OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdgpu/vce_v2_0.c

684 lines
16 KiB
C

/*
* Copyright 2013 Advanced Micro Devices, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* Authors: Christian König <christian.koenig@amd.com>
*/
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_vce.h"
#include "cikd.h"
#include "vce/vce_2_0_d.h"
#include "vce/vce_2_0_sh_mask.h"
#include "smu/smu_7_0_1_d.h"
#include "smu/smu_7_0_1_sh_mask.h"
#include "oss/oss_2_0_d.h"
#include "oss/oss_2_0_sh_mask.h"
#define VCE_V2_0_FW_SIZE (256 * 1024)
#define VCE_V2_0_STACK_SIZE (64 * 1024)
#define VCE_V2_0_DATA_SIZE (23552 * AMDGPU_MAX_VCE_HANDLES)
#define VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK 0x02
static void vce_v2_0_set_ring_funcs(struct amdgpu_device *adev);
static void vce_v2_0_set_irq_funcs(struct amdgpu_device *adev);
/**
* vce_v2_0_ring_get_rptr - get read pointer
*
* @ring: amdgpu_ring pointer
*
* Returns the current hardware read pointer
*/
static uint64_t vce_v2_0_ring_get_rptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring->me == 0)
return RREG32(mmVCE_RB_RPTR);
else
return RREG32(mmVCE_RB_RPTR2);
}
/**
* vce_v2_0_ring_get_wptr - get write pointer
*
* @ring: amdgpu_ring pointer
*
* Returns the current hardware write pointer
*/
static uint64_t vce_v2_0_ring_get_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring->me == 0)
return RREG32(mmVCE_RB_WPTR);
else
return RREG32(mmVCE_RB_WPTR2);
}
/**
* vce_v2_0_ring_set_wptr - set write pointer
*
* @ring: amdgpu_ring pointer
*
* Commits the write pointer to the hardware
*/
static void vce_v2_0_ring_set_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
if (ring->me == 0)
WREG32(mmVCE_RB_WPTR, lower_32_bits(ring->wptr));
else
WREG32(mmVCE_RB_WPTR2, lower_32_bits(ring->wptr));
}
static int vce_v2_0_lmi_clean(struct amdgpu_device *adev)
{
int i, j;
for (i = 0; i < 10; ++i) {
for (j = 0; j < 100; ++j) {
uint32_t status = RREG32(mmVCE_LMI_STATUS);
if (status & 0x337f)
return 0;
mdelay(10);
}
}
return -ETIMEDOUT;
}
static int vce_v2_0_firmware_loaded(struct amdgpu_device *adev)
{
int i, j;
for (i = 0; i < 10; ++i) {
for (j = 0; j < 100; ++j) {
uint32_t status = RREG32(mmVCE_STATUS);
if (status & VCE_STATUS_VCPU_REPORT_FW_LOADED_MASK)
return 0;
mdelay(10);
}
DRM_ERROR("VCE not responding, trying to reset the ECPU!!!\n");
WREG32_P(mmVCE_SOFT_RESET,
VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK,
~VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK);
mdelay(10);
WREG32_P(mmVCE_SOFT_RESET, 0,
~VCE_SOFT_RESET__ECPU_SOFT_RESET_MASK);
mdelay(10);
}
return -ETIMEDOUT;
}
static void vce_v2_0_disable_cg(struct amdgpu_device *adev)
{
WREG32(mmVCE_CGTT_CLK_OVERRIDE, 7);
}
static void vce_v2_0_init_cg(struct amdgpu_device *adev)
{
u32 tmp;
tmp = RREG32(mmVCE_CLOCK_GATING_A);
tmp &= ~0xfff;
tmp |= ((0 << 0) | (4 << 4));
tmp |= 0x40000;
WREG32(mmVCE_CLOCK_GATING_A, tmp);
tmp = RREG32(mmVCE_UENC_CLOCK_GATING);
tmp &= ~0xfff;
tmp |= ((0 << 0) | (4 << 4));
WREG32(mmVCE_UENC_CLOCK_GATING, tmp);
tmp = RREG32(mmVCE_CLOCK_GATING_B);
tmp |= 0x10;
tmp &= ~0x100000;
WREG32(mmVCE_CLOCK_GATING_B, tmp);
}
static void vce_v2_0_mc_resume(struct amdgpu_device *adev)
{
uint32_t size, offset;
WREG32_P(mmVCE_CLOCK_GATING_A, 0, ~(1 << 16));
WREG32_P(mmVCE_UENC_CLOCK_GATING, 0x1FF000, ~0xFF9FF000);
WREG32_P(mmVCE_UENC_REG_CLOCK_GATING, 0x3F, ~0x3F);
WREG32(mmVCE_CLOCK_GATING_B, 0xf7);
WREG32(mmVCE_LMI_CTRL, 0x00398000);
WREG32_P(mmVCE_LMI_CACHE_CTRL, 0x0, ~0x1);
WREG32(mmVCE_LMI_SWAP_CNTL, 0);
WREG32(mmVCE_LMI_SWAP_CNTL1, 0);
WREG32(mmVCE_LMI_VM_CTRL, 0);
WREG32(mmVCE_LMI_VCPU_CACHE_40BIT_BAR, (adev->vce.gpu_addr >> 8));
offset = AMDGPU_VCE_FIRMWARE_OFFSET;
size = VCE_V2_0_FW_SIZE;
WREG32(mmVCE_VCPU_CACHE_OFFSET0, offset & 0x7fffffff);
WREG32(mmVCE_VCPU_CACHE_SIZE0, size);
offset += size;
size = VCE_V2_0_STACK_SIZE;
WREG32(mmVCE_VCPU_CACHE_OFFSET1, offset & 0x7fffffff);
WREG32(mmVCE_VCPU_CACHE_SIZE1, size);
offset += size;
size = VCE_V2_0_DATA_SIZE;
WREG32(mmVCE_VCPU_CACHE_OFFSET2, offset & 0x7fffffff);
WREG32(mmVCE_VCPU_CACHE_SIZE2, size);
WREG32_P(mmVCE_LMI_CTRL2, 0x0, ~0x100);
WREG32_FIELD(VCE_SYS_INT_EN, VCE_SYS_INT_TRAP_INTERRUPT_EN, 1);
}
static bool vce_v2_0_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return !(RREG32(mmSRBM_STATUS2) & SRBM_STATUS2__VCE_BUSY_MASK);
}
static int vce_v2_0_wait_for_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
unsigned i;
for (i = 0; i < adev->usec_timeout; i++) {
if (vce_v2_0_is_idle(handle))
return 0;
}
return -ETIMEDOUT;
}
/**
* vce_v2_0_start - start VCE block
*
* @adev: amdgpu_device pointer
*
* Setup and start the VCE block
*/
static int vce_v2_0_start(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
int r;
/* set BUSY flag */
WREG32_P(mmVCE_STATUS, 1, ~1);
vce_v2_0_init_cg(adev);
vce_v2_0_disable_cg(adev);
vce_v2_0_mc_resume(adev);
ring = &adev->vce.ring[0];
WREG32(mmVCE_RB_RPTR, lower_32_bits(ring->wptr));
WREG32(mmVCE_RB_WPTR, lower_32_bits(ring->wptr));
WREG32(mmVCE_RB_BASE_LO, ring->gpu_addr);
WREG32(mmVCE_RB_BASE_HI, upper_32_bits(ring->gpu_addr));
WREG32(mmVCE_RB_SIZE, ring->ring_size / 4);
ring = &adev->vce.ring[1];
WREG32(mmVCE_RB_RPTR2, lower_32_bits(ring->wptr));
WREG32(mmVCE_RB_WPTR2, lower_32_bits(ring->wptr));
WREG32(mmVCE_RB_BASE_LO2, ring->gpu_addr);
WREG32(mmVCE_RB_BASE_HI2, upper_32_bits(ring->gpu_addr));
WREG32(mmVCE_RB_SIZE2, ring->ring_size / 4);
WREG32_FIELD(VCE_VCPU_CNTL, CLK_EN, 1);
WREG32_FIELD(VCE_SOFT_RESET, ECPU_SOFT_RESET, 1);
mdelay(100);
WREG32_FIELD(VCE_SOFT_RESET, ECPU_SOFT_RESET, 0);
r = vce_v2_0_firmware_loaded(adev);
/* clear BUSY flag */
WREG32_P(mmVCE_STATUS, 0, ~1);
if (r) {
DRM_ERROR("VCE not responding, giving up!!!\n");
return r;
}
return 0;
}
static int vce_v2_0_stop(struct amdgpu_device *adev)
{
int i;
int status;
if (vce_v2_0_lmi_clean(adev)) {
DRM_INFO("vce is not idle \n");
return 0;
}
if (vce_v2_0_wait_for_idle(adev)) {
DRM_INFO("VCE is busy, Can't set clock gating");
return 0;
}
/* Stall UMC and register bus before resetting VCPU */
WREG32_P(mmVCE_LMI_CTRL2, 1 << 8, ~(1 << 8));
for (i = 0; i < 100; ++i) {
status = RREG32(mmVCE_LMI_STATUS);
if (status & 0x240)
break;
mdelay(1);
}
WREG32_P(mmVCE_VCPU_CNTL, 0, ~0x80001);
/* put LMI, VCPU, RBC etc... into reset */
WREG32_P(mmVCE_SOFT_RESET, 1, ~0x1);
WREG32(mmVCE_STATUS, 0);
return 0;
}
static void vce_v2_0_set_sw_cg(struct amdgpu_device *adev, bool gated)
{
u32 tmp;
if (gated) {
tmp = RREG32(mmVCE_CLOCK_GATING_B);
tmp |= 0xe70000;
WREG32(mmVCE_CLOCK_GATING_B, tmp);
tmp = RREG32(mmVCE_UENC_CLOCK_GATING);
tmp |= 0xff000000;
WREG32(mmVCE_UENC_CLOCK_GATING, tmp);
tmp = RREG32(mmVCE_UENC_REG_CLOCK_GATING);
tmp &= ~0x3fc;
WREG32(mmVCE_UENC_REG_CLOCK_GATING, tmp);
WREG32(mmVCE_CGTT_CLK_OVERRIDE, 0);
} else {
tmp = RREG32(mmVCE_CLOCK_GATING_B);
tmp |= 0xe7;
tmp &= ~0xe70000;
WREG32(mmVCE_CLOCK_GATING_B, tmp);
tmp = RREG32(mmVCE_UENC_CLOCK_GATING);
tmp |= 0x1fe000;
tmp &= ~0xff000000;
WREG32(mmVCE_UENC_CLOCK_GATING, tmp);
tmp = RREG32(mmVCE_UENC_REG_CLOCK_GATING);
tmp |= 0x3fc;
WREG32(mmVCE_UENC_REG_CLOCK_GATING, tmp);
}
}
static void vce_v2_0_set_dyn_cg(struct amdgpu_device *adev, bool gated)
{
u32 orig, tmp;
/* LMI_MC/LMI_UMC always set in dynamic,
* set {CGC_*_GATE_MODE, CGC_*_SW_GATE} = {0, 0}
*/
tmp = RREG32(mmVCE_CLOCK_GATING_B);
tmp &= ~0x00060006;
/* Exception for ECPU, IH, SEM, SYS blocks needs to be turned on/off by SW */
if (gated) {
tmp |= 0xe10000;
WREG32(mmVCE_CLOCK_GATING_B, tmp);
} else {
tmp |= 0xe1;
tmp &= ~0xe10000;
WREG32(mmVCE_CLOCK_GATING_B, tmp);
}
orig = tmp = RREG32(mmVCE_UENC_CLOCK_GATING);
tmp &= ~0x1fe000;
tmp &= ~0xff000000;
if (tmp != orig)
WREG32(mmVCE_UENC_CLOCK_GATING, tmp);
orig = tmp = RREG32(mmVCE_UENC_REG_CLOCK_GATING);
tmp &= ~0x3fc;
if (tmp != orig)
WREG32(mmVCE_UENC_REG_CLOCK_GATING, tmp);
/* set VCE_UENC_REG_CLOCK_GATING always in dynamic mode */
WREG32(mmVCE_UENC_REG_CLOCK_GATING, 0x00);
if(gated)
WREG32(mmVCE_CGTT_CLK_OVERRIDE, 0);
}
static void vce_v2_0_enable_mgcg(struct amdgpu_device *adev, bool enable,
bool sw_cg)
{
if (enable && (adev->cg_flags & AMD_CG_SUPPORT_VCE_MGCG)) {
if (sw_cg)
vce_v2_0_set_sw_cg(adev, true);
else
vce_v2_0_set_dyn_cg(adev, true);
} else {
vce_v2_0_disable_cg(adev);
if (sw_cg)
vce_v2_0_set_sw_cg(adev, false);
else
vce_v2_0_set_dyn_cg(adev, false);
}
}
static int vce_v2_0_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->vce.num_rings = 2;
vce_v2_0_set_ring_funcs(adev);
vce_v2_0_set_irq_funcs(adev);
return 0;
}
static int vce_v2_0_sw_init(void *handle)
{
struct amdgpu_ring *ring;
int r, i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/* VCE */
r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 167, &adev->vce.irq);
if (r)
return r;
r = amdgpu_vce_sw_init(adev, VCE_V2_0_FW_SIZE +
VCE_V2_0_STACK_SIZE + VCE_V2_0_DATA_SIZE);
if (r)
return r;
r = amdgpu_vce_resume(adev);
if (r)
return r;
for (i = 0; i < adev->vce.num_rings; i++) {
enum amdgpu_ring_priority_level hw_prio = amdgpu_vce_get_ring_prio(i);
ring = &adev->vce.ring[i];
sprintf(ring->name, "vce%d", i);
r = amdgpu_ring_init(adev, ring, 512, &adev->vce.irq, 0,
hw_prio, NULL);
if (r)
return r;
}
r = amdgpu_vce_entity_init(adev);
return r;
}
static int vce_v2_0_sw_fini(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = amdgpu_vce_suspend(adev);
if (r)
return r;
return amdgpu_vce_sw_fini(adev);
}
static int vce_v2_0_hw_init(void *handle)
{
int r, i;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
amdgpu_asic_set_vce_clocks(adev, 10000, 10000);
vce_v2_0_enable_mgcg(adev, true, false);
for (i = 0; i < adev->vce.num_rings; i++) {
r = amdgpu_ring_test_helper(&adev->vce.ring[i]);
if (r)
return r;
}
DRM_INFO("VCE initialized successfully.\n");
return 0;
}
static int vce_v2_0_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
cancel_delayed_work_sync(&adev->vce.idle_work);
return 0;
}
static int vce_v2_0_suspend(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
/*
* Proper cleanups before halting the HW engine:
* - cancel the delayed idle work
* - enable powergating
* - enable clockgating
* - disable dpm
*
* TODO: to align with the VCN implementation, move the
* jobs for clockgating/powergating/dpm setting to
* ->set_powergating_state().
*/
cancel_delayed_work_sync(&adev->vce.idle_work);
if (adev->pm.dpm_enabled) {
amdgpu_dpm_enable_vce(adev, false);
} else {
amdgpu_asic_set_vce_clocks(adev, 0, 0);
amdgpu_device_ip_set_powergating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_PG_STATE_GATE);
amdgpu_device_ip_set_clockgating_state(adev, AMD_IP_BLOCK_TYPE_VCE,
AMD_CG_STATE_GATE);
}
r = vce_v2_0_hw_fini(adev);
if (r)
return r;
return amdgpu_vce_suspend(adev);
}
static int vce_v2_0_resume(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = amdgpu_vce_resume(adev);
if (r)
return r;
return vce_v2_0_hw_init(adev);
}
static int vce_v2_0_soft_reset(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
WREG32_FIELD(SRBM_SOFT_RESET, SOFT_RESET_VCE, 1);
mdelay(5);
return vce_v2_0_start(adev);
}
static int vce_v2_0_set_interrupt_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
unsigned type,
enum amdgpu_interrupt_state state)
{
uint32_t val = 0;
if (state == AMDGPU_IRQ_STATE_ENABLE)
val |= VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK;
WREG32_P(mmVCE_SYS_INT_EN, val, ~VCE_SYS_INT_EN__VCE_SYS_INT_TRAP_INTERRUPT_EN_MASK);
return 0;
}
static int vce_v2_0_process_interrupt(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_DEBUG("IH: VCE\n");
switch (entry->src_data[0]) {
case 0:
case 1:
amdgpu_fence_process(&adev->vce.ring[entry->src_data[0]]);
break;
default:
DRM_ERROR("Unhandled interrupt: %d %d\n",
entry->src_id, entry->src_data[0]);
break;
}
return 0;
}
static int vce_v2_0_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
bool gate = false;
bool sw_cg = false;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (state == AMD_CG_STATE_GATE) {
gate = true;
sw_cg = true;
}
vce_v2_0_enable_mgcg(adev, gate, sw_cg);
return 0;
}
static int vce_v2_0_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
/* This doesn't actually powergate the VCE block.
* That's done in the dpm code via the SMC. This
* just re-inits the block as necessary. The actual
* gating still happens in the dpm code. We should
* revisit this when there is a cleaner line between
* the smc and the hw blocks
*/
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (state == AMD_PG_STATE_GATE)
return vce_v2_0_stop(adev);
else
return vce_v2_0_start(adev);
}
static const struct amd_ip_funcs vce_v2_0_ip_funcs = {
.name = "vce_v2_0",
.early_init = vce_v2_0_early_init,
.late_init = NULL,
.sw_init = vce_v2_0_sw_init,
.sw_fini = vce_v2_0_sw_fini,
.hw_init = vce_v2_0_hw_init,
.hw_fini = vce_v2_0_hw_fini,
.suspend = vce_v2_0_suspend,
.resume = vce_v2_0_resume,
.is_idle = vce_v2_0_is_idle,
.wait_for_idle = vce_v2_0_wait_for_idle,
.soft_reset = vce_v2_0_soft_reset,
.set_clockgating_state = vce_v2_0_set_clockgating_state,
.set_powergating_state = vce_v2_0_set_powergating_state,
};
static const struct amdgpu_ring_funcs vce_v2_0_ring_funcs = {
.type = AMDGPU_RING_TYPE_VCE,
.align_mask = 0xf,
.nop = VCE_CMD_NO_OP,
.support_64bit_ptrs = false,
.no_user_fence = true,
.get_rptr = vce_v2_0_ring_get_rptr,
.get_wptr = vce_v2_0_ring_get_wptr,
.set_wptr = vce_v2_0_ring_set_wptr,
.parse_cs = amdgpu_vce_ring_parse_cs,
.emit_frame_size = 6, /* amdgpu_vce_ring_emit_fence x1 no user fence */
.emit_ib_size = 4, /* amdgpu_vce_ring_emit_ib */
.emit_ib = amdgpu_vce_ring_emit_ib,
.emit_fence = amdgpu_vce_ring_emit_fence,
.test_ring = amdgpu_vce_ring_test_ring,
.test_ib = amdgpu_vce_ring_test_ib,
.insert_nop = amdgpu_ring_insert_nop,
.pad_ib = amdgpu_ring_generic_pad_ib,
.begin_use = amdgpu_vce_ring_begin_use,
.end_use = amdgpu_vce_ring_end_use,
};
static void vce_v2_0_set_ring_funcs(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->vce.num_rings; i++) {
adev->vce.ring[i].funcs = &vce_v2_0_ring_funcs;
adev->vce.ring[i].me = i;
}
}
static const struct amdgpu_irq_src_funcs vce_v2_0_irq_funcs = {
.set = vce_v2_0_set_interrupt_state,
.process = vce_v2_0_process_interrupt,
};
static void vce_v2_0_set_irq_funcs(struct amdgpu_device *adev)
{
adev->vce.irq.num_types = 1;
adev->vce.irq.funcs = &vce_v2_0_irq_funcs;
};
const struct amdgpu_ip_block_version vce_v2_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_VCE,
.major = 2,
.minor = 0,
.rev = 0,
.funcs = &vce_v2_0_ip_funcs,
};