1515 lines
40 KiB
C
1515 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
//
|
|
// Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
|
|
//
|
|
// Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
|
|
//
|
|
// This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
|
|
//
|
|
// Copyright (C) 2020 MediaTek Inc.
|
|
// Author: Weijie Gao <weijie.gao@mediatek.com>
|
|
//
|
|
// This controller organize the page data as several interleaved sectors
|
|
// like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
|
|
// +---------+------+------+---------+------+------+-----+
|
|
// | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
|
|
// +---------+------+------+---------+------+------+-----+
|
|
// With auto-format turned on, DMA only returns this part:
|
|
// +---------+---------+-----+
|
|
// | Sector1 | Sector2 | ... |
|
|
// +---------+---------+-----+
|
|
// The FDM data will be filled to the registers, and ECC parity data isn't
|
|
// accessible.
|
|
// With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
|
|
// in it's original order shown in the first table. ECC can't be turned on when
|
|
// auto-format is off.
|
|
//
|
|
// However, Linux SPI-NAND driver expects the data returned as:
|
|
// +------+-----+
|
|
// | Page | OOB |
|
|
// +------+-----+
|
|
// where the page data is continuously stored instead of interleaved.
|
|
// So we assume all instructions matching the page_op template between ECC
|
|
// prepare_io_req and finish_io_req are for page cache r/w.
|
|
// Here's how this spi-mem driver operates when reading:
|
|
// 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
|
|
// 2. Perform page ops and let the controller fill the DMA bounce buffer with
|
|
// de-interleaved sector data and set FDM registers.
|
|
// 3. Return the data as:
|
|
// +---------+---------+-----+------+------+-----+
|
|
// | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
|
|
// +---------+---------+-----+------+------+-----+
|
|
// 4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
|
|
// read the data with auto-format off into the bounce buffer and copy
|
|
// needed data to the buffer specified in the request.
|
|
//
|
|
// Write requests operates in a similar manner.
|
|
// As a limitation of this strategy, we won't be able to access any ECC parity
|
|
// data at all in Linux.
|
|
//
|
|
// Here's the bad block mark situation on MTK chips:
|
|
// In older chips like mt7622, MTK uses the first FDM byte in the first sector
|
|
// as the bad block mark. After de-interleaving, this byte appears at [pagesize]
|
|
// in the returned data, which is the BBM position expected by kernel. However,
|
|
// the conventional bad block mark is the first byte of the OOB, which is part
|
|
// of the last sector data in the interleaved layout. Instead of fixing their
|
|
// hardware, MTK decided to address this inconsistency in software. On these
|
|
// later chips, the BootROM expects the following:
|
|
// 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
|
|
// (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
|
|
// 2. The original byte stored at that position in the DMA buffer will be stored
|
|
// as the first byte of the FDM section in the last sector.
|
|
// We can't disagree with the BootROM, so after de-interleaving, we need to
|
|
// perform the following swaps in read:
|
|
// 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
|
|
// which is the expected BBM position by kernel.
|
|
// 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
|
|
// [page_size - (nsectors - 1) * spare_size]
|
|
// Similarly, when writing, we need to perform swaps in the other direction.
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/device.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/mtd/nand-ecc-mtk.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/spi-mem.h>
|
|
#include <linux/mtd/nand.h>
|
|
|
|
// NFI registers
|
|
#define NFI_CNFG 0x000
|
|
#define CNFG_OP_MODE_S 12
|
|
#define CNFG_OP_MODE_CUST 6
|
|
#define CNFG_OP_MODE_PROGRAM 3
|
|
#define CNFG_AUTO_FMT_EN BIT(9)
|
|
#define CNFG_HW_ECC_EN BIT(8)
|
|
#define CNFG_DMA_BURST_EN BIT(2)
|
|
#define CNFG_READ_MODE BIT(1)
|
|
#define CNFG_DMA_MODE BIT(0)
|
|
|
|
#define NFI_PAGEFMT 0x0004
|
|
#define NFI_SPARE_SIZE_LS_S 16
|
|
#define NFI_FDM_ECC_NUM_S 12
|
|
#define NFI_FDM_NUM_S 8
|
|
#define NFI_SPARE_SIZE_S 4
|
|
#define NFI_SEC_SEL_512 BIT(2)
|
|
#define NFI_PAGE_SIZE_S 0
|
|
#define NFI_PAGE_SIZE_512_2K 0
|
|
#define NFI_PAGE_SIZE_2K_4K 1
|
|
#define NFI_PAGE_SIZE_4K_8K 2
|
|
#define NFI_PAGE_SIZE_8K_16K 3
|
|
|
|
#define NFI_CON 0x008
|
|
#define CON_SEC_NUM_S 12
|
|
#define CON_BWR BIT(9)
|
|
#define CON_BRD BIT(8)
|
|
#define CON_NFI_RST BIT(1)
|
|
#define CON_FIFO_FLUSH BIT(0)
|
|
|
|
#define NFI_INTR_EN 0x010
|
|
#define NFI_INTR_STA 0x014
|
|
#define NFI_IRQ_INTR_EN BIT(31)
|
|
#define NFI_IRQ_CUS_READ BIT(8)
|
|
#define NFI_IRQ_CUS_PG BIT(7)
|
|
|
|
#define NFI_CMD 0x020
|
|
#define NFI_CMD_DUMMY_READ 0x00
|
|
#define NFI_CMD_DUMMY_WRITE 0x80
|
|
|
|
#define NFI_STRDATA 0x040
|
|
#define STR_DATA BIT(0)
|
|
|
|
#define NFI_STA 0x060
|
|
#define NFI_NAND_FSM_7622 GENMASK(28, 24)
|
|
#define NFI_NAND_FSM_7986 GENMASK(29, 23)
|
|
#define NFI_FSM GENMASK(19, 16)
|
|
#define READ_EMPTY BIT(12)
|
|
|
|
#define NFI_FIFOSTA 0x064
|
|
#define FIFO_WR_REMAIN_S 8
|
|
#define FIFO_RD_REMAIN_S 0
|
|
|
|
#define NFI_ADDRCNTR 0x070
|
|
#define SEC_CNTR GENMASK(16, 12)
|
|
#define SEC_CNTR_S 12
|
|
#define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
|
|
|
|
#define NFI_STRADDR 0x080
|
|
|
|
#define NFI_BYTELEN 0x084
|
|
#define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
|
|
|
|
#define NFI_FDM0L 0x0a0
|
|
#define NFI_FDM0M 0x0a4
|
|
#define NFI_FDML(n) (NFI_FDM0L + (n)*8)
|
|
#define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
|
|
|
|
#define NFI_DEBUG_CON1 0x220
|
|
#define WBUF_EN BIT(2)
|
|
|
|
#define NFI_MASTERSTA 0x224
|
|
#define MAS_ADDR GENMASK(11, 9)
|
|
#define MAS_RD GENMASK(8, 6)
|
|
#define MAS_WR GENMASK(5, 3)
|
|
#define MAS_RDDLY GENMASK(2, 0)
|
|
#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
|
|
#define NFI_MASTERSTA_MASK_7986 3
|
|
|
|
// SNFI registers
|
|
#define SNF_MAC_CTL 0x500
|
|
#define MAC_XIO_SEL BIT(4)
|
|
#define SF_MAC_EN BIT(3)
|
|
#define SF_TRIG BIT(2)
|
|
#define WIP_READY BIT(1)
|
|
#define WIP BIT(0)
|
|
|
|
#define SNF_MAC_OUTL 0x504
|
|
#define SNF_MAC_INL 0x508
|
|
|
|
#define SNF_RD_CTL2 0x510
|
|
#define DATA_READ_DUMMY_S 8
|
|
#define DATA_READ_MAX_DUMMY 0xf
|
|
#define DATA_READ_CMD_S 0
|
|
|
|
#define SNF_RD_CTL3 0x514
|
|
|
|
#define SNF_PG_CTL1 0x524
|
|
#define PG_LOAD_CMD_S 8
|
|
|
|
#define SNF_PG_CTL2 0x528
|
|
|
|
#define SNF_MISC_CTL 0x538
|
|
#define SW_RST BIT(28)
|
|
#define FIFO_RD_LTC_S 25
|
|
#define PG_LOAD_X4_EN BIT(20)
|
|
#define DATA_READ_MODE_S 16
|
|
#define DATA_READ_MODE GENMASK(18, 16)
|
|
#define DATA_READ_MODE_X1 0
|
|
#define DATA_READ_MODE_X2 1
|
|
#define DATA_READ_MODE_X4 2
|
|
#define DATA_READ_MODE_DUAL 5
|
|
#define DATA_READ_MODE_QUAD 6
|
|
#define PG_LOAD_CUSTOM_EN BIT(7)
|
|
#define DATARD_CUSTOM_EN BIT(6)
|
|
#define CS_DESELECT_CYC_S 0
|
|
|
|
#define SNF_MISC_CTL2 0x53c
|
|
#define PROGRAM_LOAD_BYTE_NUM_S 16
|
|
#define READ_DATA_BYTE_NUM_S 11
|
|
|
|
#define SNF_DLY_CTL3 0x548
|
|
#define SFCK_SAM_DLY_S 0
|
|
|
|
#define SNF_STA_CTL1 0x550
|
|
#define CUS_PG_DONE BIT(28)
|
|
#define CUS_READ_DONE BIT(27)
|
|
#define SPI_STATE_S 0
|
|
#define SPI_STATE GENMASK(3, 0)
|
|
|
|
#define SNF_CFG 0x55c
|
|
#define SPI_MODE BIT(0)
|
|
|
|
#define SNF_GPRAM 0x800
|
|
#define SNF_GPRAM_SIZE 0xa0
|
|
|
|
#define SNFI_POLL_INTERVAL 1000000
|
|
|
|
static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
|
|
|
|
static const u8 mt7986_spare_sizes[] = {
|
|
16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
|
|
74
|
|
};
|
|
|
|
struct mtk_snand_caps {
|
|
u16 sector_size;
|
|
u16 max_sectors;
|
|
u16 fdm_size;
|
|
u16 fdm_ecc_size;
|
|
u16 fifo_size;
|
|
|
|
bool bbm_swap;
|
|
bool empty_page_check;
|
|
u32 mastersta_mask;
|
|
u32 nandfsm_mask;
|
|
|
|
const u8 *spare_sizes;
|
|
u32 num_spare_size;
|
|
};
|
|
|
|
static const struct mtk_snand_caps mt7622_snand_caps = {
|
|
.sector_size = 512,
|
|
.max_sectors = 8,
|
|
.fdm_size = 8,
|
|
.fdm_ecc_size = 1,
|
|
.fifo_size = 32,
|
|
.bbm_swap = false,
|
|
.empty_page_check = false,
|
|
.mastersta_mask = NFI_MASTERSTA_MASK_7622,
|
|
.nandfsm_mask = NFI_NAND_FSM_7622,
|
|
.spare_sizes = mt7622_spare_sizes,
|
|
.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
|
|
};
|
|
|
|
static const struct mtk_snand_caps mt7629_snand_caps = {
|
|
.sector_size = 512,
|
|
.max_sectors = 8,
|
|
.fdm_size = 8,
|
|
.fdm_ecc_size = 1,
|
|
.fifo_size = 32,
|
|
.bbm_swap = true,
|
|
.empty_page_check = false,
|
|
.mastersta_mask = NFI_MASTERSTA_MASK_7622,
|
|
.nandfsm_mask = NFI_NAND_FSM_7622,
|
|
.spare_sizes = mt7622_spare_sizes,
|
|
.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
|
|
};
|
|
|
|
static const struct mtk_snand_caps mt7986_snand_caps = {
|
|
.sector_size = 1024,
|
|
.max_sectors = 8,
|
|
.fdm_size = 8,
|
|
.fdm_ecc_size = 1,
|
|
.fifo_size = 64,
|
|
.bbm_swap = true,
|
|
.empty_page_check = true,
|
|
.mastersta_mask = NFI_MASTERSTA_MASK_7986,
|
|
.nandfsm_mask = NFI_NAND_FSM_7986,
|
|
.spare_sizes = mt7986_spare_sizes,
|
|
.num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
|
|
};
|
|
|
|
struct mtk_snand_conf {
|
|
size_t page_size;
|
|
size_t oob_size;
|
|
u8 nsectors;
|
|
u8 spare_size;
|
|
};
|
|
|
|
struct mtk_snand {
|
|
struct spi_controller *ctlr;
|
|
struct device *dev;
|
|
struct clk *nfi_clk;
|
|
struct clk *pad_clk;
|
|
struct clk *nfi_hclk;
|
|
void __iomem *nfi_base;
|
|
int irq;
|
|
struct completion op_done;
|
|
const struct mtk_snand_caps *caps;
|
|
struct mtk_ecc_config *ecc_cfg;
|
|
struct mtk_ecc *ecc;
|
|
struct mtk_snand_conf nfi_cfg;
|
|
struct mtk_ecc_stats ecc_stats;
|
|
struct nand_ecc_engine ecc_eng;
|
|
bool autofmt;
|
|
u8 *buf;
|
|
size_t buf_len;
|
|
};
|
|
|
|
static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
|
|
{
|
|
struct nand_ecc_engine *eng = nand->ecc.engine;
|
|
|
|
return container_of(eng, struct mtk_snand, ecc_eng);
|
|
}
|
|
|
|
static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
|
|
{
|
|
if (snf->buf_len >= size)
|
|
return 0;
|
|
kfree(snf->buf);
|
|
snf->buf = kmalloc(size, GFP_KERNEL);
|
|
if (!snf->buf)
|
|
return -ENOMEM;
|
|
snf->buf_len = size;
|
|
memset(snf->buf, 0xff, snf->buf_len);
|
|
return 0;
|
|
}
|
|
|
|
static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
|
|
{
|
|
return readl(snf->nfi_base + reg);
|
|
}
|
|
|
|
static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
|
|
{
|
|
writel(val, snf->nfi_base + reg);
|
|
}
|
|
|
|
static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
|
|
{
|
|
writew(val, snf->nfi_base + reg);
|
|
}
|
|
|
|
static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl(snf->nfi_base + reg);
|
|
val &= ~clr;
|
|
val |= set;
|
|
writel(val, snf->nfi_base + reg);
|
|
}
|
|
|
|
static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
|
|
{
|
|
u32 i, val = 0, es = sizeof(u32);
|
|
|
|
for (i = reg; i < reg + len; i++) {
|
|
if (i == reg || i % es == 0)
|
|
val = nfi_read32(snf, i & ~(es - 1));
|
|
|
|
*data++ = (u8)(val >> (8 * (i % es)));
|
|
}
|
|
}
|
|
|
|
static int mtk_nfi_reset(struct mtk_snand *snf)
|
|
{
|
|
u32 val, fifo_mask;
|
|
int ret;
|
|
|
|
nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
|
|
|
|
ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
|
|
!(val & snf->caps->mastersta_mask), 0,
|
|
SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "NFI master is still busy after reset\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
|
|
!(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
|
|
SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "Failed to reset NFI\n");
|
|
return ret;
|
|
}
|
|
|
|
fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
|
|
((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
|
|
ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
|
|
!(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "NFI FIFOs are not empty\n");
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_snand_mac_reset(struct mtk_snand *snf)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
|
|
|
|
ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
|
|
!(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
|
|
if (ret)
|
|
dev_err(snf->dev, "Failed to reset SNFI MAC\n");
|
|
|
|
nfi_write32(snf, SNF_MISC_CTL,
|
|
(2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
|
|
nfi_write32(snf, SNF_MAC_OUTL, outlen);
|
|
nfi_write32(snf, SNF_MAC_INL, inlen);
|
|
|
|
nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
|
|
|
|
ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
|
|
val & WIP_READY, 0, SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
|
|
0, SNFI_POLL_INTERVAL);
|
|
if (ret)
|
|
dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
|
|
|
|
cleanup:
|
|
nfi_write32(snf, SNF_MAC_CTL, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
|
|
{
|
|
u32 rx_len = 0;
|
|
u32 reg_offs = 0;
|
|
u32 val = 0;
|
|
const u8 *tx_buf = NULL;
|
|
u8 *rx_buf = NULL;
|
|
int i, ret;
|
|
u8 b;
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
|
rx_len = op->data.nbytes;
|
|
rx_buf = op->data.buf.in;
|
|
} else {
|
|
tx_buf = op->data.buf.out;
|
|
}
|
|
|
|
mtk_snand_mac_reset(snf);
|
|
|
|
for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
|
|
b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
|
|
val |= b << (8 * (reg_offs % 4));
|
|
if (reg_offs % 4 == 3) {
|
|
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
|
|
val = 0;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
|
|
b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
|
|
val |= b << (8 * (reg_offs % 4));
|
|
if (reg_offs % 4 == 3) {
|
|
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
|
|
val = 0;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
|
|
if (reg_offs % 4 == 3) {
|
|
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
|
|
val = 0;
|
|
}
|
|
}
|
|
|
|
if (op->data.dir == SPI_MEM_DATA_OUT) {
|
|
for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
|
|
val |= tx_buf[i] << (8 * (reg_offs % 4));
|
|
if (reg_offs % 4 == 3) {
|
|
nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
|
|
val = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (reg_offs % 4)
|
|
nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
|
|
|
|
for (i = 0; i < reg_offs; i += 4)
|
|
dev_dbg(snf->dev, "%d: %08X", i,
|
|
nfi_read32(snf, SNF_GPRAM + i));
|
|
|
|
dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
|
|
|
|
ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!rx_len)
|
|
return 0;
|
|
|
|
nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
|
|
u32 oob_size)
|
|
{
|
|
int spare_idx = -1;
|
|
u32 spare_size, spare_size_shift, pagesize_idx;
|
|
u32 sector_size_512;
|
|
u8 nsectors;
|
|
int i;
|
|
|
|
// skip if it's already configured as required.
|
|
if (snf->nfi_cfg.page_size == page_size &&
|
|
snf->nfi_cfg.oob_size == oob_size)
|
|
return 0;
|
|
|
|
nsectors = page_size / snf->caps->sector_size;
|
|
if (nsectors > snf->caps->max_sectors) {
|
|
dev_err(snf->dev, "too many sectors required.\n");
|
|
goto err;
|
|
}
|
|
|
|
if (snf->caps->sector_size == 512) {
|
|
sector_size_512 = NFI_SEC_SEL_512;
|
|
spare_size_shift = NFI_SPARE_SIZE_S;
|
|
} else {
|
|
sector_size_512 = 0;
|
|
spare_size_shift = NFI_SPARE_SIZE_LS_S;
|
|
}
|
|
|
|
switch (page_size) {
|
|
case SZ_512:
|
|
pagesize_idx = NFI_PAGE_SIZE_512_2K;
|
|
break;
|
|
case SZ_2K:
|
|
if (snf->caps->sector_size == 512)
|
|
pagesize_idx = NFI_PAGE_SIZE_2K_4K;
|
|
else
|
|
pagesize_idx = NFI_PAGE_SIZE_512_2K;
|
|
break;
|
|
case SZ_4K:
|
|
if (snf->caps->sector_size == 512)
|
|
pagesize_idx = NFI_PAGE_SIZE_4K_8K;
|
|
else
|
|
pagesize_idx = NFI_PAGE_SIZE_2K_4K;
|
|
break;
|
|
case SZ_8K:
|
|
if (snf->caps->sector_size == 512)
|
|
pagesize_idx = NFI_PAGE_SIZE_8K_16K;
|
|
else
|
|
pagesize_idx = NFI_PAGE_SIZE_4K_8K;
|
|
break;
|
|
case SZ_16K:
|
|
pagesize_idx = NFI_PAGE_SIZE_8K_16K;
|
|
break;
|
|
default:
|
|
dev_err(snf->dev, "unsupported page size.\n");
|
|
goto err;
|
|
}
|
|
|
|
spare_size = oob_size / nsectors;
|
|
// If we're using the 1KB sector size, HW will automatically double the
|
|
// spare size. We should only use half of the value in this case.
|
|
if (snf->caps->sector_size == 1024)
|
|
spare_size /= 2;
|
|
|
|
for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
|
|
if (snf->caps->spare_sizes[i] <= spare_size) {
|
|
spare_size = snf->caps->spare_sizes[i];
|
|
if (snf->caps->sector_size == 1024)
|
|
spare_size *= 2;
|
|
spare_idx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (spare_idx < 0) {
|
|
dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
|
|
goto err;
|
|
}
|
|
|
|
nfi_write32(snf, NFI_PAGEFMT,
|
|
(snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
|
|
(snf->caps->fdm_size << NFI_FDM_NUM_S) |
|
|
(spare_idx << spare_size_shift) |
|
|
(pagesize_idx << NFI_PAGE_SIZE_S) |
|
|
sector_size_512);
|
|
|
|
snf->nfi_cfg.page_size = page_size;
|
|
snf->nfi_cfg.oob_size = oob_size;
|
|
snf->nfi_cfg.nsectors = nsectors;
|
|
snf->nfi_cfg.spare_size = spare_size;
|
|
|
|
dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
|
|
snf->caps->sector_size, spare_size, nsectors);
|
|
return snand_prepare_bouncebuf(snf, page_size + oob_size);
|
|
err:
|
|
dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
|
|
oob_size);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobecc)
|
|
{
|
|
// ECC area is not accessible
|
|
return -ERANGE;
|
|
}
|
|
|
|
static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobfree)
|
|
{
|
|
struct nand_device *nand = mtd_to_nanddev(mtd);
|
|
struct mtk_snand *ms = nand_to_mtk_snand(nand);
|
|
|
|
if (section >= ms->nfi_cfg.nsectors)
|
|
return -ERANGE;
|
|
|
|
oobfree->length = ms->caps->fdm_size - 1;
|
|
oobfree->offset = section * ms->caps->fdm_size + 1;
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
|
|
.ecc = mtk_snand_ooblayout_ecc,
|
|
.free = mtk_snand_ooblayout_free,
|
|
};
|
|
|
|
static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
|
|
{
|
|
struct mtk_snand *snf = nand_to_mtk_snand(nand);
|
|
struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
|
|
struct nand_ecc_props *reqs = &nand->ecc.requirements;
|
|
struct nand_ecc_props *user = &nand->ecc.user_conf;
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
int step_size = 0, strength = 0, desired_correction = 0, steps;
|
|
bool ecc_user = false;
|
|
int ret;
|
|
u32 parity_bits, max_ecc_bytes;
|
|
struct mtk_ecc_config *ecc_cfg;
|
|
|
|
ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
|
|
nand->memorg.oobsize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
|
|
if (!ecc_cfg)
|
|
return -ENOMEM;
|
|
|
|
nand->ecc.ctx.priv = ecc_cfg;
|
|
|
|
if (user->step_size && user->strength) {
|
|
step_size = user->step_size;
|
|
strength = user->strength;
|
|
ecc_user = true;
|
|
} else if (reqs->step_size && reqs->strength) {
|
|
step_size = reqs->step_size;
|
|
strength = reqs->strength;
|
|
}
|
|
|
|
if (step_size && strength) {
|
|
steps = mtd->writesize / step_size;
|
|
desired_correction = steps * strength;
|
|
strength = desired_correction / snf->nfi_cfg.nsectors;
|
|
}
|
|
|
|
ecc_cfg->mode = ECC_NFI_MODE;
|
|
ecc_cfg->sectors = snf->nfi_cfg.nsectors;
|
|
ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
|
|
|
|
// calculate the max possible strength under current page format
|
|
parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
|
|
max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
|
|
ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
|
|
mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
|
|
|
|
// if there's a user requested strength, find the minimum strength that
|
|
// meets the requirement. Otherwise use the maximum strength which is
|
|
// expected by BootROM.
|
|
if (ecc_user && strength) {
|
|
u32 s_next = ecc_cfg->strength - 1;
|
|
|
|
while (1) {
|
|
mtk_ecc_adjust_strength(snf->ecc, &s_next);
|
|
if (s_next >= ecc_cfg->strength)
|
|
break;
|
|
if (s_next < strength)
|
|
break;
|
|
s_next = ecc_cfg->strength - 1;
|
|
}
|
|
}
|
|
|
|
mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
|
|
|
|
conf->step_size = snf->caps->sector_size;
|
|
conf->strength = ecc_cfg->strength;
|
|
|
|
if (ecc_cfg->strength < strength)
|
|
dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
|
|
strength);
|
|
dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
|
|
ecc_cfg->strength, snf->caps->sector_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
|
|
{
|
|
struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
|
|
|
|
kfree(ecc_cfg);
|
|
}
|
|
|
|
static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
|
|
struct nand_page_io_req *req)
|
|
{
|
|
struct mtk_snand *snf = nand_to_mtk_snand(nand);
|
|
struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
|
|
int ret;
|
|
|
|
ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
|
|
nand->memorg.oobsize);
|
|
if (ret)
|
|
return ret;
|
|
snf->autofmt = true;
|
|
snf->ecc_cfg = ecc_cfg;
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
|
|
struct nand_page_io_req *req)
|
|
{
|
|
struct mtk_snand *snf = nand_to_mtk_snand(nand);
|
|
struct mtd_info *mtd = nanddev_to_mtd(nand);
|
|
|
|
snf->ecc_cfg = NULL;
|
|
snf->autofmt = false;
|
|
if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
|
|
return 0;
|
|
|
|
if (snf->ecc_stats.failed)
|
|
mtd->ecc_stats.failed += snf->ecc_stats.failed;
|
|
mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
|
|
return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
|
|
}
|
|
|
|
static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
|
|
.init_ctx = mtk_snand_ecc_init_ctx,
|
|
.cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
|
|
.prepare_io_req = mtk_snand_ecc_prepare_io_req,
|
|
.finish_io_req = mtk_snand_ecc_finish_io_req,
|
|
};
|
|
|
|
static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
|
|
{
|
|
u32 vall, valm;
|
|
u8 *oobptr = buf;
|
|
int i, j;
|
|
|
|
for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
|
|
vall = nfi_read32(snf, NFI_FDML(i));
|
|
valm = nfi_read32(snf, NFI_FDMM(i));
|
|
|
|
for (j = 0; j < snf->caps->fdm_size; j++)
|
|
oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
|
|
|
|
oobptr += snf->caps->fdm_size;
|
|
}
|
|
}
|
|
|
|
static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
|
|
{
|
|
u32 fdm_size = snf->caps->fdm_size;
|
|
const u8 *oobptr = buf;
|
|
u32 vall, valm;
|
|
int i, j;
|
|
|
|
for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
|
|
vall = 0;
|
|
valm = 0;
|
|
|
|
for (j = 0; j < 8; j++) {
|
|
if (j < 4)
|
|
vall |= (j < fdm_size ? oobptr[j] : 0xff)
|
|
<< (j * 8);
|
|
else
|
|
valm |= (j < fdm_size ? oobptr[j] : 0xff)
|
|
<< ((j - 4) * 8);
|
|
}
|
|
|
|
nfi_write32(snf, NFI_FDML(i), vall);
|
|
nfi_write32(snf, NFI_FDMM(i), valm);
|
|
|
|
oobptr += fdm_size;
|
|
}
|
|
}
|
|
|
|
static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
|
|
{
|
|
u32 buf_bbm_pos, fdm_bbm_pos;
|
|
|
|
if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
|
|
return;
|
|
|
|
// swap [pagesize] byte on nand with the first fdm byte
|
|
// in the last sector.
|
|
buf_bbm_pos = snf->nfi_cfg.page_size -
|
|
(snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
|
|
fdm_bbm_pos = snf->nfi_cfg.page_size +
|
|
(snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
|
|
|
|
swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
|
|
}
|
|
|
|
static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
|
|
{
|
|
u32 fdm_bbm_pos1, fdm_bbm_pos2;
|
|
|
|
if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
|
|
return;
|
|
|
|
// swap the first fdm byte in the first and the last sector.
|
|
fdm_bbm_pos1 = snf->nfi_cfg.page_size;
|
|
fdm_bbm_pos2 = snf->nfi_cfg.page_size +
|
|
(snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
|
|
swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
|
|
}
|
|
|
|
static int mtk_snand_read_page_cache(struct mtk_snand *snf,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
u8 *buf = snf->buf;
|
|
u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
|
|
// the address part to be sent by the controller
|
|
u32 op_addr = op->addr.val;
|
|
// where to start copying data from bounce buffer
|
|
u32 rd_offset = 0;
|
|
u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
|
|
u32 op_mode = 0;
|
|
u32 dma_len = snf->buf_len;
|
|
int ret = 0;
|
|
u32 rd_mode, rd_bytes, val;
|
|
dma_addr_t buf_dma;
|
|
|
|
if (snf->autofmt) {
|
|
u32 last_bit;
|
|
u32 mask;
|
|
|
|
dma_len = snf->nfi_cfg.page_size;
|
|
op_mode = CNFG_AUTO_FMT_EN;
|
|
if (op->data.ecc)
|
|
op_mode |= CNFG_HW_ECC_EN;
|
|
// extract the plane bit:
|
|
// Find the highest bit set in (pagesize+oobsize).
|
|
// Bits higher than that in op->addr are kept and sent over SPI
|
|
// Lower bits are used as an offset for copying data from DMA
|
|
// bounce buffer.
|
|
last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
|
|
mask = (1 << last_bit) - 1;
|
|
rd_offset = op_addr & mask;
|
|
op_addr &= ~mask;
|
|
|
|
// check if we can dma to the caller memory
|
|
if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
|
|
buf = op->data.buf.in;
|
|
}
|
|
mtk_snand_mac_reset(snf);
|
|
mtk_nfi_reset(snf);
|
|
|
|
// command and dummy cycles
|
|
nfi_write32(snf, SNF_RD_CTL2,
|
|
(dummy_clk << DATA_READ_DUMMY_S) |
|
|
(op->cmd.opcode << DATA_READ_CMD_S));
|
|
|
|
// read address
|
|
nfi_write32(snf, SNF_RD_CTL3, op_addr);
|
|
|
|
// Set read op_mode
|
|
if (op->data.buswidth == 4)
|
|
rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
|
|
DATA_READ_MODE_X4;
|
|
else if (op->data.buswidth == 2)
|
|
rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
|
|
DATA_READ_MODE_X2;
|
|
else
|
|
rd_mode = DATA_READ_MODE_X1;
|
|
rd_mode <<= DATA_READ_MODE_S;
|
|
nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
|
|
rd_mode | DATARD_CUSTOM_EN);
|
|
|
|
// Set bytes to read
|
|
rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
|
|
snf->nfi_cfg.nsectors;
|
|
nfi_write32(snf, SNF_MISC_CTL2,
|
|
(rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
|
|
|
|
// NFI read prepare
|
|
nfi_write16(snf, NFI_CNFG,
|
|
(CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
|
|
CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
|
|
|
|
nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
|
|
|
|
buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
|
|
ret = dma_mapping_error(snf->dev, buf_dma);
|
|
if (ret) {
|
|
dev_err(snf->dev, "DMA mapping failed.\n");
|
|
goto cleanup;
|
|
}
|
|
nfi_write32(snf, NFI_STRADDR, buf_dma);
|
|
if (op->data.ecc) {
|
|
snf->ecc_cfg->op = ECC_DECODE;
|
|
ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
|
|
if (ret)
|
|
goto cleanup_dma;
|
|
}
|
|
// Prepare for custom read interrupt
|
|
nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
|
|
reinit_completion(&snf->op_done);
|
|
|
|
// Trigger NFI into custom mode
|
|
nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
|
|
|
|
// Start DMA read
|
|
nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
|
|
nfi_write16(snf, NFI_STRDATA, STR_DATA);
|
|
|
|
if (!wait_for_completion_timeout(
|
|
&snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
|
|
dev_err(snf->dev, "DMA timed out for reading from cache.\n");
|
|
ret = -ETIMEDOUT;
|
|
goto cleanup;
|
|
}
|
|
|
|
// Wait for BUS_SEC_CNTR returning expected value
|
|
ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
|
|
BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
|
|
SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
|
|
goto cleanup2;
|
|
}
|
|
|
|
// Wait for bus becoming idle
|
|
ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
|
|
!(val & snf->caps->mastersta_mask), 0,
|
|
SNFI_POLL_INTERVAL);
|
|
if (ret) {
|
|
dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
|
|
goto cleanup2;
|
|
}
|
|
|
|
if (op->data.ecc) {
|
|
ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
|
|
if (ret) {
|
|
dev_err(snf->dev, "wait ecc done timeout\n");
|
|
goto cleanup2;
|
|
}
|
|
// save status before disabling ecc
|
|
mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
|
|
snf->nfi_cfg.nsectors);
|
|
}
|
|
|
|
dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
|
|
|
|
if (snf->autofmt) {
|
|
mtk_snand_read_fdm(snf, buf_fdm);
|
|
if (snf->caps->bbm_swap) {
|
|
mtk_snand_bm_swap(snf, buf);
|
|
mtk_snand_fdm_bm_swap(snf);
|
|
}
|
|
}
|
|
|
|
// copy data back
|
|
if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
|
|
memset(op->data.buf.in, 0xff, op->data.nbytes);
|
|
snf->ecc_stats.bitflips = 0;
|
|
snf->ecc_stats.failed = 0;
|
|
snf->ecc_stats.corrected = 0;
|
|
} else {
|
|
if (buf == op->data.buf.in) {
|
|
u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
|
|
u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
|
|
|
|
if (req_left)
|
|
memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
|
|
buf_fdm,
|
|
cap_len < req_left ? cap_len : req_left);
|
|
} else if (rd_offset < snf->buf_len) {
|
|
u32 cap_len = snf->buf_len - rd_offset;
|
|
|
|
if (op->data.nbytes < cap_len)
|
|
cap_len = op->data.nbytes;
|
|
memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
|
|
}
|
|
}
|
|
cleanup2:
|
|
if (op->data.ecc)
|
|
mtk_ecc_disable(snf->ecc);
|
|
cleanup_dma:
|
|
// unmap dma only if any error happens. (otherwise it's done before
|
|
// data copying)
|
|
if (ret)
|
|
dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
|
|
cleanup:
|
|
// Stop read
|
|
nfi_write32(snf, NFI_CON, 0);
|
|
nfi_write16(snf, NFI_CNFG, 0);
|
|
|
|
// Clear SNF done flag
|
|
nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
|
|
nfi_write32(snf, SNF_STA_CTL1, 0);
|
|
|
|
// Disable interrupt
|
|
nfi_read32(snf, NFI_INTR_STA);
|
|
nfi_write32(snf, NFI_INTR_EN, 0);
|
|
|
|
nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_snand_write_page_cache(struct mtk_snand *snf,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
// the address part to be sent by the controller
|
|
u32 op_addr = op->addr.val;
|
|
// where to start copying data from bounce buffer
|
|
u32 wr_offset = 0;
|
|
u32 op_mode = 0;
|
|
int ret = 0;
|
|
u32 wr_mode = 0;
|
|
u32 dma_len = snf->buf_len;
|
|
u32 wr_bytes, val;
|
|
size_t cap_len;
|
|
dma_addr_t buf_dma;
|
|
|
|
if (snf->autofmt) {
|
|
u32 last_bit;
|
|
u32 mask;
|
|
|
|
dma_len = snf->nfi_cfg.page_size;
|
|
op_mode = CNFG_AUTO_FMT_EN;
|
|
if (op->data.ecc)
|
|
op_mode |= CNFG_HW_ECC_EN;
|
|
|
|
last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
|
|
mask = (1 << last_bit) - 1;
|
|
wr_offset = op_addr & mask;
|
|
op_addr &= ~mask;
|
|
}
|
|
mtk_snand_mac_reset(snf);
|
|
mtk_nfi_reset(snf);
|
|
|
|
if (wr_offset)
|
|
memset(snf->buf, 0xff, wr_offset);
|
|
|
|
cap_len = snf->buf_len - wr_offset;
|
|
if (op->data.nbytes < cap_len)
|
|
cap_len = op->data.nbytes;
|
|
memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
|
|
if (snf->autofmt) {
|
|
if (snf->caps->bbm_swap) {
|
|
mtk_snand_fdm_bm_swap(snf);
|
|
mtk_snand_bm_swap(snf, snf->buf);
|
|
}
|
|
mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
|
|
}
|
|
|
|
// Command
|
|
nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
|
|
|
|
// write address
|
|
nfi_write32(snf, SNF_PG_CTL2, op_addr);
|
|
|
|
// Set read op_mode
|
|
if (op->data.buswidth == 4)
|
|
wr_mode = PG_LOAD_X4_EN;
|
|
|
|
nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
|
|
wr_mode | PG_LOAD_CUSTOM_EN);
|
|
|
|
// Set bytes to write
|
|
wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
|
|
snf->nfi_cfg.nsectors;
|
|
nfi_write32(snf, SNF_MISC_CTL2,
|
|
(wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
|
|
|
|
// NFI write prepare
|
|
nfi_write16(snf, NFI_CNFG,
|
|
(CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
|
|
CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
|
|
|
|
nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
|
|
buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
|
|
ret = dma_mapping_error(snf->dev, buf_dma);
|
|
if (ret) {
|
|
dev_err(snf->dev, "DMA mapping failed.\n");
|
|
goto cleanup;
|
|
}
|
|
nfi_write32(snf, NFI_STRADDR, buf_dma);
|
|
if (op->data.ecc) {
|
|
snf->ecc_cfg->op = ECC_ENCODE;
|
|
ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
|
|
if (ret)
|
|
goto cleanup_dma;
|
|
}
|
|
// Prepare for custom write interrupt
|
|
nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
|
|
reinit_completion(&snf->op_done);
|
|
;
|
|
|
|
// Trigger NFI into custom mode
|
|
nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
|
|
|
|
// Start DMA write
|
|
nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
|
|
nfi_write16(snf, NFI_STRDATA, STR_DATA);
|
|
|
|
if (!wait_for_completion_timeout(
|
|
&snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
|
|
dev_err(snf->dev, "DMA timed out for program load.\n");
|
|
ret = -ETIMEDOUT;
|
|
goto cleanup_ecc;
|
|
}
|
|
|
|
// Wait for NFI_SEC_CNTR returning expected value
|
|
ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
|
|
NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
|
|
SNFI_POLL_INTERVAL);
|
|
if (ret)
|
|
dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
|
|
|
|
cleanup_ecc:
|
|
if (op->data.ecc)
|
|
mtk_ecc_disable(snf->ecc);
|
|
cleanup_dma:
|
|
dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
|
|
cleanup:
|
|
// Stop write
|
|
nfi_write32(snf, NFI_CON, 0);
|
|
nfi_write16(snf, NFI_CNFG, 0);
|
|
|
|
// Clear SNF done flag
|
|
nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
|
|
nfi_write32(snf, SNF_STA_CTL1, 0);
|
|
|
|
// Disable interrupt
|
|
nfi_read32(snf, NFI_INTR_STA);
|
|
nfi_write32(snf, NFI_INTR_EN, 0);
|
|
|
|
nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* mtk_snand_is_page_ops() - check if the op is a controller supported page op.
|
|
* @op spi-mem op to check
|
|
*
|
|
* Check whether op can be executed with read_from_cache or program_load
|
|
* mode in the controller.
|
|
* This controller can execute typical Read From Cache and Program Load
|
|
* instructions found on SPI-NAND with 2-byte address.
|
|
* DTR and cmd buswidth & nbytes should be checked before calling this.
|
|
*
|
|
* Return: true if the op matches the instruction template
|
|
*/
|
|
static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
|
|
{
|
|
if (op->addr.nbytes != 2)
|
|
return false;
|
|
|
|
if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
|
|
op->addr.buswidth != 4)
|
|
return false;
|
|
|
|
// match read from page instructions
|
|
if (op->data.dir == SPI_MEM_DATA_IN) {
|
|
// check dummy cycle first
|
|
if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
|
|
DATA_READ_MAX_DUMMY)
|
|
return false;
|
|
// quad io / quad out
|
|
if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
|
|
op->data.buswidth == 4)
|
|
return true;
|
|
|
|
// dual io / dual out
|
|
if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
|
|
op->data.buswidth == 2)
|
|
return true;
|
|
|
|
// standard spi
|
|
if (op->addr.buswidth == 1 && op->data.buswidth == 1)
|
|
return true;
|
|
} else if (op->data.dir == SPI_MEM_DATA_OUT) {
|
|
// check dummy cycle first
|
|
if (op->dummy.nbytes)
|
|
return false;
|
|
// program load quad out
|
|
if (op->addr.buswidth == 1 && op->data.buswidth == 4)
|
|
return true;
|
|
// standard spi
|
|
if (op->addr.buswidth == 1 && op->data.buswidth == 1)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool mtk_snand_supports_op(struct spi_mem *mem,
|
|
const struct spi_mem_op *op)
|
|
{
|
|
if (!spi_mem_default_supports_op(mem, op))
|
|
return false;
|
|
if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
|
|
return false;
|
|
if (mtk_snand_is_page_ops(op))
|
|
return true;
|
|
return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
|
|
(op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
|
|
(op->data.nbytes == 0 || op->data.buswidth == 1));
|
|
}
|
|
|
|
static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
|
|
{
|
|
struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
|
|
// page ops transfer size must be exactly ((sector_size + spare_size) *
|
|
// nsectors). Limit the op size if the caller requests more than that.
|
|
// exec_op will read more than needed and discard the leftover if the
|
|
// caller requests less data.
|
|
if (mtk_snand_is_page_ops(op)) {
|
|
size_t l;
|
|
// skip adjust_op_size for page ops
|
|
if (ms->autofmt)
|
|
return 0;
|
|
l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
|
|
l *= ms->nfi_cfg.nsectors;
|
|
if (op->data.nbytes > l)
|
|
op->data.nbytes = l;
|
|
} else {
|
|
size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
|
|
|
|
if (hl >= SNF_GPRAM_SIZE)
|
|
return -EOPNOTSUPP;
|
|
if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
|
|
op->data.nbytes = SNF_GPRAM_SIZE - hl;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
|
|
{
|
|
struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
|
|
|
|
dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
|
|
op->addr.val, op->addr.buswidth, op->addr.nbytes,
|
|
op->data.buswidth, op->data.nbytes);
|
|
if (mtk_snand_is_page_ops(op)) {
|
|
if (op->data.dir == SPI_MEM_DATA_IN)
|
|
return mtk_snand_read_page_cache(ms, op);
|
|
else
|
|
return mtk_snand_write_page_cache(ms, op);
|
|
} else {
|
|
return mtk_snand_mac_io(ms, op);
|
|
}
|
|
}
|
|
|
|
static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
|
|
.adjust_op_size = mtk_snand_adjust_op_size,
|
|
.supports_op = mtk_snand_supports_op,
|
|
.exec_op = mtk_snand_exec_op,
|
|
};
|
|
|
|
static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
|
|
.ecc = true,
|
|
};
|
|
|
|
static irqreturn_t mtk_snand_irq(int irq, void *id)
|
|
{
|
|
struct mtk_snand *snf = id;
|
|
u32 sta, ien;
|
|
|
|
sta = nfi_read32(snf, NFI_INTR_STA);
|
|
ien = nfi_read32(snf, NFI_INTR_EN);
|
|
|
|
if (!(sta & ien))
|
|
return IRQ_NONE;
|
|
|
|
nfi_write32(snf, NFI_INTR_EN, 0);
|
|
complete(&snf->op_done);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static const struct of_device_id mtk_snand_ids[] = {
|
|
{ .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
|
|
{ .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
|
|
{ .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
|
|
{},
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, mtk_snand_ids);
|
|
|
|
static int mtk_snand_enable_clk(struct mtk_snand *ms)
|
|
{
|
|
int ret;
|
|
|
|
ret = clk_prepare_enable(ms->nfi_clk);
|
|
if (ret) {
|
|
dev_err(ms->dev, "unable to enable nfi clk\n");
|
|
return ret;
|
|
}
|
|
ret = clk_prepare_enable(ms->pad_clk);
|
|
if (ret) {
|
|
dev_err(ms->dev, "unable to enable pad clk\n");
|
|
goto err1;
|
|
}
|
|
ret = clk_prepare_enable(ms->nfi_hclk);
|
|
if (ret) {
|
|
dev_err(ms->dev, "unable to enable nfi hclk\n");
|
|
goto err2;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err2:
|
|
clk_disable_unprepare(ms->pad_clk);
|
|
err1:
|
|
clk_disable_unprepare(ms->nfi_clk);
|
|
return ret;
|
|
}
|
|
|
|
static void mtk_snand_disable_clk(struct mtk_snand *ms)
|
|
{
|
|
clk_disable_unprepare(ms->nfi_hclk);
|
|
clk_disable_unprepare(ms->pad_clk);
|
|
clk_disable_unprepare(ms->nfi_clk);
|
|
}
|
|
|
|
static int mtk_snand_probe(struct platform_device *pdev)
|
|
{
|
|
struct device_node *np = pdev->dev.of_node;
|
|
const struct of_device_id *dev_id;
|
|
struct spi_controller *ctlr;
|
|
struct mtk_snand *ms;
|
|
int ret;
|
|
|
|
dev_id = of_match_node(mtk_snand_ids, np);
|
|
if (!dev_id)
|
|
return -EINVAL;
|
|
|
|
ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
|
|
if (!ctlr)
|
|
return -ENOMEM;
|
|
platform_set_drvdata(pdev, ctlr);
|
|
|
|
ms = spi_controller_get_devdata(ctlr);
|
|
|
|
ms->ctlr = ctlr;
|
|
ms->caps = dev_id->data;
|
|
|
|
ms->ecc = of_mtk_ecc_get(np);
|
|
if (IS_ERR(ms->ecc))
|
|
return PTR_ERR(ms->ecc);
|
|
else if (!ms->ecc)
|
|
return -ENODEV;
|
|
|
|
ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(ms->nfi_base)) {
|
|
ret = PTR_ERR(ms->nfi_base);
|
|
goto release_ecc;
|
|
}
|
|
|
|
ms->dev = &pdev->dev;
|
|
|
|
ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
|
|
if (IS_ERR(ms->nfi_clk)) {
|
|
ret = PTR_ERR(ms->nfi_clk);
|
|
dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
|
|
goto release_ecc;
|
|
}
|
|
|
|
ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
|
|
if (IS_ERR(ms->pad_clk)) {
|
|
ret = PTR_ERR(ms->pad_clk);
|
|
dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
|
|
goto release_ecc;
|
|
}
|
|
|
|
ms->nfi_hclk = devm_clk_get_optional(&pdev->dev, "nfi_hclk");
|
|
if (IS_ERR(ms->nfi_hclk)) {
|
|
ret = PTR_ERR(ms->nfi_hclk);
|
|
dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret);
|
|
goto release_ecc;
|
|
}
|
|
|
|
ret = mtk_snand_enable_clk(ms);
|
|
if (ret)
|
|
goto release_ecc;
|
|
|
|
init_completion(&ms->op_done);
|
|
|
|
ms->irq = platform_get_irq(pdev, 0);
|
|
if (ms->irq < 0) {
|
|
ret = ms->irq;
|
|
goto disable_clk;
|
|
}
|
|
ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
|
|
"mtk-snand", ms);
|
|
if (ret) {
|
|
dev_err(ms->dev, "failed to request snfi irq\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
|
|
if (ret) {
|
|
dev_err(ms->dev, "failed to set dma mask\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
// switch to SNFI mode
|
|
nfi_write32(ms, SNF_CFG, SPI_MODE);
|
|
|
|
// setup an initial page format for ops matching page_cache_op template
|
|
// before ECC is called.
|
|
ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64);
|
|
if (ret) {
|
|
dev_err(ms->dev, "failed to set initial page format\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
// setup ECC engine
|
|
ms->ecc_eng.dev = &pdev->dev;
|
|
ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
|
|
ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
|
|
ms->ecc_eng.priv = ms;
|
|
|
|
ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to register ecc engine.\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
ctlr->num_chipselect = 1;
|
|
ctlr->mem_ops = &mtk_snand_mem_ops;
|
|
ctlr->mem_caps = &mtk_snand_mem_caps;
|
|
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
|
|
ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
|
|
ctlr->dev.of_node = pdev->dev.of_node;
|
|
ret = spi_register_controller(ctlr);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "spi_register_controller failed.\n");
|
|
goto disable_clk;
|
|
}
|
|
|
|
return 0;
|
|
disable_clk:
|
|
mtk_snand_disable_clk(ms);
|
|
release_ecc:
|
|
mtk_ecc_release(ms->ecc);
|
|
return ret;
|
|
}
|
|
|
|
static int mtk_snand_remove(struct platform_device *pdev)
|
|
{
|
|
struct spi_controller *ctlr = platform_get_drvdata(pdev);
|
|
struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
|
|
|
|
spi_unregister_controller(ctlr);
|
|
mtk_snand_disable_clk(ms);
|
|
mtk_ecc_release(ms->ecc);
|
|
kfree(ms->buf);
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver mtk_snand_driver = {
|
|
.probe = mtk_snand_probe,
|
|
.remove = mtk_snand_remove,
|
|
.driver = {
|
|
.name = "mtk-snand",
|
|
.of_match_table = mtk_snand_ids,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(mtk_snand_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
|
|
MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
|