1052 lines
25 KiB
C
1052 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* linux/drivers/mmc/core/mmc_ops.h
|
|
*
|
|
* Copyright 2006-2007 Pierre Ossman
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/types.h>
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include <linux/mmc/host.h>
|
|
#include <linux/mmc/card.h>
|
|
#include <linux/mmc/mmc.h>
|
|
|
|
#include "core.h"
|
|
#include "card.h"
|
|
#include "host.h"
|
|
#include "mmc_ops.h"
|
|
|
|
#define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
|
|
#define MMC_CACHE_FLUSH_TIMEOUT_MS (30 * 1000) /* 30s */
|
|
#define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
|
|
|
|
static const u8 tuning_blk_pattern_4bit[] = {
|
|
0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
|
|
0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
|
|
0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
|
|
0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
|
|
0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
|
|
0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
|
|
0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
|
|
0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
|
|
};
|
|
|
|
static const u8 tuning_blk_pattern_8bit[] = {
|
|
0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
|
|
0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
|
|
0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
|
|
0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
|
|
0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
|
|
0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
|
|
0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
|
|
0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
|
|
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
|
|
0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
|
|
0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
|
|
0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
|
|
0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
|
|
0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
|
|
0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
|
|
0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
|
|
};
|
|
|
|
int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
|
|
{
|
|
int err;
|
|
struct mmc_command cmd = {};
|
|
|
|
cmd.opcode = MMC_SEND_STATUS;
|
|
if (!mmc_host_is_spi(card->host))
|
|
cmd.arg = card->rca << 16;
|
|
cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
|
|
|
|
err = mmc_wait_for_cmd(card->host, &cmd, retries);
|
|
if (err)
|
|
return err;
|
|
|
|
/* NOTE: callers are required to understand the difference
|
|
* between "native" and SPI format status words!
|
|
*/
|
|
if (status)
|
|
*status = cmd.resp[0];
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__mmc_send_status);
|
|
|
|
int mmc_send_status(struct mmc_card *card, u32 *status)
|
|
{
|
|
return __mmc_send_status(card, status, MMC_CMD_RETRIES);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_send_status);
|
|
|
|
static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
|
|
{
|
|
struct mmc_command cmd = {};
|
|
|
|
cmd.opcode = MMC_SELECT_CARD;
|
|
|
|
if (card) {
|
|
cmd.arg = card->rca << 16;
|
|
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
|
|
} else {
|
|
cmd.arg = 0;
|
|
cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
|
|
}
|
|
|
|
return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
|
|
}
|
|
|
|
int mmc_select_card(struct mmc_card *card)
|
|
{
|
|
|
|
return _mmc_select_card(card->host, card);
|
|
}
|
|
|
|
int mmc_deselect_cards(struct mmc_host *host)
|
|
{
|
|
return _mmc_select_card(host, NULL);
|
|
}
|
|
|
|
/*
|
|
* Write the value specified in the device tree or board code into the optional
|
|
* 16 bit Driver Stage Register. This can be used to tune raise/fall times and
|
|
* drive strength of the DAT and CMD outputs. The actual meaning of a given
|
|
* value is hardware dependant.
|
|
* The presence of the DSR register can be determined from the CSD register,
|
|
* bit 76.
|
|
*/
|
|
int mmc_set_dsr(struct mmc_host *host)
|
|
{
|
|
struct mmc_command cmd = {};
|
|
|
|
cmd.opcode = MMC_SET_DSR;
|
|
|
|
cmd.arg = (host->dsr << 16) | 0xffff;
|
|
cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
|
|
|
|
return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
|
|
}
|
|
|
|
int mmc_go_idle(struct mmc_host *host)
|
|
{
|
|
int err;
|
|
struct mmc_command cmd = {};
|
|
|
|
/*
|
|
* Non-SPI hosts need to prevent chipselect going active during
|
|
* GO_IDLE; that would put chips into SPI mode. Remind them of
|
|
* that in case of hardware that won't pull up DAT3/nCS otherwise.
|
|
*
|
|
* SPI hosts ignore ios.chip_select; it's managed according to
|
|
* rules that must accommodate non-MMC slaves which this layer
|
|
* won't even know about.
|
|
*/
|
|
if (!mmc_host_is_spi(host)) {
|
|
mmc_set_chip_select(host, MMC_CS_HIGH);
|
|
mmc_delay(1);
|
|
}
|
|
|
|
cmd.opcode = MMC_GO_IDLE_STATE;
|
|
cmd.arg = 0;
|
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
|
|
|
|
err = mmc_wait_for_cmd(host, &cmd, 0);
|
|
|
|
mmc_delay(1);
|
|
|
|
if (!mmc_host_is_spi(host)) {
|
|
mmc_set_chip_select(host, MMC_CS_DONTCARE);
|
|
mmc_delay(1);
|
|
}
|
|
|
|
host->use_spi_crc = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
|
|
{
|
|
struct mmc_command cmd = {};
|
|
int i, err = 0;
|
|
|
|
cmd.opcode = MMC_SEND_OP_COND;
|
|
cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
|
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
|
|
|
|
for (i = 100; i; i--) {
|
|
err = mmc_wait_for_cmd(host, &cmd, 0);
|
|
if (err)
|
|
break;
|
|
|
|
/* wait until reset completes */
|
|
if (mmc_host_is_spi(host)) {
|
|
if (!(cmd.resp[0] & R1_SPI_IDLE))
|
|
break;
|
|
} else {
|
|
if (cmd.resp[0] & MMC_CARD_BUSY)
|
|
break;
|
|
}
|
|
|
|
err = -ETIMEDOUT;
|
|
|
|
mmc_delay(10);
|
|
|
|
/*
|
|
* According to eMMC specification v5.1 section 6.4.3, we
|
|
* should issue CMD1 repeatedly in the idle state until
|
|
* the eMMC is ready. Otherwise some eMMC devices seem to enter
|
|
* the inactive mode after mmc_init_card() issued CMD0 when
|
|
* the eMMC device is busy.
|
|
*/
|
|
if (!ocr && !mmc_host_is_spi(host))
|
|
cmd.arg = cmd.resp[0] | BIT(30);
|
|
}
|
|
|
|
if (rocr && !mmc_host_is_spi(host))
|
|
*rocr = cmd.resp[0];
|
|
|
|
return err;
|
|
}
|
|
|
|
int mmc_set_relative_addr(struct mmc_card *card)
|
|
{
|
|
struct mmc_command cmd = {};
|
|
|
|
cmd.opcode = MMC_SET_RELATIVE_ADDR;
|
|
cmd.arg = card->rca << 16;
|
|
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
|
|
|
|
return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
|
|
}
|
|
|
|
static int
|
|
mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
|
|
{
|
|
int err;
|
|
struct mmc_command cmd = {};
|
|
|
|
cmd.opcode = opcode;
|
|
cmd.arg = arg;
|
|
cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
|
|
|
|
err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
|
|
if (err)
|
|
return err;
|
|
|
|
memcpy(cxd, cmd.resp, sizeof(u32) * 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* NOTE: void *buf, caller for the buf is required to use DMA-capable
|
|
* buffer or on-stack buffer (with some overhead in callee).
|
|
*/
|
|
static int
|
|
mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
|
|
u32 opcode, void *buf, unsigned len)
|
|
{
|
|
struct mmc_request mrq = {};
|
|
struct mmc_command cmd = {};
|
|
struct mmc_data data = {};
|
|
struct scatterlist sg;
|
|
|
|
mrq.cmd = &cmd;
|
|
mrq.data = &data;
|
|
|
|
cmd.opcode = opcode;
|
|
cmd.arg = 0;
|
|
|
|
/* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
|
|
* rely on callers to never use this with "native" calls for reading
|
|
* CSD or CID. Native versions of those commands use the R2 type,
|
|
* not R1 plus a data block.
|
|
*/
|
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
|
|
|
|
data.blksz = len;
|
|
data.blocks = 1;
|
|
data.flags = MMC_DATA_READ;
|
|
data.sg = &sg;
|
|
data.sg_len = 1;
|
|
|
|
sg_init_one(&sg, buf, len);
|
|
|
|
if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
|
|
/*
|
|
* The spec states that CSR and CID accesses have a timeout
|
|
* of 64 clock cycles.
|
|
*/
|
|
data.timeout_ns = 0;
|
|
data.timeout_clks = 64;
|
|
} else
|
|
mmc_set_data_timeout(&data, card);
|
|
|
|
mmc_wait_for_req(host, &mrq);
|
|
|
|
if (cmd.error)
|
|
return cmd.error;
|
|
if (data.error)
|
|
return data.error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
|
|
{
|
|
int ret, i;
|
|
__be32 *cxd_tmp;
|
|
|
|
cxd_tmp = kzalloc(16, GFP_KERNEL);
|
|
if (!cxd_tmp)
|
|
return -ENOMEM;
|
|
|
|
ret = mmc_send_cxd_data(NULL, host, opcode, cxd_tmp, 16);
|
|
if (ret)
|
|
goto err;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
cxd[i] = be32_to_cpu(cxd_tmp[i]);
|
|
|
|
err:
|
|
kfree(cxd_tmp);
|
|
return ret;
|
|
}
|
|
|
|
int mmc_send_csd(struct mmc_card *card, u32 *csd)
|
|
{
|
|
if (mmc_host_is_spi(card->host))
|
|
return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
|
|
|
|
return mmc_send_cxd_native(card->host, card->rca << 16, csd,
|
|
MMC_SEND_CSD);
|
|
}
|
|
|
|
int mmc_send_cid(struct mmc_host *host, u32 *cid)
|
|
{
|
|
if (mmc_host_is_spi(host))
|
|
return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
|
|
|
|
return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
|
|
}
|
|
|
|
int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
|
|
{
|
|
int err;
|
|
u8 *ext_csd;
|
|
|
|
if (!card || !new_ext_csd)
|
|
return -EINVAL;
|
|
|
|
if (!mmc_can_ext_csd(card))
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* As the ext_csd is so large and mostly unused, we don't store the
|
|
* raw block in mmc_card.
|
|
*/
|
|
ext_csd = kzalloc(512, GFP_KERNEL);
|
|
if (!ext_csd)
|
|
return -ENOMEM;
|
|
|
|
err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
|
|
512);
|
|
if (err)
|
|
kfree(ext_csd);
|
|
else
|
|
*new_ext_csd = ext_csd;
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
|
|
|
|
int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
|
|
{
|
|
struct mmc_command cmd = {};
|
|
int err;
|
|
|
|
cmd.opcode = MMC_SPI_READ_OCR;
|
|
cmd.arg = highcap ? (1 << 30) : 0;
|
|
cmd.flags = MMC_RSP_SPI_R3;
|
|
|
|
err = mmc_wait_for_cmd(host, &cmd, 0);
|
|
|
|
*ocrp = cmd.resp[1];
|
|
return err;
|
|
}
|
|
|
|
int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
|
|
{
|
|
struct mmc_command cmd = {};
|
|
int err;
|
|
|
|
cmd.opcode = MMC_SPI_CRC_ON_OFF;
|
|
cmd.flags = MMC_RSP_SPI_R1;
|
|
cmd.arg = use_crc;
|
|
|
|
err = mmc_wait_for_cmd(host, &cmd, 0);
|
|
if (!err)
|
|
host->use_spi_crc = use_crc;
|
|
return err;
|
|
}
|
|
|
|
static int mmc_switch_status_error(struct mmc_host *host, u32 status)
|
|
{
|
|
if (mmc_host_is_spi(host)) {
|
|
if (status & R1_SPI_ILLEGAL_COMMAND)
|
|
return -EBADMSG;
|
|
} else {
|
|
if (R1_STATUS(status))
|
|
pr_warn("%s: unexpected status %#x after switch\n",
|
|
mmc_hostname(host), status);
|
|
if (status & R1_SWITCH_ERROR)
|
|
return -EBADMSG;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Caller must hold re-tuning */
|
|
int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
|
|
{
|
|
u32 status;
|
|
int err;
|
|
|
|
err = mmc_send_status(card, &status);
|
|
if (!crc_err_fatal && err == -EILSEQ)
|
|
return 0;
|
|
if (err)
|
|
return err;
|
|
|
|
return mmc_switch_status_error(card->host, status);
|
|
}
|
|
|
|
static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err,
|
|
enum mmc_busy_cmd busy_cmd, bool *busy)
|
|
{
|
|
struct mmc_host *host = card->host;
|
|
u32 status = 0;
|
|
int err;
|
|
|
|
if (host->ops->card_busy) {
|
|
*busy = host->ops->card_busy(host);
|
|
return 0;
|
|
}
|
|
|
|
err = mmc_send_status(card, &status);
|
|
if (retry_crc_err && err == -EILSEQ) {
|
|
*busy = true;
|
|
return 0;
|
|
}
|
|
if (err)
|
|
return err;
|
|
|
|
switch (busy_cmd) {
|
|
case MMC_BUSY_CMD6:
|
|
err = mmc_switch_status_error(card->host, status);
|
|
break;
|
|
case MMC_BUSY_ERASE:
|
|
err = R1_STATUS(status) ? -EIO : 0;
|
|
break;
|
|
case MMC_BUSY_HPI:
|
|
break;
|
|
default:
|
|
err = -EINVAL;
|
|
}
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
*busy = !mmc_ready_for_data(status);
|
|
return 0;
|
|
}
|
|
|
|
static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
|
|
bool send_status, bool retry_crc_err,
|
|
enum mmc_busy_cmd busy_cmd)
|
|
{
|
|
struct mmc_host *host = card->host;
|
|
int err;
|
|
unsigned long timeout;
|
|
unsigned int udelay = 32, udelay_max = 32768;
|
|
bool expired = false;
|
|
bool busy = false;
|
|
|
|
/*
|
|
* In cases when not allowed to poll by using CMD13 or because we aren't
|
|
* capable of polling by using ->card_busy(), then rely on waiting the
|
|
* stated timeout to be sufficient.
|
|
*/
|
|
if (!send_status && !host->ops->card_busy) {
|
|
mmc_delay(timeout_ms);
|
|
return 0;
|
|
}
|
|
|
|
timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
|
|
do {
|
|
/*
|
|
* Due to the possibility of being preempted while polling,
|
|
* check the expiration time first.
|
|
*/
|
|
expired = time_after(jiffies, timeout);
|
|
|
|
err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Timeout if the device still remains busy. */
|
|
if (expired && busy) {
|
|
pr_err("%s: Card stuck being busy! %s\n",
|
|
mmc_hostname(host), __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Throttle the polling rate to avoid hogging the CPU. */
|
|
if (busy) {
|
|
usleep_range(udelay, udelay * 2);
|
|
if (udelay < udelay_max)
|
|
udelay *= 2;
|
|
}
|
|
} while (busy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
|
|
enum mmc_busy_cmd busy_cmd)
|
|
{
|
|
return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd);
|
|
}
|
|
|
|
bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
|
|
unsigned int timeout_ms)
|
|
{
|
|
/*
|
|
* If the max_busy_timeout of the host is specified, make sure it's
|
|
* enough to fit the used timeout_ms. In case it's not, let's instruct
|
|
* the host to avoid HW busy detection, by converting to a R1 response
|
|
* instead of a R1B. Note, some hosts requires R1B, which also means
|
|
* they are on their own when it comes to deal with the busy timeout.
|
|
*/
|
|
if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
|
|
(timeout_ms > host->max_busy_timeout)) {
|
|
cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
|
|
return false;
|
|
}
|
|
|
|
cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
|
|
cmd->busy_timeout = timeout_ms;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* __mmc_switch - modify EXT_CSD register
|
|
* @card: the MMC card associated with the data transfer
|
|
* @set: cmd set values
|
|
* @index: EXT_CSD register index
|
|
* @value: value to program into EXT_CSD register
|
|
* @timeout_ms: timeout (ms) for operation performed by register write,
|
|
* timeout of zero implies maximum possible timeout
|
|
* @timing: new timing to change to
|
|
* @send_status: send status cmd to poll for busy
|
|
* @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
|
|
* @retries: number of retries
|
|
*
|
|
* Modifies the EXT_CSD register for selected card.
|
|
*/
|
|
int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
|
|
unsigned int timeout_ms, unsigned char timing,
|
|
bool send_status, bool retry_crc_err, unsigned int retries)
|
|
{
|
|
struct mmc_host *host = card->host;
|
|
int err;
|
|
struct mmc_command cmd = {};
|
|
bool use_r1b_resp;
|
|
unsigned char old_timing = host->ios.timing;
|
|
|
|
mmc_retune_hold(host);
|
|
|
|
if (!timeout_ms) {
|
|
pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
|
|
mmc_hostname(host));
|
|
timeout_ms = card->ext_csd.generic_cmd6_time;
|
|
}
|
|
|
|
cmd.opcode = MMC_SWITCH;
|
|
cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
|
|
(index << 16) |
|
|
(value << 8) |
|
|
set;
|
|
use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
|
|
|
|
err = mmc_wait_for_cmd(host, &cmd, retries);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*If SPI or used HW busy detection above, then we don't need to poll. */
|
|
if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
|
|
mmc_host_is_spi(host))
|
|
goto out_tim;
|
|
|
|
/* Let's try to poll to find out when the command is completed. */
|
|
err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err,
|
|
MMC_BUSY_CMD6);
|
|
if (err)
|
|
goto out;
|
|
|
|
out_tim:
|
|
/* Switch to new timing before check switch status. */
|
|
if (timing)
|
|
mmc_set_timing(host, timing);
|
|
|
|
if (send_status) {
|
|
err = mmc_switch_status(card, true);
|
|
if (err && timing)
|
|
mmc_set_timing(host, old_timing);
|
|
}
|
|
out:
|
|
mmc_retune_release(host);
|
|
|
|
return err;
|
|
}
|
|
|
|
int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
|
|
unsigned int timeout_ms)
|
|
{
|
|
return __mmc_switch(card, set, index, value, timeout_ms, 0,
|
|
true, false, MMC_CMD_RETRIES);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_switch);
|
|
|
|
int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
|
|
{
|
|
struct mmc_request mrq = {};
|
|
struct mmc_command cmd = {};
|
|
struct mmc_data data = {};
|
|
struct scatterlist sg;
|
|
struct mmc_ios *ios = &host->ios;
|
|
const u8 *tuning_block_pattern;
|
|
int size, err = 0;
|
|
u8 *data_buf;
|
|
|
|
if (ios->bus_width == MMC_BUS_WIDTH_8) {
|
|
tuning_block_pattern = tuning_blk_pattern_8bit;
|
|
size = sizeof(tuning_blk_pattern_8bit);
|
|
} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
|
|
tuning_block_pattern = tuning_blk_pattern_4bit;
|
|
size = sizeof(tuning_blk_pattern_4bit);
|
|
} else
|
|
return -EINVAL;
|
|
|
|
data_buf = kzalloc(size, GFP_KERNEL);
|
|
if (!data_buf)
|
|
return -ENOMEM;
|
|
|
|
mrq.cmd = &cmd;
|
|
mrq.data = &data;
|
|
|
|
cmd.opcode = opcode;
|
|
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
|
|
|
|
data.blksz = size;
|
|
data.blocks = 1;
|
|
data.flags = MMC_DATA_READ;
|
|
|
|
/*
|
|
* According to the tuning specs, Tuning process
|
|
* is normally shorter 40 executions of CMD19,
|
|
* and timeout value should be shorter than 150 ms
|
|
*/
|
|
data.timeout_ns = 150 * NSEC_PER_MSEC;
|
|
|
|
data.sg = &sg;
|
|
data.sg_len = 1;
|
|
sg_init_one(&sg, data_buf, size);
|
|
|
|
mmc_wait_for_req(host, &mrq);
|
|
|
|
if (cmd_error)
|
|
*cmd_error = cmd.error;
|
|
|
|
if (cmd.error) {
|
|
err = cmd.error;
|
|
goto out;
|
|
}
|
|
|
|
if (data.error) {
|
|
err = data.error;
|
|
goto out;
|
|
}
|
|
|
|
if (memcmp(data_buf, tuning_block_pattern, size))
|
|
err = -EIO;
|
|
|
|
out:
|
|
kfree(data_buf);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_send_tuning);
|
|
|
|
int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
|
|
{
|
|
struct mmc_command cmd = {};
|
|
|
|
/*
|
|
* eMMC specification specifies that CMD12 can be used to stop a tuning
|
|
* command, but SD specification does not, so do nothing unless it is
|
|
* eMMC.
|
|
*/
|
|
if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
|
|
return 0;
|
|
|
|
cmd.opcode = MMC_STOP_TRANSMISSION;
|
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
|
|
|
|
/*
|
|
* For drivers that override R1 to R1b, set an arbitrary timeout based
|
|
* on the tuning timeout i.e. 150ms.
|
|
*/
|
|
cmd.busy_timeout = 150;
|
|
|
|
return mmc_wait_for_cmd(host, &cmd, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_abort_tuning);
|
|
|
|
static int
|
|
mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
|
|
u8 len)
|
|
{
|
|
struct mmc_request mrq = {};
|
|
struct mmc_command cmd = {};
|
|
struct mmc_data data = {};
|
|
struct scatterlist sg;
|
|
u8 *data_buf;
|
|
u8 *test_buf;
|
|
int i, err;
|
|
static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
|
|
static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
|
|
|
|
/* dma onto stack is unsafe/nonportable, but callers to this
|
|
* routine normally provide temporary on-stack buffers ...
|
|
*/
|
|
data_buf = kmalloc(len, GFP_KERNEL);
|
|
if (!data_buf)
|
|
return -ENOMEM;
|
|
|
|
if (len == 8)
|
|
test_buf = testdata_8bit;
|
|
else if (len == 4)
|
|
test_buf = testdata_4bit;
|
|
else {
|
|
pr_err("%s: Invalid bus_width %d\n",
|
|
mmc_hostname(host), len);
|
|
kfree(data_buf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (opcode == MMC_BUS_TEST_W)
|
|
memcpy(data_buf, test_buf, len);
|
|
|
|
mrq.cmd = &cmd;
|
|
mrq.data = &data;
|
|
cmd.opcode = opcode;
|
|
cmd.arg = 0;
|
|
|
|
/* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
|
|
* rely on callers to never use this with "native" calls for reading
|
|
* CSD or CID. Native versions of those commands use the R2 type,
|
|
* not R1 plus a data block.
|
|
*/
|
|
cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
|
|
|
|
data.blksz = len;
|
|
data.blocks = 1;
|
|
if (opcode == MMC_BUS_TEST_R)
|
|
data.flags = MMC_DATA_READ;
|
|
else
|
|
data.flags = MMC_DATA_WRITE;
|
|
|
|
data.sg = &sg;
|
|
data.sg_len = 1;
|
|
mmc_set_data_timeout(&data, card);
|
|
sg_init_one(&sg, data_buf, len);
|
|
mmc_wait_for_req(host, &mrq);
|
|
err = 0;
|
|
if (opcode == MMC_BUS_TEST_R) {
|
|
for (i = 0; i < len / 4; i++)
|
|
if ((test_buf[i] ^ data_buf[i]) != 0xff) {
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
kfree(data_buf);
|
|
|
|
if (cmd.error)
|
|
return cmd.error;
|
|
if (data.error)
|
|
return data.error;
|
|
|
|
return err;
|
|
}
|
|
|
|
int mmc_bus_test(struct mmc_card *card, u8 bus_width)
|
|
{
|
|
int width;
|
|
|
|
if (bus_width == MMC_BUS_WIDTH_8)
|
|
width = 8;
|
|
else if (bus_width == MMC_BUS_WIDTH_4)
|
|
width = 4;
|
|
else if (bus_width == MMC_BUS_WIDTH_1)
|
|
return 0; /* no need for test */
|
|
else
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
|
|
* is a problem. This improves chances that the test will work.
|
|
*/
|
|
mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
|
|
return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
|
|
}
|
|
|
|
static int mmc_send_hpi_cmd(struct mmc_card *card)
|
|
{
|
|
unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
|
|
struct mmc_host *host = card->host;
|
|
bool use_r1b_resp = true;
|
|
struct mmc_command cmd = {};
|
|
int err;
|
|
|
|
cmd.opcode = card->ext_csd.hpi_cmd;
|
|
cmd.arg = card->rca << 16 | 1;
|
|
|
|
/*
|
|
* Make sure the host's max_busy_timeout fit the needed timeout for HPI.
|
|
* In case it doesn't, let's instruct the host to avoid HW busy
|
|
* detection, by using a R1 response instead of R1B.
|
|
*/
|
|
if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout)
|
|
use_r1b_resp = false;
|
|
|
|
if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) {
|
|
cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
|
|
cmd.busy_timeout = busy_timeout_ms;
|
|
} else {
|
|
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
|
|
use_r1b_resp = false;
|
|
}
|
|
|
|
err = mmc_wait_for_cmd(host, &cmd, 0);
|
|
if (err) {
|
|
pr_warn("%s: HPI error %d. Command response %#x\n",
|
|
mmc_hostname(host), err, cmd.resp[0]);
|
|
return err;
|
|
}
|
|
|
|
/* No need to poll when using HW busy detection. */
|
|
if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
|
|
return 0;
|
|
|
|
/* Let's poll to find out when the HPI request completes. */
|
|
return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI);
|
|
}
|
|
|
|
/**
|
|
* mmc_interrupt_hpi - Issue for High priority Interrupt
|
|
* @card: the MMC card associated with the HPI transfer
|
|
*
|
|
* Issued High Priority Interrupt, and check for card status
|
|
* until out-of prg-state.
|
|
*/
|
|
static int mmc_interrupt_hpi(struct mmc_card *card)
|
|
{
|
|
int err;
|
|
u32 status;
|
|
|
|
if (!card->ext_csd.hpi_en) {
|
|
pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
|
|
return 1;
|
|
}
|
|
|
|
err = mmc_send_status(card, &status);
|
|
if (err) {
|
|
pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
|
|
goto out;
|
|
}
|
|
|
|
switch (R1_CURRENT_STATE(status)) {
|
|
case R1_STATE_IDLE:
|
|
case R1_STATE_READY:
|
|
case R1_STATE_STBY:
|
|
case R1_STATE_TRAN:
|
|
/*
|
|
* In idle and transfer states, HPI is not needed and the caller
|
|
* can issue the next intended command immediately
|
|
*/
|
|
goto out;
|
|
case R1_STATE_PRG:
|
|
break;
|
|
default:
|
|
/* In all other states, it's illegal to issue HPI */
|
|
pr_debug("%s: HPI cannot be sent. Card state=%d\n",
|
|
mmc_hostname(card->host), R1_CURRENT_STATE(status));
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = mmc_send_hpi_cmd(card);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
int mmc_can_ext_csd(struct mmc_card *card)
|
|
{
|
|
return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
|
|
}
|
|
|
|
static int mmc_read_bkops_status(struct mmc_card *card)
|
|
{
|
|
int err;
|
|
u8 *ext_csd;
|
|
|
|
err = mmc_get_ext_csd(card, &ext_csd);
|
|
if (err)
|
|
return err;
|
|
|
|
card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
|
|
card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
|
|
kfree(ext_csd);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* mmc_run_bkops - Run BKOPS for supported cards
|
|
* @card: MMC card to run BKOPS for
|
|
*
|
|
* Run background operations synchronously for cards having manual BKOPS
|
|
* enabled and in case it reports urgent BKOPS level.
|
|
*/
|
|
void mmc_run_bkops(struct mmc_card *card)
|
|
{
|
|
int err;
|
|
|
|
if (!card->ext_csd.man_bkops_en)
|
|
return;
|
|
|
|
err = mmc_read_bkops_status(card);
|
|
if (err) {
|
|
pr_err("%s: Failed to read bkops status: %d\n",
|
|
mmc_hostname(card->host), err);
|
|
return;
|
|
}
|
|
|
|
if (!card->ext_csd.raw_bkops_status ||
|
|
card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
|
|
return;
|
|
|
|
mmc_retune_hold(card->host);
|
|
|
|
/*
|
|
* For urgent BKOPS status, LEVEL_2 and higher, let's execute
|
|
* synchronously. Future wise, we may consider to start BKOPS, for less
|
|
* urgent levels by using an asynchronous background task, when idle.
|
|
*/
|
|
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
|
|
EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
|
|
if (err)
|
|
pr_warn("%s: Error %d starting bkops\n",
|
|
mmc_hostname(card->host), err);
|
|
|
|
mmc_retune_release(card->host);
|
|
}
|
|
EXPORT_SYMBOL(mmc_run_bkops);
|
|
|
|
/*
|
|
* Flush the cache to the non-volatile storage.
|
|
*/
|
|
int mmc_flush_cache(struct mmc_card *card)
|
|
{
|
|
int err = 0;
|
|
|
|
if (mmc_cache_enabled(card->host)) {
|
|
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
|
|
EXT_CSD_FLUSH_CACHE, 1,
|
|
MMC_CACHE_FLUSH_TIMEOUT_MS);
|
|
if (err)
|
|
pr_err("%s: cache flush error %d\n",
|
|
mmc_hostname(card->host), err);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(mmc_flush_cache);
|
|
|
|
static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
|
|
{
|
|
u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
|
|
int err;
|
|
|
|
if (!card->ext_csd.cmdq_support)
|
|
return -EOPNOTSUPP;
|
|
|
|
err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
|
|
val, card->ext_csd.generic_cmd6_time);
|
|
if (!err)
|
|
card->ext_csd.cmdq_en = enable;
|
|
|
|
return err;
|
|
}
|
|
|
|
int mmc_cmdq_enable(struct mmc_card *card)
|
|
{
|
|
return mmc_cmdq_switch(card, true);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
|
|
|
|
int mmc_cmdq_disable(struct mmc_card *card)
|
|
{
|
|
return mmc_cmdq_switch(card, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
|
|
|
|
int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
|
|
{
|
|
struct mmc_host *host = card->host;
|
|
int err;
|
|
|
|
if (!mmc_can_sanitize(card)) {
|
|
pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (!timeout_ms)
|
|
timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
|
|
|
|
pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
|
|
|
|
mmc_retune_hold(host);
|
|
|
|
err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
|
|
1, timeout_ms, 0, true, false, 0);
|
|
if (err)
|
|
pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
|
|
|
|
/*
|
|
* If the sanitize operation timed out, the card is probably still busy
|
|
* in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
|
|
* it with a HPI command to get back into R1_STATE_TRAN.
|
|
*/
|
|
if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
|
|
pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
|
|
|
|
mmc_retune_release(host);
|
|
|
|
pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(mmc_sanitize);
|