OpenCloudOS-Kernel/Documentation/ABI
Jonathan Cameron c5e22feffd topology: Represent clusters of CPUs within a die
Both ACPI and DT provide the ability to describe additional layers of
topology between that of individual cores and higher level constructs
such as the level at which the last level cache is shared.
In ACPI this can be represented in PPTT as a Processor Hierarchy
Node Structure [1] that is the parent of the CPU cores and in turn
has a parent Processor Hierarchy Nodes Structure representing
a higher level of topology.

For example Kunpeng 920 has 6 or 8 clusters in each NUMA node, and each
cluster has 4 cpus. All clusters share L3 cache data, but each cluster
has local L3 tag. On the other hand, each clusters will share some
internal system bus.

+-----------------------------------+                          +---------+
|  +------+    +------+             +--------------------------+         |
|  | CPU0 |    | cpu1 |             |    +-----------+         |         |
|  +------+    +------+             |    |           |         |         |
|                                   +----+    L3     |         |         |
|  +------+    +------+   cluster   |    |    tag    |         |         |
|  | CPU2 |    | CPU3 |             |    |           |         |         |
|  +------+    +------+             |    +-----------+         |         |
|                                   |                          |         |
+-----------------------------------+                          |         |
+-----------------------------------+                          |         |
|  +------+    +------+             +--------------------------+         |
|  |      |    |      |             |    +-----------+         |         |
|  +------+    +------+             |    |           |         |         |
|                                   |    |    L3     |         |         |
|  +------+    +------+             +----+    tag    |         |         |
|  |      |    |      |             |    |           |         |         |
|  +------+    +------+             |    +-----------+         |         |
|                                   |                          |         |
+-----------------------------------+                          |   L3    |
                                                               |   data  |
+-----------------------------------+                          |         |
|  +------+    +------+             |    +-----------+         |         |
|  |      |    |      |             |    |           |         |         |
|  +------+    +------+             +----+    L3     |         |         |
|                                   |    |    tag    |         |         |
|  +------+    +------+             |    |           |         |         |
|  |      |    |      |             |    +-----------+         |         |
|  +------+    +------+             +--------------------------+         |
+-----------------------------------|                          |         |
+-----------------------------------|                          |         |
|  +------+    +------+             +--------------------------+         |
|  |      |    |      |             |    +-----------+         |         |
|  +------+    +------+             |    |           |         |         |
|                                   +----+    L3     |         |         |
|  +------+    +------+             |    |    tag    |         |         |
|  |      |    |      |             |    |           |         |         |
|  +------+    +------+             |    +-----------+         |         |
|                                   |                          |         |
+-----------------------------------+                          |         |
+-----------------------------------+                          |         |
|  +------+    +------+             +--------------------------+         |
|  |      |    |      |             |   +-----------+          |         |
|  +------+    +------+             |   |           |          |         |
|                                   |   |    L3     |          |         |
|  +------+    +------+             +---+    tag    |          |         |
|  |      |    |      |             |   |           |          |         |
|  +------+    +------+             |   +-----------+          |         |
|                                   |                          |         |
+-----------------------------------+                          |         |
+-----------------------------------+                          |         |
|  +------+    +------+             +--------------------------+         |
|  |      |    |      |             |  +-----------+           |         |
|  +------+    +------+             |  |           |           |         |
|                                   |  |    L3     |           |         |
|  +------+    +------+             +--+    tag    |           |         |
|  |      |    |      |             |  |           |           |         |
|  +------+    +------+             |  +-----------+           |         |
|                                   |                          +---------+
+-----------------------------------+

That means spreading tasks among clusters will bring more bandwidth
while packing tasks within one cluster will lead to smaller cache
synchronization latency. So both kernel and userspace will have
a chance to leverage this topology to deploy tasks accordingly to
achieve either smaller cache latency within one cluster or an even
distribution of load among clusters for higher throughput.

This patch exposes cluster topology to both kernel and userspace.
Libraried like hwloc will know cluster by cluster_cpus and related
sysfs attributes. PoC of HWLOC support at [2].

Note this patch only handle the ACPI case.

Special consideration is needed for SMT processors, where it is
necessary to move 2 levels up the hierarchy from the leaf nodes
(thus skipping the processor core level).

Note that arm64 / ACPI does not provide any means of identifying
a die level in the topology but that may be unrelate to the cluster
level.

[1] ACPI Specification 6.3 - section 5.2.29.1 processor hierarchy node
    structure (Type 0)
[2] https://github.com/hisilicon/hwloc/tree/linux-cluster

Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Tian Tao <tiantao6@hisilicon.com>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210924085104.44806-2-21cnbao@gmail.com
2021-10-15 11:25:15 +02:00
..
obsolete Staging / IIO driver patches for 5.14-rc1 2021-07-05 14:01:53 -07:00
removed This was a reasonably active cycle for documentation; this pull includes: 2021-06-28 16:53:05 -07:00
stable topology: Represent clusters of CPUs within a die 2021-10-15 11:25:15 +02:00
testing Misc driver patches for 5.15-rc1, second round 2021-09-10 11:31:47 -07:00
README docs: ABI: README: specify that files should be ReST compatible 2020-10-30 13:07:01 +01:00

README

This directory attempts to document the ABI between the Linux kernel and
userspace, and the relative stability of these interfaces.  Due to the
everchanging nature of Linux, and the differing maturity levels, these
interfaces should be used by userspace programs in different ways.

We have four different levels of ABI stability, as shown by the four
different subdirectories in this location.  Interfaces may change levels
of stability according to the rules described below.

The different levels of stability are:

  stable/
	This directory documents the interfaces that the developer has
	defined to be stable.  Userspace programs are free to use these
	interfaces with no restrictions, and backward compatibility for
	them will be guaranteed for at least 2 years.  Most interfaces
	(like syscalls) are expected to never change and always be
	available.

  testing/
	This directory documents interfaces that are felt to be stable,
	as the main development of this interface has been completed.
	The interface can be changed to add new features, but the
	current interface will not break by doing this, unless grave
	errors or security problems are found in them.  Userspace
	programs can start to rely on these interfaces, but they must be
	aware of changes that can occur before these interfaces move to
	be marked stable.  Programs that use these interfaces are
	strongly encouraged to add their name to the description of
	these interfaces, so that the kernel developers can easily
	notify them if any changes occur (see the description of the
	layout of the files below for details on how to do this.)

  obsolete/
	This directory documents interfaces that are still remaining in
	the kernel, but are marked to be removed at some later point in
	time.  The description of the interface will document the reason
	why it is obsolete and when it can be expected to be removed.

  removed/
	This directory contains a list of the old interfaces that have
	been removed from the kernel.

Every file in these directories will contain the following information:

What:		Short description of the interface
Date:		Date created
KernelVersion:	Kernel version this feature first showed up in.
Contact:	Primary contact for this interface (may be a mailing list)
Description:	Long description of the interface and how to use it.
Users:		All users of this interface who wish to be notified when
		it changes.  This is very important for interfaces in
		the "testing" stage, so that kernel developers can work
		with userspace developers to ensure that things do not
		break in ways that are unacceptable.  It is also
		important to get feedback for these interfaces to make
		sure they are working in a proper way and do not need to
		be changed further.


Note:
   The fields should be use a simple notation, compatible with ReST markup.
   Also, the file **should not** have a top-level index, like::

	===
	foo
	===

How things move between levels:

Interfaces in stable may move to obsolete, as long as the proper
notification is given.

Interfaces may be removed from obsolete and the kernel as long as the
documented amount of time has gone by.

Interfaces in the testing state can move to the stable state when the
developers feel they are finished.  They cannot be removed from the
kernel tree without going through the obsolete state first.

It's up to the developer to place their interfaces in the category they
wish for it to start out in.


Notable bits of non-ABI, which should not under any circumstances be considered
stable:

- Kconfig.  Userspace should not rely on the presence or absence of any
  particular Kconfig symbol, in /proc/config.gz, in the copy of .config
  commonly installed to /boot, or in any invocation of the kernel build
  process.

- Kernel-internal symbols.  Do not rely on the presence, absence, location, or
  type of any kernel symbol, either in System.map files or the kernel binary
  itself.  See Documentation/process/stable-api-nonsense.rst.