533 lines
14 KiB
C
533 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Glue code for AES implementation for SPE instructions (PPC)
|
|
*
|
|
* Based on generic implementation. The assembler module takes care
|
|
* about the SPE registers so it can run from interrupt context.
|
|
*
|
|
* Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
|
|
*/
|
|
|
|
#include <crypto/aes.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/types.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/crypto.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/switch_to.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
#include <crypto/xts.h>
|
|
#include <crypto/gf128mul.h>
|
|
#include <crypto/scatterwalk.h>
|
|
|
|
/*
|
|
* MAX_BYTES defines the number of bytes that are allowed to be processed
|
|
* between preempt_disable() and preempt_enable(). e500 cores can issue two
|
|
* instructions per clock cycle using one 32/64 bit unit (SU1) and one 32
|
|
* bit unit (SU2). One of these can be a memory access that is executed via
|
|
* a single load and store unit (LSU). XTS-AES-256 takes ~780 operations per
|
|
* 16 byte block block or 25 cycles per byte. Thus 768 bytes of input data
|
|
* will need an estimated maximum of 20,000 cycles. Headroom for cache misses
|
|
* included. Even with the low end model clocked at 667 MHz this equals to a
|
|
* critical time window of less than 30us. The value has been chosen to
|
|
* process a 512 byte disk block in one or a large 1400 bytes IPsec network
|
|
* packet in two runs.
|
|
*
|
|
*/
|
|
#define MAX_BYTES 768
|
|
|
|
struct ppc_aes_ctx {
|
|
u32 key_enc[AES_MAX_KEYLENGTH_U32];
|
|
u32 key_dec[AES_MAX_KEYLENGTH_U32];
|
|
u32 rounds;
|
|
};
|
|
|
|
struct ppc_xts_ctx {
|
|
u32 key_enc[AES_MAX_KEYLENGTH_U32];
|
|
u32 key_dec[AES_MAX_KEYLENGTH_U32];
|
|
u32 key_twk[AES_MAX_KEYLENGTH_U32];
|
|
u32 rounds;
|
|
};
|
|
|
|
extern void ppc_encrypt_aes(u8 *out, const u8 *in, u32 *key_enc, u32 rounds);
|
|
extern void ppc_decrypt_aes(u8 *out, const u8 *in, u32 *key_dec, u32 rounds);
|
|
extern void ppc_encrypt_ecb(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
|
|
u32 bytes);
|
|
extern void ppc_decrypt_ecb(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
|
|
u32 bytes);
|
|
extern void ppc_encrypt_cbc(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
|
|
u32 bytes, u8 *iv);
|
|
extern void ppc_decrypt_cbc(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
|
|
u32 bytes, u8 *iv);
|
|
extern void ppc_crypt_ctr (u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
|
|
u32 bytes, u8 *iv);
|
|
extern void ppc_encrypt_xts(u8 *out, const u8 *in, u32 *key_enc, u32 rounds,
|
|
u32 bytes, u8 *iv, u32 *key_twk);
|
|
extern void ppc_decrypt_xts(u8 *out, const u8 *in, u32 *key_dec, u32 rounds,
|
|
u32 bytes, u8 *iv, u32 *key_twk);
|
|
|
|
extern void ppc_expand_key_128(u32 *key_enc, const u8 *key);
|
|
extern void ppc_expand_key_192(u32 *key_enc, const u8 *key);
|
|
extern void ppc_expand_key_256(u32 *key_enc, const u8 *key);
|
|
|
|
extern void ppc_generate_decrypt_key(u32 *key_dec,u32 *key_enc,
|
|
unsigned int key_len);
|
|
|
|
static void spe_begin(void)
|
|
{
|
|
/* disable preemption and save users SPE registers if required */
|
|
preempt_disable();
|
|
enable_kernel_spe();
|
|
}
|
|
|
|
static void spe_end(void)
|
|
{
|
|
disable_kernel_spe();
|
|
/* reenable preemption */
|
|
preempt_enable();
|
|
}
|
|
|
|
static int ppc_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
if (key_len != AES_KEYSIZE_128 &&
|
|
key_len != AES_KEYSIZE_192 &&
|
|
key_len != AES_KEYSIZE_256) {
|
|
tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (key_len) {
|
|
case AES_KEYSIZE_128:
|
|
ctx->rounds = 4;
|
|
ppc_expand_key_128(ctx->key_enc, in_key);
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
ctx->rounds = 5;
|
|
ppc_expand_key_192(ctx->key_enc, in_key);
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
ctx->rounds = 6;
|
|
ppc_expand_key_256(ctx->key_enc, in_key);
|
|
break;
|
|
}
|
|
|
|
ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_aes_setkey_skcipher(struct crypto_skcipher *tfm,
|
|
const u8 *in_key, unsigned int key_len)
|
|
{
|
|
return ppc_aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len);
|
|
}
|
|
|
|
static int ppc_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
|
|
unsigned int key_len)
|
|
{
|
|
struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int err;
|
|
|
|
err = xts_verify_key(tfm, in_key, key_len);
|
|
if (err)
|
|
return err;
|
|
|
|
key_len >>= 1;
|
|
|
|
if (key_len != AES_KEYSIZE_128 &&
|
|
key_len != AES_KEYSIZE_192 &&
|
|
key_len != AES_KEYSIZE_256) {
|
|
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (key_len) {
|
|
case AES_KEYSIZE_128:
|
|
ctx->rounds = 4;
|
|
ppc_expand_key_128(ctx->key_enc, in_key);
|
|
ppc_expand_key_128(ctx->key_twk, in_key + AES_KEYSIZE_128);
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
ctx->rounds = 5;
|
|
ppc_expand_key_192(ctx->key_enc, in_key);
|
|
ppc_expand_key_192(ctx->key_twk, in_key + AES_KEYSIZE_192);
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
ctx->rounds = 6;
|
|
ppc_expand_key_256(ctx->key_enc, in_key);
|
|
ppc_expand_key_256(ctx->key_twk, in_key + AES_KEYSIZE_256);
|
|
break;
|
|
}
|
|
|
|
ppc_generate_decrypt_key(ctx->key_dec, ctx->key_enc, key_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ppc_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
|
|
{
|
|
struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
spe_begin();
|
|
ppc_encrypt_aes(out, in, ctx->key_enc, ctx->rounds);
|
|
spe_end();
|
|
}
|
|
|
|
static void ppc_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
|
|
{
|
|
struct ppc_aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
spe_begin();
|
|
ppc_decrypt_aes(out, in, ctx->key_dec, ctx->rounds);
|
|
spe_end();
|
|
}
|
|
|
|
static int ppc_ecb_crypt(struct skcipher_request *req, bool enc)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk walk;
|
|
unsigned int nbytes;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((nbytes = walk.nbytes) != 0) {
|
|
nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
|
|
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
|
|
|
|
spe_begin();
|
|
if (enc)
|
|
ppc_encrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, ctx->rounds, nbytes);
|
|
else
|
|
ppc_decrypt_ecb(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_dec, ctx->rounds, nbytes);
|
|
spe_end();
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ppc_ecb_encrypt(struct skcipher_request *req)
|
|
{
|
|
return ppc_ecb_crypt(req, true);
|
|
}
|
|
|
|
static int ppc_ecb_decrypt(struct skcipher_request *req)
|
|
{
|
|
return ppc_ecb_crypt(req, false);
|
|
}
|
|
|
|
static int ppc_cbc_crypt(struct skcipher_request *req, bool enc)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk walk;
|
|
unsigned int nbytes;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((nbytes = walk.nbytes) != 0) {
|
|
nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
|
|
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
|
|
|
|
spe_begin();
|
|
if (enc)
|
|
ppc_encrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, ctx->rounds, nbytes,
|
|
walk.iv);
|
|
else
|
|
ppc_decrypt_cbc(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_dec, ctx->rounds, nbytes,
|
|
walk.iv);
|
|
spe_end();
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ppc_cbc_encrypt(struct skcipher_request *req)
|
|
{
|
|
return ppc_cbc_crypt(req, true);
|
|
}
|
|
|
|
static int ppc_cbc_decrypt(struct skcipher_request *req)
|
|
{
|
|
return ppc_cbc_crypt(req, false);
|
|
}
|
|
|
|
static int ppc_ctr_crypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct ppc_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk walk;
|
|
unsigned int nbytes;
|
|
int err;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
|
|
while ((nbytes = walk.nbytes) != 0) {
|
|
nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
|
|
if (nbytes < walk.total)
|
|
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
|
|
|
|
spe_begin();
|
|
ppc_crypt_ctr(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, ctx->rounds, nbytes, walk.iv);
|
|
spe_end();
|
|
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ppc_xts_crypt(struct skcipher_request *req, bool enc)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_walk walk;
|
|
unsigned int nbytes;
|
|
int err;
|
|
u32 *twk;
|
|
|
|
err = skcipher_walk_virt(&walk, req, false);
|
|
twk = ctx->key_twk;
|
|
|
|
while ((nbytes = walk.nbytes) != 0) {
|
|
nbytes = min_t(unsigned int, nbytes, MAX_BYTES);
|
|
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
|
|
|
|
spe_begin();
|
|
if (enc)
|
|
ppc_encrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_enc, ctx->rounds, nbytes,
|
|
walk.iv, twk);
|
|
else
|
|
ppc_decrypt_xts(walk.dst.virt.addr, walk.src.virt.addr,
|
|
ctx->key_dec, ctx->rounds, nbytes,
|
|
walk.iv, twk);
|
|
spe_end();
|
|
|
|
twk = NULL;
|
|
err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ppc_xts_encrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int tail = req->cryptlen % AES_BLOCK_SIZE;
|
|
int offset = req->cryptlen - tail - AES_BLOCK_SIZE;
|
|
struct skcipher_request subreq;
|
|
u8 b[2][AES_BLOCK_SIZE];
|
|
int err;
|
|
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (tail) {
|
|
subreq = *req;
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
req->cryptlen - tail, req->iv);
|
|
req = &subreq;
|
|
}
|
|
|
|
err = ppc_xts_crypt(req, true);
|
|
if (err || !tail)
|
|
return err;
|
|
|
|
scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE, 0);
|
|
memcpy(b[1], b[0], tail);
|
|
scatterwalk_map_and_copy(b[0], req->src, offset + AES_BLOCK_SIZE, tail, 0);
|
|
|
|
spe_begin();
|
|
ppc_encrypt_xts(b[0], b[0], ctx->key_enc, ctx->rounds, AES_BLOCK_SIZE,
|
|
req->iv, NULL);
|
|
spe_end();
|
|
|
|
scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ppc_xts_decrypt(struct skcipher_request *req)
|
|
{
|
|
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
|
|
struct ppc_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int tail = req->cryptlen % AES_BLOCK_SIZE;
|
|
int offset = req->cryptlen - tail - AES_BLOCK_SIZE;
|
|
struct skcipher_request subreq;
|
|
u8 b[3][AES_BLOCK_SIZE];
|
|
le128 twk;
|
|
int err;
|
|
|
|
if (req->cryptlen < AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (tail) {
|
|
subreq = *req;
|
|
skcipher_request_set_crypt(&subreq, req->src, req->dst,
|
|
offset, req->iv);
|
|
req = &subreq;
|
|
}
|
|
|
|
err = ppc_xts_crypt(req, false);
|
|
if (err || !tail)
|
|
return err;
|
|
|
|
scatterwalk_map_and_copy(b[1], req->src, offset, AES_BLOCK_SIZE + tail, 0);
|
|
|
|
spe_begin();
|
|
if (!offset)
|
|
ppc_encrypt_ecb(req->iv, req->iv, ctx->key_twk, ctx->rounds,
|
|
AES_BLOCK_SIZE);
|
|
|
|
gf128mul_x_ble(&twk, (le128 *)req->iv);
|
|
|
|
ppc_decrypt_xts(b[1], b[1], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE,
|
|
(u8 *)&twk, NULL);
|
|
memcpy(b[0], b[2], tail);
|
|
memcpy(b[0] + tail, b[1] + tail, AES_BLOCK_SIZE - tail);
|
|
ppc_decrypt_xts(b[0], b[0], ctx->key_dec, ctx->rounds, AES_BLOCK_SIZE,
|
|
req->iv, NULL);
|
|
spe_end();
|
|
|
|
scatterwalk_map_and_copy(b[0], req->dst, offset, AES_BLOCK_SIZE + tail, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Algorithm definitions. Disabling alignment (cra_alignmask=0) was chosen
|
|
* because the e500 platform can handle unaligned reads/writes very efficently.
|
|
* This improves IPsec thoughput by another few percent. Additionally we assume
|
|
* that AES context is always aligned to at least 8 bytes because it is created
|
|
* with kmalloc() in the crypto infrastructure
|
|
*/
|
|
|
|
static struct crypto_alg aes_cipher_alg = {
|
|
.cra_name = "aes",
|
|
.cra_driver_name = "aes-ppc-spe",
|
|
.cra_priority = 300,
|
|
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct ppc_aes_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_u = {
|
|
.cipher = {
|
|
.cia_min_keysize = AES_MIN_KEY_SIZE,
|
|
.cia_max_keysize = AES_MAX_KEY_SIZE,
|
|
.cia_setkey = ppc_aes_setkey,
|
|
.cia_encrypt = ppc_aes_encrypt,
|
|
.cia_decrypt = ppc_aes_decrypt
|
|
}
|
|
}
|
|
};
|
|
|
|
static struct skcipher_alg aes_skcipher_algs[] = {
|
|
{
|
|
.base.cra_name = "ecb(aes)",
|
|
.base.cra_driver_name = "ecb-ppc-spe",
|
|
.base.cra_priority = 300,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct ppc_aes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = ppc_aes_setkey_skcipher,
|
|
.encrypt = ppc_ecb_encrypt,
|
|
.decrypt = ppc_ecb_decrypt,
|
|
}, {
|
|
.base.cra_name = "cbc(aes)",
|
|
.base.cra_driver_name = "cbc-ppc-spe",
|
|
.base.cra_priority = 300,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct ppc_aes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = ppc_aes_setkey_skcipher,
|
|
.encrypt = ppc_cbc_encrypt,
|
|
.decrypt = ppc_cbc_decrypt,
|
|
}, {
|
|
.base.cra_name = "ctr(aes)",
|
|
.base.cra_driver_name = "ctr-ppc-spe",
|
|
.base.cra_priority = 300,
|
|
.base.cra_blocksize = 1,
|
|
.base.cra_ctxsize = sizeof(struct ppc_aes_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = ppc_aes_setkey_skcipher,
|
|
.encrypt = ppc_ctr_crypt,
|
|
.decrypt = ppc_ctr_crypt,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
}, {
|
|
.base.cra_name = "xts(aes)",
|
|
.base.cra_driver_name = "xts-ppc-spe",
|
|
.base.cra_priority = 300,
|
|
.base.cra_blocksize = AES_BLOCK_SIZE,
|
|
.base.cra_ctxsize = sizeof(struct ppc_xts_ctx),
|
|
.base.cra_module = THIS_MODULE,
|
|
.min_keysize = AES_MIN_KEY_SIZE * 2,
|
|
.max_keysize = AES_MAX_KEY_SIZE * 2,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.setkey = ppc_xts_setkey,
|
|
.encrypt = ppc_xts_encrypt,
|
|
.decrypt = ppc_xts_decrypt,
|
|
}
|
|
};
|
|
|
|
static int __init ppc_aes_mod_init(void)
|
|
{
|
|
int err;
|
|
|
|
err = crypto_register_alg(&aes_cipher_alg);
|
|
if (err)
|
|
return err;
|
|
|
|
err = crypto_register_skciphers(aes_skcipher_algs,
|
|
ARRAY_SIZE(aes_skcipher_algs));
|
|
if (err)
|
|
crypto_unregister_alg(&aes_cipher_alg);
|
|
return err;
|
|
}
|
|
|
|
static void __exit ppc_aes_mod_fini(void)
|
|
{
|
|
crypto_unregister_alg(&aes_cipher_alg);
|
|
crypto_unregister_skciphers(aes_skcipher_algs,
|
|
ARRAY_SIZE(aes_skcipher_algs));
|
|
}
|
|
|
|
module_init(ppc_aes_mod_init);
|
|
module_exit(ppc_aes_mod_fini);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS, SPE optimized");
|
|
|
|
MODULE_ALIAS_CRYPTO("aes");
|
|
MODULE_ALIAS_CRYPTO("ecb(aes)");
|
|
MODULE_ALIAS_CRYPTO("cbc(aes)");
|
|
MODULE_ALIAS_CRYPTO("ctr(aes)");
|
|
MODULE_ALIAS_CRYPTO("xts(aes)");
|
|
MODULE_ALIAS_CRYPTO("aes-ppc-spe");
|