_RSRV_I(port, tc_index);
else
wm_index = REF_Q_RSRV_E(port, tc_index);
break;
default:
return -ENODEV;
}
ocelot_wm_status(ocelot, wm_index, p_cur, p_max);
*p_cur *= ocelot_sb_pool[sb_index].cell_size;
*p_max *= ocelot_sb_pool[sb_index].cell_size;
return 0;
}
EXPORT_SYMBOL(ocelot_sb_occ_tc_port_bind_get);
int ocelot_devlink_sb_register(struct ocelot *ocelot)
{
int err;
err = devlink_sb_register(ocelot->devlink, OCELOT_SB_BUF,
ocelot->packet_buffer_size, 1, 1,
OCELOT_NUM_TC, OCELOT_NUM_TC);
if (err)
return err;
err = devlink_sb_register(ocelot->devlink, OCELOT_SB_REF,
ocelot->num_frame_refs, 1, 1,
OCELOT_NUM_TC, OCELOT_NUM_TC);
if (err) {
devlink_sb_unregister(ocelot->devlink, OCELOT_SB_BUF);
return err;
}
ocelot->pool_size[OCELOT_SB_BUF][OCELOT_SB_POOL_ING] = ocelot->packet_buffer_size;
ocelot->pool_size[OCELOT_SB_BUF][OCELOT_SB_POOL_EGR] = ocelot->packet_buffer_size;
ocelot->pool_size[OCELOT_SB_REF][OCELOT_SB_POOL_ING] = ocelot->num_frame_refs;
ocelot->pool_size[OCELOT_SB_REF][OCELOT_SB_POOL_EGR] = ocelot->num_frame_refs;
ocelot_watermark_init(ocelot);
return 0;
}
EXPORT_SYMBOL(ocelot_devlink_sb_register);
void ocelot_devlink_sb_unregister(struct ocelot *ocelot)
{
devlink_sb_unregister(ocelot->devlink, OCELOT_SB_BUF);
devlink_sb_unregister(ocelot->devlink, OCELOT_SB_REF);
}
EXPORT_SYMBOL(ocelot_devlink_sb_unregister);