OpenCloudOS-Kernel/drivers/net/wireless/rt2x00/rt2x00dev.c

1362 lines
33 KiB
C

/*
Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2x00lib
Abstract: rt2x00 generic device routines.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include "rt2x00.h"
#include "rt2x00lib.h"
#include "rt2x00dump.h"
/*
* Link tuning handlers
*/
void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Reset link information.
* Both the currently active vgc level as well as
* the link tuner counter should be reset. Resetting
* the counter is important for devices where the
* device should only perform link tuning during the
* first minute after being enabled.
*/
rt2x00dev->link.count = 0;
rt2x00dev->link.vgc_level = 0;
/*
* Reset the link tuner.
*/
rt2x00dev->ops->lib->reset_tuner(rt2x00dev);
}
static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev)
{
/*
* Clear all (possibly) pre-existing quality statistics.
*/
memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual));
/*
* The RX and TX percentage should start at 50%
* this will assure we will get at least get some
* decent value when the link tuner starts.
* The value will be dropped and overwritten with
* the correct (measured )value anyway during the
* first run of the link tuner.
*/
rt2x00dev->link.qual.rx_percentage = 50;
rt2x00dev->link.qual.tx_percentage = 50;
rt2x00lib_reset_link_tuner(rt2x00dev);
queue_delayed_work(rt2x00dev->hw->workqueue,
&rt2x00dev->link.work, LINK_TUNE_INTERVAL);
}
static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev)
{
cancel_delayed_work_sync(&rt2x00dev->link.work);
}
/*
* Radio control handlers.
*/
int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
{
int status;
/*
* Don't enable the radio twice.
* And check if the hardware button has been disabled.
*/
if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) ||
test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags))
return 0;
/*
* Initialize all data queues.
*/
rt2x00queue_init_rx(rt2x00dev);
rt2x00queue_init_tx(rt2x00dev);
/*
* Enable radio.
*/
status =
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
if (status)
return status;
rt2x00leds_led_radio(rt2x00dev, true);
rt2x00led_led_activity(rt2x00dev, true);
__set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags);
/*
* Enable RX.
*/
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
/*
* Start the TX queues.
*/
ieee80211_start_queues(rt2x00dev->hw);
return 0;
}
void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
{
if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Stop all scheduled work.
*/
if (work_pending(&rt2x00dev->intf_work))
cancel_work_sync(&rt2x00dev->intf_work);
if (work_pending(&rt2x00dev->filter_work))
cancel_work_sync(&rt2x00dev->filter_work);
/*
* Stop the TX queues.
*/
ieee80211_stop_queues(rt2x00dev->hw);
/*
* Disable RX.
*/
rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
/*
* Disable radio.
*/
rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
rt2x00led_led_activity(rt2x00dev, false);
rt2x00leds_led_radio(rt2x00dev, false);
}
void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state)
{
/*
* When we are disabling the RX, we should also stop the link tuner.
*/
if (state == STATE_RADIO_RX_OFF)
rt2x00lib_stop_link_tuner(rt2x00dev);
rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
/*
* When we are enabling the RX, we should also start the link tuner.
*/
if (state == STATE_RADIO_RX_ON &&
(rt2x00dev->intf_ap_count || rt2x00dev->intf_sta_count))
rt2x00lib_start_link_tuner(rt2x00dev);
}
static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev)
{
enum antenna rx = rt2x00dev->link.ant.active.rx;
enum antenna tx = rt2x00dev->link.ant.active.tx;
int sample_a =
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A);
int sample_b =
rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B);
/*
* We are done sampling. Now we should evaluate the results.
*/
rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE;
/*
* During the last period we have sampled the RSSI
* from both antenna's. It now is time to determine
* which antenna demonstrated the best performance.
* When we are already on the antenna with the best
* performance, then there really is nothing for us
* left to do.
*/
if (sample_a == sample_b)
return;
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B;
rt2x00lib_config_antenna(rt2x00dev, rx, tx);
}
static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev)
{
enum antenna rx = rt2x00dev->link.ant.active.rx;
enum antenna tx = rt2x00dev->link.ant.active.tx;
int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link);
int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr);
/*
* Legacy driver indicates that we should swap antenna's
* when the difference in RSSI is greater that 5. This
* also should be done when the RSSI was actually better
* then the previous sample.
* When the difference exceeds the threshold we should
* sample the rssi from the other antenna to make a valid
* comparison between the 2 antennas.
*/
if (abs(rssi_curr - rssi_old) < 5)
return;
rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE;
if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY)
rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)
tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A;
rt2x00lib_config_antenna(rt2x00dev, rx, tx);
}
static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev)
{
/*
* Determine if software diversity is enabled for
* either the TX or RX antenna (or both).
* Always perform this check since within the link
* tuner interval the configuration might have changed.
*/
rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY;
rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY;
if (rt2x00dev->hw->conf.antenna_sel_rx == 0 &&
rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY;
if (rt2x00dev->hw->conf.antenna_sel_tx == 0 &&
rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY;
if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) &&
!(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) {
rt2x00dev->link.ant.flags = 0;
return;
}
/*
* If we have only sampled the data over the last period
* we should now harvest the data. Otherwise just evaluate
* the data. The latter should only be performed once
* every 2 seconds.
*/
if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE)
rt2x00lib_evaluate_antenna_sample(rt2x00dev);
else if (rt2x00dev->link.count & 1)
rt2x00lib_evaluate_antenna_eval(rt2x00dev);
}
static void rt2x00lib_update_link_stats(struct link *link, int rssi)
{
int avg_rssi = rssi;
/*
* Update global RSSI
*/
if (link->qual.avg_rssi)
avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8);
link->qual.avg_rssi = avg_rssi;
/*
* Update antenna RSSI
*/
if (link->ant.rssi_ant)
rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8);
link->ant.rssi_ant = rssi;
}
static void rt2x00lib_precalculate_link_signal(struct link_qual *qual)
{
if (qual->rx_failed || qual->rx_success)
qual->rx_percentage =
(qual->rx_success * 100) /
(qual->rx_failed + qual->rx_success);
else
qual->rx_percentage = 50;
if (qual->tx_failed || qual->tx_success)
qual->tx_percentage =
(qual->tx_success * 100) /
(qual->tx_failed + qual->tx_success);
else
qual->tx_percentage = 50;
qual->rx_success = 0;
qual->rx_failed = 0;
qual->tx_success = 0;
qual->tx_failed = 0;
}
static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev,
int rssi)
{
int rssi_percentage = 0;
int signal;
/*
* We need a positive value for the RSSI.
*/
if (rssi < 0)
rssi += rt2x00dev->rssi_offset;
/*
* Calculate the different percentages,
* which will be used for the signal.
*/
if (rt2x00dev->rssi_offset)
rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset;
/*
* Add the individual percentages and use the WEIGHT
* defines to calculate the current link signal.
*/
signal = ((WEIGHT_RSSI * rssi_percentage) +
(WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) +
(WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100;
return (signal > 100) ? 100 : signal;
}
static void rt2x00lib_link_tuner(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, link.work.work);
/*
* When the radio is shutting down we should
* immediately cease all link tuning.
*/
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
/*
* Update statistics.
*/
rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual);
rt2x00dev->low_level_stats.dot11FCSErrorCount +=
rt2x00dev->link.qual.rx_failed;
/*
* Only perform the link tuning when Link tuning
* has been enabled (This could have been disabled from the EEPROM).
*/
if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags))
rt2x00dev->ops->lib->link_tuner(rt2x00dev);
/*
* Precalculate a portion of the link signal which is
* in based on the tx/rx success/failure counters.
*/
rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual);
/*
* Send a signal to the led to update the led signal strength.
*/
rt2x00leds_led_quality(rt2x00dev, rt2x00dev->link.qual.avg_rssi);
/*
* Evaluate antenna setup, make this the last step since this could
* possibly reset some statistics.
*/
rt2x00lib_evaluate_antenna(rt2x00dev);
/*
* Increase tuner counter, and reschedule the next link tuner run.
*/
rt2x00dev->link.count++;
queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work,
LINK_TUNE_INTERVAL);
}
static void rt2x00lib_packetfilter_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, filter_work);
rt2x00dev->ops->lib->config_filter(rt2x00dev, rt2x00dev->packet_filter);
}
static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = data;
struct rt2x00_intf *intf = vif_to_intf(vif);
struct sk_buff *skb;
struct ieee80211_tx_control control;
struct ieee80211_bss_conf conf;
int delayed_flags;
/*
* Copy all data we need during this action under the protection
* of a spinlock. Otherwise race conditions might occur which results
* into an invalid configuration.
*/
spin_lock(&intf->lock);
memcpy(&conf, &intf->conf, sizeof(conf));
delayed_flags = intf->delayed_flags;
intf->delayed_flags = 0;
spin_unlock(&intf->lock);
if (delayed_flags & DELAYED_UPDATE_BEACON) {
skb = ieee80211_beacon_get(rt2x00dev->hw, vif, &control);
if (skb && rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw,
skb, &control))
dev_kfree_skb(skb);
}
if (delayed_flags & DELAYED_CONFIG_ERP)
rt2x00lib_config_erp(rt2x00dev, intf, &intf->conf);
if (delayed_flags & DELAYED_LED_ASSOC)
rt2x00leds_led_assoc(rt2x00dev, !!rt2x00dev->intf_associated);
}
static void rt2x00lib_intf_scheduled(struct work_struct *work)
{
struct rt2x00_dev *rt2x00dev =
container_of(work, struct rt2x00_dev, intf_work);
/*
* Iterate over each interface and perform the
* requested configurations.
*/
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
rt2x00lib_intf_scheduled_iter,
rt2x00dev);
}
/*
* Interrupt context handlers.
*/
static void rt2x00lib_beacondone_iter(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_intf *intf = vif_to_intf(vif);
if (vif->type != IEEE80211_IF_TYPE_AP &&
vif->type != IEEE80211_IF_TYPE_IBSS)
return;
spin_lock(&intf->lock);
intf->delayed_flags |= DELAYED_UPDATE_BEACON;
spin_unlock(&intf->lock);
}
void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
return;
ieee80211_iterate_active_interfaces_atomic(rt2x00dev->hw,
rt2x00lib_beacondone_iter,
rt2x00dev);
queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->intf_work);
}
EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
void rt2x00lib_txdone(struct queue_entry *entry,
struct txdone_entry_desc *txdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct skb_frame_desc *skbdesc;
struct ieee80211_tx_status tx_status;
int success = !!(txdesc->status == TX_SUCCESS ||
txdesc->status == TX_SUCCESS_RETRY);
int fail = !!(txdesc->status == TX_FAIL_RETRY ||
txdesc->status == TX_FAIL_INVALID ||
txdesc->status == TX_FAIL_OTHER);
/*
* Update TX statistics.
*/
rt2x00dev->link.qual.tx_success += success;
rt2x00dev->link.qual.tx_failed += fail;
/*
* Initialize TX status
*/
tx_status.flags = 0;
tx_status.ack_signal = 0;
tx_status.excessive_retries = (txdesc->status == TX_FAIL_RETRY);
tx_status.retry_count = txdesc->retry;
memcpy(&tx_status.control, txdesc->control, sizeof(*txdesc->control));
if (!(tx_status.control.flags & IEEE80211_TXCTL_NO_ACK)) {
if (success)
tx_status.flags |= IEEE80211_TX_STATUS_ACK;
else
rt2x00dev->low_level_stats.dot11ACKFailureCount++;
}
tx_status.queue_length = entry->queue->limit;
tx_status.queue_number = tx_status.control.queue;
if (tx_status.control.flags & IEEE80211_TXCTL_USE_RTS_CTS) {
if (success)
rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
else
rt2x00dev->low_level_stats.dot11RTSFailureCount++;
}
/*
* Send the tx_status to debugfs. Only send the status report
* to mac80211 when the frame originated from there. If this was
* a extra frame coming through a mac80211 library call (RTS/CTS)
* then we should not send the status report back.
* If send to mac80211, mac80211 will clean up the skb structure,
* otherwise we have to do it ourself.
*/
skbdesc = get_skb_frame_desc(entry->skb);
skbdesc->frame_type = DUMP_FRAME_TXDONE;
rt2x00debug_dump_frame(rt2x00dev, entry->skb);
if (!(skbdesc->flags & FRAME_DESC_DRIVER_GENERATED))
ieee80211_tx_status_irqsafe(rt2x00dev->hw,
entry->skb, &tx_status);
else
dev_kfree_skb(entry->skb);
entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
void rt2x00lib_rxdone(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status;
struct ieee80211_supported_band *sband;
struct ieee80211_hdr *hdr;
const struct rt2x00_rate *rate;
unsigned int i;
int idx = -1;
u16 fc;
/*
* Update RX statistics.
*/
sband = &rt2x00dev->bands[rt2x00dev->curr_band];
for (i = 0; i < sband->n_bitrates; i++) {
rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
if (((rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
(rate->plcp == rxdesc->signal)) ||
(!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP) &&
(rate->bitrate == rxdesc->signal))) {
idx = i;
break;
}
}
if (idx < 0) {
WARNING(rt2x00dev, "Frame received with unrecognized signal,"
"signal=0x%.2x, plcp=%d.\n", rxdesc->signal,
!!(rxdesc->dev_flags & RXDONE_SIGNAL_PLCP));
idx = 0;
}
/*
* Only update link status if this is a beacon frame carrying our bssid.
*/
hdr = (struct ieee80211_hdr *)entry->skb->data;
fc = le16_to_cpu(hdr->frame_control);
if (is_beacon(fc) && (rxdesc->dev_flags & RXDONE_MY_BSS))
rt2x00lib_update_link_stats(&rt2x00dev->link, rxdesc->rssi);
rt2x00dev->link.qual.rx_success++;
rx_status->rate_idx = idx;
rx_status->signal =
rt2x00lib_calculate_link_signal(rt2x00dev, rxdesc->rssi);
rx_status->ssi = rxdesc->rssi;
rx_status->flag = rxdesc->flags;
rx_status->antenna = rt2x00dev->link.ant.active.rx;
/*
* Send frame to mac80211 & debugfs.
* mac80211 will clean up the skb structure.
*/
get_skb_frame_desc(entry->skb)->frame_type = DUMP_FRAME_RXDONE;
rt2x00debug_dump_frame(rt2x00dev, entry->skb);
ieee80211_rx_irqsafe(rt2x00dev->hw, entry->skb, rx_status);
entry->skb = NULL;
}
EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
/*
* TX descriptor initializer
*/
void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb,
struct ieee80211_tx_control *control)
{
struct txentry_desc txdesc;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skbdesc->data;
const struct rt2x00_rate *rate;
int tx_rate;
int length;
int duration;
int residual;
u16 frame_control;
u16 seq_ctrl;
memset(&txdesc, 0, sizeof(txdesc));
txdesc.queue = skbdesc->entry->queue->qid;
txdesc.cw_min = skbdesc->entry->queue->cw_min;
txdesc.cw_max = skbdesc->entry->queue->cw_max;
txdesc.aifs = skbdesc->entry->queue->aifs;
/*
* Read required fields from ieee80211 header.
*/
frame_control = le16_to_cpu(hdr->frame_control);
seq_ctrl = le16_to_cpu(hdr->seq_ctrl);
tx_rate = control->tx_rate->hw_value;
/*
* Check whether this frame is to be acked
*/
if (!(control->flags & IEEE80211_TXCTL_NO_ACK))
__set_bit(ENTRY_TXD_ACK, &txdesc.flags);
/*
* Check if this is a RTS/CTS frame
*/
if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) {
__set_bit(ENTRY_TXD_BURST, &txdesc.flags);
if (is_rts_frame(frame_control)) {
__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags);
__set_bit(ENTRY_TXD_ACK, &txdesc.flags);
} else
__clear_bit(ENTRY_TXD_ACK, &txdesc.flags);
if (control->rts_cts_rate)
tx_rate = control->rts_cts_rate->hw_value;
}
rate = rt2x00_get_rate(tx_rate);
/*
* Check if more fragments are pending
*/
if (ieee80211_get_morefrag(hdr)) {
__set_bit(ENTRY_TXD_BURST, &txdesc.flags);
__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc.flags);
}
/*
* Beacons and probe responses require the tsf timestamp
* to be inserted into the frame.
*/
if (control->queue == RT2X00_BCN_QUEUE_BEACON ||
is_probe_resp(frame_control))
__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc.flags);
/*
* Determine with what IFS priority this frame should be send.
* Set ifs to IFS_SIFS when the this is not the first fragment,
* or this fragment came after RTS/CTS.
*/
if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 ||
test_bit(ENTRY_TXD_RTS_FRAME, &txdesc.flags))
txdesc.ifs = IFS_SIFS;
else
txdesc.ifs = IFS_BACKOFF;
/*
* PLCP setup
* Length calculation depends on OFDM/CCK rate.
*/
txdesc.signal = rate->plcp;
txdesc.service = 0x04;
length = skbdesc->data_len + FCS_LEN;
if (rate->flags & DEV_RATE_OFDM) {
__set_bit(ENTRY_TXD_OFDM_RATE, &txdesc.flags);
txdesc.length_high = (length >> 6) & 0x3f;
txdesc.length_low = length & 0x3f;
} else {
/*
* Convert length to microseconds.
*/
residual = get_duration_res(length, rate->bitrate);
duration = get_duration(length, rate->bitrate);
if (residual != 0) {
duration++;
/*
* Check if we need to set the Length Extension
*/
if (rate->bitrate == 110 && residual <= 30)
txdesc.service |= 0x80;
}
txdesc.length_high = (duration >> 8) & 0xff;
txdesc.length_low = duration & 0xff;
/*
* When preamble is enabled we should set the
* preamble bit for the signal.
*/
if (rt2x00_get_rate_preamble(tx_rate))
txdesc.signal |= 0x08;
}
rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &txdesc, control);
/*
* Update queue entry.
*/
skbdesc->entry->skb = skb;
/*
* The frame has been completely initialized and ready
* for sending to the device. The caller will push the
* frame to the device, but we are going to push the
* frame to debugfs here.
*/
skbdesc->frame_type = DUMP_FRAME_TX;
rt2x00debug_dump_frame(rt2x00dev, skb);
}
EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc);
/*
* Driver initialization handlers.
*/
const struct rt2x00_rate rt2x00_supported_rates[12] = {
{
.flags = DEV_RATE_CCK | DEV_RATE_BASIC,
.bitrate = 10,
.ratemask = BIT(0),
.plcp = 0x00,
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
.bitrate = 20,
.ratemask = BIT(1),
.plcp = 0x01,
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
.bitrate = 55,
.ratemask = BIT(2),
.plcp = 0x02,
},
{
.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE | DEV_RATE_BASIC,
.bitrate = 110,
.ratemask = BIT(3),
.plcp = 0x03,
},
{
.flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
.bitrate = 60,
.ratemask = BIT(4),
.plcp = 0x0b,
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 90,
.ratemask = BIT(5),
.plcp = 0x0f,
},
{
.flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
.bitrate = 120,
.ratemask = BIT(6),
.plcp = 0x0a,
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 180,
.ratemask = BIT(7),
.plcp = 0x0e,
},
{
.flags = DEV_RATE_OFDM | DEV_RATE_BASIC,
.bitrate = 240,
.ratemask = BIT(8),
.plcp = 0x09,
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 360,
.ratemask = BIT(9),
.plcp = 0x0d,
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 480,
.ratemask = BIT(10),
.plcp = 0x08,
},
{
.flags = DEV_RATE_OFDM,
.bitrate = 540,
.ratemask = BIT(11),
.plcp = 0x0c,
},
};
static void rt2x00lib_channel(struct ieee80211_channel *entry,
const int channel, const int tx_power,
const int value)
{
entry->center_freq = ieee80211_channel_to_frequency(channel);
entry->hw_value = value;
entry->max_power = tx_power;
entry->max_antenna_gain = 0xff;
}
static void rt2x00lib_rate(struct ieee80211_rate *entry,
const u16 index, const struct rt2x00_rate *rate)
{
entry->flags = 0;
entry->bitrate = rate->bitrate;
entry->hw_value = rt2x00_create_rate_hw_value(index, 0);
entry->hw_value_short = entry->hw_value;
if (rate->flags & DEV_RATE_SHORT_PREAMBLE) {
entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
entry->hw_value_short |= rt2x00_create_rate_hw_value(index, 1);
}
}
static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
struct hw_mode_spec *spec)
{
struct ieee80211_hw *hw = rt2x00dev->hw;
struct ieee80211_channel *channels;
struct ieee80211_rate *rates;
unsigned int num_rates;
unsigned int i;
unsigned char tx_power;
num_rates = 0;
if (spec->supported_rates & SUPPORT_RATE_CCK)
num_rates += 4;
if (spec->supported_rates & SUPPORT_RATE_OFDM)
num_rates += 8;
channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL);
if (!channels)
return -ENOMEM;
rates = kzalloc(sizeof(*rates) * num_rates, GFP_KERNEL);
if (!rates)
goto exit_free_channels;
/*
* Initialize Rate list.
*/
for (i = 0; i < num_rates; i++)
rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
/*
* Initialize Channel list.
*/
for (i = 0; i < spec->num_channels; i++) {
if (spec->channels[i].channel <= 14) {
if (spec->tx_power_bg)
tx_power = spec->tx_power_bg[i];
else
tx_power = spec->tx_power_default;
} else {
if (spec->tx_power_a)
tx_power = spec->tx_power_a[i];
else
tx_power = spec->tx_power_default;
}
rt2x00lib_channel(&channels[i],
spec->channels[i].channel, tx_power, i);
}
/*
* Intitialize 802.11b, 802.11g
* Rates: CCK, OFDM.
* Channels: 2.4 GHz
*/
if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
&rt2x00dev->bands[IEEE80211_BAND_2GHZ];
}
/*
* Intitialize 802.11a
* Rates: OFDM.
* Channels: OFDM, UNII, HiperLAN2.
*/
if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
spec->num_channels - 14;
rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
num_rates - 4;
rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
&rt2x00dev->bands[IEEE80211_BAND_5GHZ];
}
return 0;
exit_free_channels:
kfree(channels);
ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n");
return -ENOMEM;
}
static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
{
if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags))
ieee80211_unregister_hw(rt2x00dev->hw);
if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
}
}
static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
int status;
/*
* Initialize HW modes.
*/
status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
if (status)
return status;
/*
* Register HW.
*/
status = ieee80211_register_hw(rt2x00dev->hw);
if (status) {
rt2x00lib_remove_hw(rt2x00dev);
return status;
}
__set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags);
return 0;
}
/*
* Initialization/uninitialization handlers.
*/
static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
{
if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
return;
/*
* Unregister extra components.
*/
rt2x00rfkill_unregister(rt2x00dev);
/*
* Allow the HW to uninitialize.
*/
rt2x00dev->ops->lib->uninitialize(rt2x00dev);
/*
* Free allocated queue entries.
*/
rt2x00queue_uninitialize(rt2x00dev);
}
static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
{
int status;
if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags))
return 0;
/*
* Allocate all queue entries.
*/
status = rt2x00queue_initialize(rt2x00dev);
if (status)
return status;
/*
* Initialize the device.
*/
status = rt2x00dev->ops->lib->initialize(rt2x00dev);
if (status) {
rt2x00queue_uninitialize(rt2x00dev);
return status;
}
__set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags);
/*
* Register the extra components.
*/
rt2x00rfkill_register(rt2x00dev);
return 0;
}
int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
{
int retval;
if (test_bit(DEVICE_STARTED, &rt2x00dev->flags))
return 0;
/*
* If this is the first interface which is added,
* we should load the firmware now.
*/
retval = rt2x00lib_load_firmware(rt2x00dev);
if (retval)
return retval;
/*
* Initialize the device.
*/
retval = rt2x00lib_initialize(rt2x00dev);
if (retval)
return retval;
/*
* Enable radio.
*/
retval = rt2x00lib_enable_radio(rt2x00dev);
if (retval) {
rt2x00lib_uninitialize(rt2x00dev);
return retval;
}
rt2x00dev->intf_ap_count = 0;
rt2x00dev->intf_sta_count = 0;
rt2x00dev->intf_associated = 0;
__set_bit(DEVICE_STARTED, &rt2x00dev->flags);
return 0;
}
void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
{
if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
return;
/*
* Perhaps we can add something smarter here,
* but for now just disabling the radio should do.
*/
rt2x00lib_disable_radio(rt2x00dev);
rt2x00dev->intf_ap_count = 0;
rt2x00dev->intf_sta_count = 0;
rt2x00dev->intf_associated = 0;
__clear_bit(DEVICE_STARTED, &rt2x00dev->flags);
}
/*
* driver allocation handlers.
*/
int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
{
int retval = -ENOMEM;
/*
* Make room for rt2x00_intf inside the per-interface
* structure ieee80211_vif.
*/
rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
/*
* Let the driver probe the device to detect the capabilities.
*/
retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to allocate device.\n");
goto exit;
}
/*
* Initialize configuration work.
*/
INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled);
INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner);
/*
* Allocate queue array.
*/
retval = rt2x00queue_allocate(rt2x00dev);
if (retval)
goto exit;
/*
* Initialize ieee80211 structure.
*/
retval = rt2x00lib_probe_hw(rt2x00dev);
if (retval) {
ERROR(rt2x00dev, "Failed to initialize hw.\n");
goto exit;
}
/*
* Register extra components.
*/
rt2x00leds_register(rt2x00dev);
rt2x00rfkill_allocate(rt2x00dev);
rt2x00debug_register(rt2x00dev);
__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
return 0;
exit:
rt2x00lib_remove_dev(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
{
__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* Disable radio.
*/
rt2x00lib_disable_radio(rt2x00dev);
/*
* Uninitialize device.
*/
rt2x00lib_uninitialize(rt2x00dev);
/*
* Free extra components
*/
rt2x00debug_deregister(rt2x00dev);
rt2x00rfkill_free(rt2x00dev);
rt2x00leds_unregister(rt2x00dev);
/*
* Free ieee80211_hw memory.
*/
rt2x00lib_remove_hw(rt2x00dev);
/*
* Free firmware image.
*/
rt2x00lib_free_firmware(rt2x00dev);
/*
* Free queue structures.
*/
rt2x00queue_free(rt2x00dev);
}
EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
/*
* Device state handlers
*/
#ifdef CONFIG_PM
int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
{
int retval;
NOTICE(rt2x00dev, "Going to sleep.\n");
__clear_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* Only continue if mac80211 has open interfaces.
*/
if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags))
goto exit;
__set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags);
/*
* Disable radio.
*/
rt2x00lib_stop(rt2x00dev);
rt2x00lib_uninitialize(rt2x00dev);
/*
* Suspend/disable extra components.
*/
rt2x00leds_suspend(rt2x00dev);
rt2x00rfkill_suspend(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
exit:
/*
* Set device mode to sleep for power management,
* on some hardware this call seems to consistently fail.
* From the specifications it is hard to tell why it fails,
* and if this is a "bad thing".
* Overall it is safe to just ignore the failure and
* continue suspending. The only downside is that the
* device will not be in optimal power save mode, but with
* the radio and the other components already disabled the
* device is as good as disabled.
*/
retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP);
if (retval)
WARNING(rt2x00dev, "Device failed to enter sleep state, "
"continue suspending.\n");
return 0;
}
EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
static void rt2x00lib_resume_intf(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct rt2x00_dev *rt2x00dev = data;
struct rt2x00_intf *intf = vif_to_intf(vif);
spin_lock(&intf->lock);
rt2x00lib_config_intf(rt2x00dev, intf,
vif->type, intf->mac, intf->bssid);
/*
* Master or Ad-hoc mode require a new beacon update.
*/
if (vif->type == IEEE80211_IF_TYPE_AP ||
vif->type == IEEE80211_IF_TYPE_IBSS)
intf->delayed_flags |= DELAYED_UPDATE_BEACON;
spin_unlock(&intf->lock);
}
int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
{
int retval;
NOTICE(rt2x00dev, "Waking up.\n");
/*
* Restore/enable extra components.
*/
rt2x00debug_register(rt2x00dev);
rt2x00rfkill_resume(rt2x00dev);
rt2x00leds_resume(rt2x00dev);
/*
* Only continue if mac80211 had open interfaces.
*/
if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags))
return 0;
/*
* Reinitialize device and all active interfaces.
*/
retval = rt2x00lib_start(rt2x00dev);
if (retval)
goto exit;
/*
* Reconfigure device.
*/
rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1);
if (!rt2x00dev->hw->conf.radio_enabled)
rt2x00lib_disable_radio(rt2x00dev);
/*
* Iterator over each active interface to
* reconfigure the hardware.
*/
ieee80211_iterate_active_interfaces(rt2x00dev->hw,
rt2x00lib_resume_intf, rt2x00dev);
/*
* We are ready again to receive requests from mac80211.
*/
__set_bit(DEVICE_PRESENT, &rt2x00dev->flags);
/*
* It is possible that during that mac80211 has attempted
* to send frames while we were suspending or resuming.
* In that case we have disabled the TX queue and should
* now enable it again
*/
ieee80211_start_queues(rt2x00dev->hw);
/*
* During interface iteration we might have changed the
* delayed_flags, time to handles the event by calling
* the work handler directly.
*/
rt2x00lib_intf_scheduled(&rt2x00dev->intf_work);
return 0;
exit:
rt2x00lib_disable_radio(rt2x00dev);
rt2x00lib_uninitialize(rt2x00dev);
rt2x00debug_deregister(rt2x00dev);
return retval;
}
EXPORT_SYMBOL_GPL(rt2x00lib_resume);
#endif /* CONFIG_PM */
/*
* rt2x00lib module information.
*/
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("rt2x00 library");
MODULE_LICENSE("GPL");