OpenCloudOS-Kernel/drivers/media/i2c/tda1997x.c

2831 lines
74 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Gateworks Corporation
*/
#include <linux/delay.h>
#include <linux/hdmi.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <linux/v4l2-dv-timings.h>
#include <linux/videodev2.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-dv-timings.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include <media/i2c/tda1997x.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <dt-bindings/media/tda1997x.h>
#include "tda1997x_regs.h"
#define TDA1997X_MBUS_CODES 5
/* debug level */
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "debug level (0-2)");
/* Audio formats */
static const char * const audtype_names[] = {
"PCM", /* PCM Samples */
"HBR", /* High Bit Rate Audio */
"OBA", /* One-Bit Audio */
"DST" /* Direct Stream Transfer */
};
/* Audio output port formats */
enum audfmt_types {
AUDFMT_TYPE_DISABLED = 0,
AUDFMT_TYPE_I2S,
AUDFMT_TYPE_SPDIF,
};
static const char * const audfmt_names[] = {
"Disabled",
"I2S",
"SPDIF",
};
/* Video input formats */
static const char * const hdmi_colorspace_names[] = {
"RGB", "YUV422", "YUV444", "YUV420", "", "", "", "",
};
static const char * const hdmi_colorimetry_names[] = {
"", "ITU601", "ITU709", "Extended",
};
static const char * const v4l2_quantization_names[] = {
"Default",
"Full Range (0-255)",
"Limited Range (16-235)",
};
/* Video output port formats */
static const char * const vidfmt_names[] = {
"RGB444/YUV444", /* RGB/YUV444 16bit data bus, 8bpp */
"YUV422 semi-planar", /* YUV422 16bit data base, 8bpp */
"YUV422 CCIR656", /* BT656 (YUV 8bpp 2 clock per pixel) */
"Invalid",
};
/*
* Colorspace conversion matrices
*/
struct color_matrix_coefs {
const char *name;
/* Input offsets */
s16 offint1;
s16 offint2;
s16 offint3;
/* Coeficients */
s16 p11coef;
s16 p12coef;
s16 p13coef;
s16 p21coef;
s16 p22coef;
s16 p23coef;
s16 p31coef;
s16 p32coef;
s16 p33coef;
/* Output offsets */
s16 offout1;
s16 offout2;
s16 offout3;
};
enum {
ITU709_RGBFULL,
ITU601_RGBFULL,
RGBLIMITED_RGBFULL,
RGBLIMITED_ITU601,
RGBLIMITED_ITU709,
RGBFULL_ITU601,
RGBFULL_ITU709,
};
/* NB: 4096 is 1.0 using fixed point numbers */
static const struct color_matrix_coefs conv_matrix[] = {
{
"YUV709 -> RGB full",
-256, -2048, -2048,
4769, -2183, -873,
4769, 7343, 0,
4769, 0, 8652,
0, 0, 0,
},
{
"YUV601 -> RGB full",
-256, -2048, -2048,
4769, -3330, -1602,
4769, 6538, 0,
4769, 0, 8264,
256, 256, 256,
},
{
"RGB limited -> RGB full",
-256, -256, -256,
0, 4769, 0,
0, 0, 4769,
4769, 0, 0,
0, 0, 0,
},
{
"RGB limited -> ITU601",
-256, -256, -256,
2404, 1225, 467,
-1754, 2095, -341,
-1388, -707, 2095,
256, 2048, 2048,
},
{
"RGB limited -> ITU709",
-256, -256, -256,
2918, 867, 295,
-1894, 2087, -190,
-1607, -477, 2087,
256, 2048, 2048,
},
{
"RGB full -> ITU601",
0, 0, 0,
2065, 1052, 401,
-1506, 1799, -293,
-1192, -607, 1799,
256, 2048, 2048,
},
{
"RGB full -> ITU709",
0, 0, 0,
2506, 745, 253,
-1627, 1792, -163,
-1380, -410, 1792,
256, 2048, 2048,
},
};
static const struct v4l2_dv_timings_cap tda1997x_dv_timings_cap = {
.type = V4L2_DV_BT_656_1120,
/* keep this initialization for compatibility with GCC < 4.4.6 */
.reserved = { 0 },
V4L2_INIT_BT_TIMINGS(
640, 1920, /* min/max width */
350, 1200, /* min/max height */
13000000, 165000000, /* min/max pixelclock */
/* standards */
V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
/* capabilities */
V4L2_DV_BT_CAP_INTERLACED | V4L2_DV_BT_CAP_PROGRESSIVE |
V4L2_DV_BT_CAP_REDUCED_BLANKING |
V4L2_DV_BT_CAP_CUSTOM
)
};
/* regulator supplies */
static const char * const tda1997x_supply_name[] = {
"DOVDD", /* Digital I/O supply */
"DVDD", /* Digital Core supply */
"AVDD", /* Analog supply */
};
#define TDA1997X_NUM_SUPPLIES ARRAY_SIZE(tda1997x_supply_name)
enum tda1997x_type {
TDA19971,
TDA19973,
};
enum tda1997x_hdmi_pads {
TDA1997X_PAD_SOURCE,
TDA1997X_NUM_PADS,
};
struct tda1997x_chip_info {
enum tda1997x_type type;
const char *name;
};
struct tda1997x_state {
const struct tda1997x_chip_info *info;
struct tda1997x_platform_data pdata;
struct i2c_client *client;
struct i2c_client *client_cec;
struct v4l2_subdev sd;
struct regulator_bulk_data supplies[TDA1997X_NUM_SUPPLIES];
struct media_pad pads[TDA1997X_NUM_PADS];
struct mutex lock;
struct mutex page_lock;
char page;
/* detected info from chip */
int chip_revision;
char port_30bit;
char output_2p5;
char tmdsb_clk;
char tmdsb_soc;
/* status info */
char hdmi_status;
char mptrw_in_progress;
char activity_status;
char input_detect[2];
/* video */
struct hdmi_avi_infoframe avi_infoframe;
struct v4l2_hdmi_colorimetry colorimetry;
u32 rgb_quantization_range;
struct v4l2_dv_timings timings;
int fps;
const struct color_matrix_coefs *conv;
u32 mbus_codes[TDA1997X_MBUS_CODES]; /* available modes */
u32 mbus_code; /* current mode */
u8 vid_fmt;
/* controls */
struct v4l2_ctrl_handler hdl;
struct v4l2_ctrl *detect_tx_5v_ctrl;
struct v4l2_ctrl *rgb_quantization_range_ctrl;
/* audio */
u8 audio_ch_alloc;
int audio_samplerate;
int audio_channels;
int audio_samplesize;
int audio_type;
struct mutex audio_lock;
struct snd_pcm_substream *audio_stream;
/* EDID */
struct {
u8 edid[256];
u32 present;
unsigned int blocks;
} edid;
struct delayed_work delayed_work_enable_hpd;
};
static const struct v4l2_event tda1997x_ev_fmt = {
.type = V4L2_EVENT_SOURCE_CHANGE,
.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
};
static const struct tda1997x_chip_info tda1997x_chip_info[] = {
[TDA19971] = {
.type = TDA19971,
.name = "tda19971",
},
[TDA19973] = {
.type = TDA19973,
.name = "tda19973",
},
};
static inline struct tda1997x_state *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct tda1997x_state, sd);
}
static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
{
return &container_of(ctrl->handler, struct tda1997x_state, hdl)->sd;
}
static int tda1997x_cec_read(struct v4l2_subdev *sd, u8 reg)
{
struct tda1997x_state *state = to_state(sd);
int val;
val = i2c_smbus_read_byte_data(state->client_cec, reg);
if (val < 0) {
v4l_err(state->client, "read reg error: reg=%2x\n", reg);
val = -1;
}
return val;
}
static int tda1997x_cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
{
struct tda1997x_state *state = to_state(sd);
int ret = 0;
ret = i2c_smbus_write_byte_data(state->client_cec, reg, val);
if (ret < 0) {
v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
reg, val);
ret = -1;
}
return ret;
}
/* -----------------------------------------------------------------------------
* I2C transfer
*/
static int tda1997x_setpage(struct v4l2_subdev *sd, u8 page)
{
struct tda1997x_state *state = to_state(sd);
int ret;
if (state->page != page) {
ret = i2c_smbus_write_byte_data(state->client,
REG_CURPAGE_00H, page);
if (ret < 0) {
v4l_err(state->client,
"write reg error:reg=%2x,val=%2x\n",
REG_CURPAGE_00H, page);
return ret;
}
state->page = page;
}
return 0;
}
static inline int io_read(struct v4l2_subdev *sd, u16 reg)
{
struct tda1997x_state *state = to_state(sd);
int val;
mutex_lock(&state->page_lock);
if (tda1997x_setpage(sd, reg >> 8)) {
val = -1;
goto out;
}
val = i2c_smbus_read_byte_data(state->client, reg&0xff);
if (val < 0) {
v4l_err(state->client, "read reg error: reg=%2x\n", reg & 0xff);
val = -1;
goto out;
}
out:
mutex_unlock(&state->page_lock);
return val;
}
static inline long io_read16(struct v4l2_subdev *sd, u16 reg)
{
int val;
long lval = 0;
val = io_read(sd, reg);
if (val < 0)
return val;
lval |= (val << 8);
val = io_read(sd, reg + 1);
if (val < 0)
return val;
lval |= val;
return lval;
}
static inline long io_read24(struct v4l2_subdev *sd, u16 reg)
{
int val;
long lval = 0;
val = io_read(sd, reg);
if (val < 0)
return val;
lval |= (val << 16);
val = io_read(sd, reg + 1);
if (val < 0)
return val;
lval |= (val << 8);
val = io_read(sd, reg + 2);
if (val < 0)
return val;
lval |= val;
return lval;
}
static unsigned int io_readn(struct v4l2_subdev *sd, u16 reg, u8 len, u8 *data)
{
int i;
int sz = 0;
int val;
for (i = 0; i < len; i++) {
val = io_read(sd, reg + i);
if (val < 0)
break;
data[i] = val;
sz++;
}
return sz;
}
static int io_write(struct v4l2_subdev *sd, u16 reg, u8 val)
{
struct tda1997x_state *state = to_state(sd);
s32 ret = 0;
mutex_lock(&state->page_lock);
if (tda1997x_setpage(sd, reg >> 8)) {
ret = -1;
goto out;
}
ret = i2c_smbus_write_byte_data(state->client, reg & 0xff, val);
if (ret < 0) {
v4l_err(state->client, "write reg error:reg=%2x,val=%2x\n",
reg&0xff, val);
ret = -1;
goto out;
}
out:
mutex_unlock(&state->page_lock);
return ret;
}
static int io_write16(struct v4l2_subdev *sd, u16 reg, u16 val)
{
int ret;
ret = io_write(sd, reg, (val >> 8) & 0xff);
if (ret < 0)
return ret;
ret = io_write(sd, reg + 1, val & 0xff);
if (ret < 0)
return ret;
return 0;
}
static int io_write24(struct v4l2_subdev *sd, u16 reg, u32 val)
{
int ret;
ret = io_write(sd, reg, (val >> 16) & 0xff);
if (ret < 0)
return ret;
ret = io_write(sd, reg + 1, (val >> 8) & 0xff);
if (ret < 0)
return ret;
ret = io_write(sd, reg + 2, val & 0xff);
if (ret < 0)
return ret;
return 0;
}
/* -----------------------------------------------------------------------------
* Hotplug
*/
enum hpd_mode {
HPD_LOW_BP, /* HPD low and pulse of at least 100ms */
HPD_LOW_OTHER, /* HPD low and pulse of at least 100ms */
HPD_HIGH_BP, /* HIGH */
HPD_HIGH_OTHER,
HPD_PULSE, /* HPD low pulse */
};
/* manual HPD (Hot Plug Detect) control */
static int tda1997x_manual_hpd(struct v4l2_subdev *sd, enum hpd_mode mode)
{
u8 hpd_auto, hpd_pwr, hpd_man;
hpd_auto = io_read(sd, REG_HPD_AUTO_CTRL);
hpd_pwr = io_read(sd, REG_HPD_POWER);
hpd_man = io_read(sd, REG_HPD_MAN_CTRL);
/* mask out unused bits */
hpd_man &= (HPD_MAN_CTRL_HPD_PULSE |
HPD_MAN_CTRL_5VEN |
HPD_MAN_CTRL_HPD_B |
HPD_MAN_CTRL_HPD_A);
switch (mode) {
/* HPD low and pulse of at least 100ms */
case HPD_LOW_BP:
/* hpd_bp=0 */
hpd_pwr &= ~HPD_POWER_BP_MASK;
/* disable HPD_A and HPD_B */
hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
io_write(sd, REG_HPD_POWER, hpd_pwr);
io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
break;
/* HPD high */
case HPD_HIGH_BP:
/* hpd_bp=1 */
hpd_pwr &= ~HPD_POWER_BP_MASK;
hpd_pwr |= 1 << HPD_POWER_BP_SHIFT;
io_write(sd, REG_HPD_POWER, hpd_pwr);
break;
/* HPD low and pulse of at least 100ms */
case HPD_LOW_OTHER:
/* disable HPD_A and HPD_B */
hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
/* hp_other=0 */
hpd_auto &= ~HPD_AUTO_HP_OTHER;
io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
break;
/* HPD high */
case HPD_HIGH_OTHER:
hpd_auto |= HPD_AUTO_HP_OTHER;
io_write(sd, REG_HPD_AUTO_CTRL, hpd_auto);
break;
/* HPD low pulse */
case HPD_PULSE:
/* disable HPD_A and HPD_B */
hpd_man &= ~(HPD_MAN_CTRL_HPD_A | HPD_MAN_CTRL_HPD_B);
io_write(sd, REG_HPD_MAN_CTRL, hpd_man);
break;
}
return 0;
}
static void tda1997x_delayed_work_enable_hpd(struct work_struct *work)
{
struct delayed_work *dwork = to_delayed_work(work);
struct tda1997x_state *state = container_of(dwork,
struct tda1997x_state,
delayed_work_enable_hpd);
struct v4l2_subdev *sd = &state->sd;
v4l2_dbg(2, debug, sd, "%s:\n", __func__);
/* Set HPD high */
tda1997x_manual_hpd(sd, HPD_HIGH_OTHER);
tda1997x_manual_hpd(sd, HPD_HIGH_BP);
state->edid.present = 1;
}
static void tda1997x_disable_edid(struct v4l2_subdev *sd)
{
struct tda1997x_state *state = to_state(sd);
v4l2_dbg(1, debug, sd, "%s\n", __func__);
cancel_delayed_work_sync(&state->delayed_work_enable_hpd);
/* Set HPD low */
tda1997x_manual_hpd(sd, HPD_LOW_BP);
}
static void tda1997x_enable_edid(struct v4l2_subdev *sd)
{
struct tda1997x_state *state = to_state(sd);
v4l2_dbg(1, debug, sd, "%s\n", __func__);
/* Enable hotplug after 100ms */
schedule_delayed_work(&state->delayed_work_enable_hpd, HZ / 10);
}
/* -----------------------------------------------------------------------------
* Signal Control
*/
/*
* configure vid_fmt based on mbus_code
*/
static int
tda1997x_setup_format(struct tda1997x_state *state, u32 code)
{
v4l_dbg(1, debug, state->client, "%s code=0x%x\n", __func__, code);
switch (code) {
case MEDIA_BUS_FMT_RGB121212_1X36:
case MEDIA_BUS_FMT_RGB888_1X24:
case MEDIA_BUS_FMT_YUV12_1X36:
case MEDIA_BUS_FMT_YUV8_1X24:
state->vid_fmt = OF_FMT_444;
break;
case MEDIA_BUS_FMT_UYVY12_1X24:
case MEDIA_BUS_FMT_UYVY10_1X20:
case MEDIA_BUS_FMT_UYVY8_1X16:
state->vid_fmt = OF_FMT_422_SMPT;
break;
case MEDIA_BUS_FMT_UYVY12_2X12:
case MEDIA_BUS_FMT_UYVY10_2X10:
case MEDIA_BUS_FMT_UYVY8_2X8:
state->vid_fmt = OF_FMT_422_CCIR;
break;
default:
v4l_err(state->client, "incompatible format (0x%x)\n", code);
return -EINVAL;
}
v4l_dbg(1, debug, state->client, "%s code=0x%x fmt=%s\n", __func__,
code, vidfmt_names[state->vid_fmt]);
state->mbus_code = code;
return 0;
}
/*
* The color conversion matrix will convert between the colorimetry of the
* HDMI input to the desired output format RGB|YUV. RGB output is to be
* full-range and YUV is to be limited range.
*
* RGB full-range uses values from 0 to 255 which is recommended on a monitor
* and RGB Limited uses values from 16 to 236 (16=black, 235=white) which is
* typically recommended on a TV.
*/
static void
tda1997x_configure_csc(struct v4l2_subdev *sd)
{
struct tda1997x_state *state = to_state(sd);
struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
/* Blanking code values depend on output colorspace (RGB or YUV) */
struct blanking_codes {
s16 code_gy;
s16 code_bu;
s16 code_rv;
};
static const struct blanking_codes rgb_blanking = { 64, 64, 64 };
static const struct blanking_codes yuv_blanking = { 64, 512, 512 };
const struct blanking_codes *blanking_codes = NULL;
u8 reg;
v4l_dbg(1, debug, state->client, "input:%s quant:%s output:%s\n",
hdmi_colorspace_names[avi->colorspace],
v4l2_quantization_names[c->quantization],
vidfmt_names[state->vid_fmt]);
state->conv = NULL;
switch (state->vid_fmt) {
/* RGB output */
case OF_FMT_444:
blanking_codes = &rgb_blanking;
if (c->colorspace == V4L2_COLORSPACE_SRGB) {
if (c->quantization == V4L2_QUANTIZATION_LIM_RANGE)
state->conv = &conv_matrix[RGBLIMITED_RGBFULL];
} else {
if (c->colorspace == V4L2_COLORSPACE_REC709)
state->conv = &conv_matrix[ITU709_RGBFULL];
else if (c->colorspace == V4L2_COLORSPACE_SMPTE170M)
state->conv = &conv_matrix[ITU601_RGBFULL];
}
break;
/* YUV output */
case OF_FMT_422_SMPT: /* semi-planar */
case OF_FMT_422_CCIR: /* CCIR656 */
blanking_codes = &yuv_blanking;
if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
(c->quantization == V4L2_QUANTIZATION_FULL_RANGE)) {
if (state->timings.bt.height <= 576)
state->conv = &conv_matrix[RGBFULL_ITU601];
else
state->conv = &conv_matrix[RGBFULL_ITU709];
} else if ((c->colorspace == V4L2_COLORSPACE_SRGB) &&
(c->quantization == V4L2_QUANTIZATION_LIM_RANGE)) {
if (state->timings.bt.height <= 576)
state->conv = &conv_matrix[RGBLIMITED_ITU601];
else
state->conv = &conv_matrix[RGBLIMITED_ITU709];
}
break;
}
if (state->conv) {
v4l_dbg(1, debug, state->client, "%s\n",
state->conv->name);
/* enable matrix conversion */
reg = io_read(sd, REG_VDP_CTRL);
reg &= ~VDP_CTRL_MATRIX_BP;
io_write(sd, REG_VDP_CTRL, reg);
/* offset inputs */
io_write16(sd, REG_VDP_MATRIX + 0, state->conv->offint1);
io_write16(sd, REG_VDP_MATRIX + 2, state->conv->offint2);
io_write16(sd, REG_VDP_MATRIX + 4, state->conv->offint3);
/* coefficients */
io_write16(sd, REG_VDP_MATRIX + 6, state->conv->p11coef);
io_write16(sd, REG_VDP_MATRIX + 8, state->conv->p12coef);
io_write16(sd, REG_VDP_MATRIX + 10, state->conv->p13coef);
io_write16(sd, REG_VDP_MATRIX + 12, state->conv->p21coef);
io_write16(sd, REG_VDP_MATRIX + 14, state->conv->p22coef);
io_write16(sd, REG_VDP_MATRIX + 16, state->conv->p23coef);
io_write16(sd, REG_VDP_MATRIX + 18, state->conv->p31coef);
io_write16(sd, REG_VDP_MATRIX + 20, state->conv->p32coef);
io_write16(sd, REG_VDP_MATRIX + 22, state->conv->p33coef);
/* offset outputs */
io_write16(sd, REG_VDP_MATRIX + 24, state->conv->offout1);
io_write16(sd, REG_VDP_MATRIX + 26, state->conv->offout2);
io_write16(sd, REG_VDP_MATRIX + 28, state->conv->offout3);
} else {
/* disable matrix conversion */
reg = io_read(sd, REG_VDP_CTRL);
reg |= VDP_CTRL_MATRIX_BP;
io_write(sd, REG_VDP_CTRL, reg);
}
/* SetBlankingCodes */
if (blanking_codes) {
io_write16(sd, REG_BLK_GY, blanking_codes->code_gy);
io_write16(sd, REG_BLK_BU, blanking_codes->code_bu);
io_write16(sd, REG_BLK_RV, blanking_codes->code_rv);
}
}
/* Configure frame detection window and VHREF timing generator */
static void
tda1997x_configure_vhref(struct v4l2_subdev *sd)
{
struct tda1997x_state *state = to_state(sd);
const struct v4l2_bt_timings *bt = &state->timings.bt;
int width, lines;
u16 href_start, href_end;
u16 vref_f1_start, vref_f2_start;
u8 vref_f1_width, vref_f2_width;
u8 field_polarity;
u16 fieldref_f1_start, fieldref_f2_start;
u8 reg;
href_start = bt->hbackporch + bt->hsync + 1;
href_end = href_start + bt->width;
vref_f1_start = bt->height + bt->vbackporch + bt->vsync +
bt->il_vbackporch + bt->il_vsync +
bt->il_vfrontporch;
vref_f1_width = bt->vbackporch + bt->vsync + bt->vfrontporch;
vref_f2_start = 0;
vref_f2_width = 0;
fieldref_f1_start = 0;
fieldref_f2_start = 0;
if (bt->interlaced) {
vref_f2_start = (bt->height / 2) +
(bt->il_vbackporch + bt->il_vsync - 1);
vref_f2_width = bt->il_vbackporch + bt->il_vsync +
bt->il_vfrontporch;
fieldref_f2_start = vref_f2_start + bt->il_vfrontporch +
fieldref_f1_start;
}
field_polarity = 0;
width = V4L2_DV_BT_FRAME_WIDTH(bt);
lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
/*
* Configure Frame Detection Window:
* horiz area where the VHREF module consider a VSYNC a new frame
*/
io_write16(sd, REG_FDW_S, 0x2ef); /* start position */
io_write16(sd, REG_FDW_E, 0x141); /* end position */
/* Set Pixel And Line Counters */
if (state->chip_revision == 0)
io_write16(sd, REG_PXCNT_PR, 4);
else
io_write16(sd, REG_PXCNT_PR, 1);
io_write16(sd, REG_PXCNT_NPIX, width & MASK_VHREF);
io_write16(sd, REG_LCNT_PR, 1);
io_write16(sd, REG_LCNT_NLIN, lines & MASK_VHREF);
/*
* Configure the VHRef timing generator responsible for rebuilding all
* horiz and vert synch and ref signals from its input allowing auto
* detection algorithms and forcing predefined modes (480i & 576i)
*/
reg = VHREF_STD_DET_OFF << VHREF_STD_DET_SHIFT;
io_write(sd, REG_VHREF_CTRL, reg);
/*
* Configure the VHRef timing values. In case the VHREF generator has
* been configured in manual mode, this will allow to manually set all
* horiz and vert ref values (non-active pixel areas) of the generator
* and allows setting the frame reference params.
*/
/* horizontal reference start/end */
io_write16(sd, REG_HREF_S, href_start & MASK_VHREF);
io_write16(sd, REG_HREF_E, href_end & MASK_VHREF);
/* vertical reference f1 start/end */
io_write16(sd, REG_VREF_F1_S, vref_f1_start & MASK_VHREF);
io_write(sd, REG_VREF_F1_WIDTH, vref_f1_width);
/* vertical reference f2 start/end */
io_write16(sd, REG_VREF_F2_S, vref_f2_start & MASK_VHREF);
io_write(sd, REG_VREF_F2_WIDTH, vref_f2_width);
/* F1/F2 FREF, field polarity */
reg = fieldref_f1_start & MASK_VHREF;
reg |= field_polarity << 8;
io_write16(sd, REG_FREF_F1_S, reg);
reg = fieldref_f2_start & MASK_VHREF;
io_write16(sd, REG_FREF_F2_S, reg);
}
/* Configure Video Output port signals */
static int
tda1997x_configure_vidout(struct tda1997x_state *state)
{
struct v4l2_subdev *sd = &state->sd;
struct tda1997x_platform_data *pdata = &state->pdata;
u8 prefilter;
u8 reg;
/* Configure pixel clock generator: delay, polarity, rate */
reg = (state->vid_fmt == OF_FMT_422_CCIR) ?
PCLK_SEL_X2 : PCLK_SEL_X1;
reg |= pdata->vidout_delay_pclk << PCLK_DELAY_SHIFT;
reg |= pdata->vidout_inv_pclk << PCLK_INV_SHIFT;
io_write(sd, REG_PCLK, reg);
/* Configure pre-filter */
prefilter = 0; /* filters off */
/* YUV422 mode requires conversion */
if ((state->vid_fmt == OF_FMT_422_SMPT) ||
(state->vid_fmt == OF_FMT_422_CCIR)) {
/* 2/7 taps for Rv and Bu */
prefilter = FILTERS_CTRL_2_7TAP << FILTERS_CTRL_BU_SHIFT |
FILTERS_CTRL_2_7TAP << FILTERS_CTRL_RV_SHIFT;
}
io_write(sd, REG_FILTERS_CTRL, prefilter);
/* Configure video port */
reg = state->vid_fmt & OF_FMT_MASK;
if (state->vid_fmt == OF_FMT_422_CCIR)
reg |= (OF_BLK | OF_TRC);
reg |= OF_VP_ENABLE;
io_write(sd, REG_OF, reg);
/* Configure formatter and conversions */
reg = io_read(sd, REG_VDP_CTRL);
/* pre-filter is needed unless (REG_FILTERS_CTRL == 0) */
if (!prefilter)
reg |= VDP_CTRL_PREFILTER_BP;
else
reg &= ~VDP_CTRL_PREFILTER_BP;
/* formatter is needed for YUV422 and for trc/blc codes */
if (state->vid_fmt == OF_FMT_444)
reg |= VDP_CTRL_FORMATTER_BP;
/* formatter and compdel needed for timing/blanking codes */
else
reg &= ~(VDP_CTRL_FORMATTER_BP | VDP_CTRL_COMPDEL_BP);
/* activate compdel for small sync delays */
if ((pdata->vidout_delay_vs < 4) || (pdata->vidout_delay_hs < 4))
reg &= ~VDP_CTRL_COMPDEL_BP;
io_write(sd, REG_VDP_CTRL, reg);
/* Configure DE output signal: delay, polarity, and source */
reg = pdata->vidout_delay_de << DE_FREF_DELAY_SHIFT |
pdata->vidout_inv_de << DE_FREF_INV_SHIFT |
pdata->vidout_sel_de << DE_FREF_SEL_SHIFT;
io_write(sd, REG_DE_FREF, reg);
/* Configure HS/HREF output signal: delay, polarity, and source */
if (state->vid_fmt != OF_FMT_422_CCIR) {
reg = pdata->vidout_delay_hs << HS_HREF_DELAY_SHIFT |
pdata->vidout_inv_hs << HS_HREF_INV_SHIFT |
pdata->vidout_sel_hs << HS_HREF_SEL_SHIFT;
} else
reg = HS_HREF_SEL_NONE << HS_HREF_SEL_SHIFT;
io_write(sd, REG_HS_HREF, reg);
/* Configure VS/VREF output signal: delay, polarity, and source */
if (state->vid_fmt != OF_FMT_422_CCIR) {
reg = pdata->vidout_delay_vs << VS_VREF_DELAY_SHIFT |
pdata->vidout_inv_vs << VS_VREF_INV_SHIFT |
pdata->vidout_sel_vs << VS_VREF_SEL_SHIFT;
} else
reg = VS_VREF_SEL_NONE << VS_VREF_SEL_SHIFT;
io_write(sd, REG_VS_VREF, reg);
return 0;
}
/* Configure Audio output port signals */
static int
tda1997x_configure_audout(struct v4l2_subdev *sd, u8 channel_assignment)
{
struct tda1997x_state *state = to_state(sd);
struct tda1997x_platform_data *pdata = &state->pdata;
bool sp_used_by_fifo = true;
u8 reg;
if (!pdata->audout_format)
return 0;
/* channel assignment (CEA-861-D Table 20) */
io_write(sd, REG_AUDIO_PATH, channel_assignment);
/* Audio output configuration */
reg = 0;
switch (pdata->audout_format) {
case AUDFMT_TYPE_I2S:
reg |= AUDCFG_BUS_I2S << AUDCFG_BUS_SHIFT;
break;
case AUDFMT_TYPE_SPDIF:
reg |= AUDCFG_BUS_SPDIF << AUDCFG_BUS_SHIFT;
break;
}
switch (state->audio_type) {
case AUDCFG_TYPE_PCM:
reg |= AUDCFG_TYPE_PCM << AUDCFG_TYPE_SHIFT;
break;
case AUDCFG_TYPE_OBA:
reg |= AUDCFG_TYPE_OBA << AUDCFG_TYPE_SHIFT;
break;
case AUDCFG_TYPE_DST:
reg |= AUDCFG_TYPE_DST << AUDCFG_TYPE_SHIFT;
sp_used_by_fifo = false;
break;
case AUDCFG_TYPE_HBR:
reg |= AUDCFG_TYPE_HBR << AUDCFG_TYPE_SHIFT;
if (pdata->audout_layout == 1) {
/* demuxed via AP0:AP3 */
reg |= AUDCFG_HBR_DEMUX << AUDCFG_HBR_SHIFT;
if (pdata->audout_format == AUDFMT_TYPE_SPDIF)
sp_used_by_fifo = false;
} else {
/* straight via AP0 */
reg |= AUDCFG_HBR_STRAIGHT << AUDCFG_HBR_SHIFT;
}
break;
}
if (pdata->audout_width == 32)
reg |= AUDCFG_I2SW_32 << AUDCFG_I2SW_SHIFT;
else
reg |= AUDCFG_I2SW_16 << AUDCFG_I2SW_SHIFT;
/* automatic hardware mute */
if (pdata->audio_auto_mute)
reg |= AUDCFG_AUTO_MUTE_EN;
/* clock polarity */
if (pdata->audout_invert_clk)
reg |= AUDCFG_CLK_INVERT;
io_write(sd, REG_AUDCFG, reg);
/* audio layout */
reg = (pdata->audout_layout) ? AUDIO_LAYOUT_LAYOUT1 : 0;
if (!pdata->audout_layoutauto)
reg |= AUDIO_LAYOUT_MANUAL;
if (sp_used_by_fifo)
reg |= AUDIO_LAYOUT_SP_FLAG;
io_write(sd, REG_AUDIO_LAYOUT, reg);
/* FIFO Latency value */
io_write(sd, REG_FIFO_LATENCY_VAL, 0x80);
/* Audio output port config */
if (sp_used_by_fifo) {
reg = AUDIO_OUT_ENABLE_AP0;
if (channel_assignment >= 0x01)
reg |= AUDIO_OUT_ENABLE_AP1;
if (channel_assignment >= 0x04)
reg |= AUDIO_OUT_ENABLE_AP2;
if (channel_assignment >= 0x0c)
reg |= AUDIO_OUT_ENABLE_AP3;
/* specific cases where AP1 is not used */
if ((channel_assignment == 0x04)
|| (channel_assignment == 0x08)
|| (channel_assignment == 0x0c)
|| (channel_assignment == 0x10)
|| (channel_assignment == 0x14)
|| (channel_assignment == 0x18)
|| (channel_assignment == 0x1c))
reg &= ~AUDIO_OUT_ENABLE_AP1;
/* specific cases where AP2 is not used */
if ((channel_assignment >= 0x14)
&& (channel_assignment <= 0x17))
reg &= ~AUDIO_OUT_ENABLE_AP2;
} else {
reg = AUDIO_OUT_ENABLE_AP3 |
AUDIO_OUT_ENABLE_AP2 |
AUDIO_OUT_ENABLE_AP1 |
AUDIO_OUT_ENABLE_AP0;
}
if (pdata->audout_format == AUDFMT_TYPE_I2S)
reg |= (AUDIO_OUT_ENABLE_ACLK | AUDIO_OUT_ENABLE_WS);
io_write(sd, REG_AUDIO_OUT_ENABLE, reg);
/* reset test mode to normal audio freq auto selection */
io_write(sd, REG_TEST_MODE, 0x00);
return 0;
}
/* Soft Reset of specific hdmi info */
static int
tda1997x_hdmi_info_reset(struct v4l2_subdev *sd, u8 info_rst, bool reset_sus)
{
u8 reg;
/* reset infoframe engine packets */
reg = io_read(sd, REG_HDMI_INFO_RST);
io_write(sd, REG_HDMI_INFO_RST, info_rst);
/* if infoframe engine has been reset clear INT_FLG_MODE */
if (reg & RESET_IF) {
reg = io_read(sd, REG_INT_FLG_CLR_MODE);
io_write(sd, REG_INT_FLG_CLR_MODE, reg);
}
/* Disable REFTIM to restart start-up-sequencer (SUS) */
reg = io_read(sd, REG_RATE_CTRL);
reg &= ~RATE_REFTIM_ENABLE;
if (!reset_sus)
reg |= RATE_REFTIM_ENABLE;
reg = io_write(sd, REG_RATE_CTRL, reg);
return 0;
}
static void
tda1997x_power_mode(struct tda1997x_state *state, bool enable)
{
struct v4l2_subdev *sd = &state->sd;
u8 reg;
if (enable) {
/* Automatic control of TMDS */
io_write(sd, REG_PON_OVR_EN, PON_DIS);
/* Enable current bias unit */
io_write(sd, REG_CFG1, PON_EN);
/* Enable deep color PLL */
io_write(sd, REG_DEEP_PLL7_BYP, PON_DIS);
/* Output buffers active */
reg = io_read(sd, REG_OF);
reg &= ~OF_VP_ENABLE;
io_write(sd, REG_OF, reg);
} else {
/* Power down EDID mode sequence */
/* Output buffers in HiZ */
reg = io_read(sd, REG_OF);
reg |= OF_VP_ENABLE;
io_write(sd, REG_OF, reg);
/* Disable deep color PLL */
io_write(sd, REG_DEEP_PLL7_BYP, PON_EN);
/* Disable current bias unit */
io_write(sd, REG_CFG1, PON_DIS);
/* Manual control of TMDS */
io_write(sd, REG_PON_OVR_EN, PON_EN);
}
}
static bool
tda1997x_detect_tx_5v(struct v4l2_subdev *sd)
{
u8 reg = io_read(sd, REG_DETECT_5V);
return ((reg & DETECT_5V_SEL) ? 1 : 0);
}
static bool
tda1997x_detect_tx_hpd(struct v4l2_subdev *sd)
{
u8 reg = io_read(sd, REG_DETECT_5V);
return ((reg & DETECT_HPD) ? 1 : 0);
}
static int
tda1997x_detect_std(struct tda1997x_state *state,
struct v4l2_dv_timings *timings)
{
struct v4l2_subdev *sd = &state->sd;
u32 vper;
u16 hper;
u16 hsper;
int i;
/*
* Read the FMT registers
* REG_V_PER: Period of a frame (or two fields) in MCLK(27MHz) cycles
* REG_H_PER: Period of a line in MCLK(27MHz) cycles
* REG_HS_WIDTH: Period of horiz sync pulse in MCLK(27MHz) cycles
*/
vper = io_read24(sd, REG_V_PER) & MASK_VPER;
hper = io_read16(sd, REG_H_PER) & MASK_HPER;
hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
v4l2_dbg(1, debug, sd, "Signal Timings: %u/%u/%u\n", vper, hper, hsper);
if (!vper || !hper || !hsper)
return -ENOLINK;
for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
const struct v4l2_bt_timings *bt;
u32 lines, width, _hper, _hsper;
u32 vmin, vmax, hmin, hmax, hsmin, hsmax;
bool vmatch, hmatch, hsmatch;
bt = &v4l2_dv_timings_presets[i].bt;
width = V4L2_DV_BT_FRAME_WIDTH(bt);
lines = V4L2_DV_BT_FRAME_HEIGHT(bt);
_hper = (u32)bt->pixelclock / width;
if (bt->interlaced)
lines /= 2;
/* vper +/- 0.7% */
vmin = ((27000000 / 1000) * 993) / _hper * lines;
vmax = ((27000000 / 1000) * 1007) / _hper * lines;
/* hper +/- 1.0% */
hmin = ((27000000 / 100) * 99) / _hper;
hmax = ((27000000 / 100) * 101) / _hper;
/* hsper +/- 2 (take care to avoid 32bit overflow) */
_hsper = 27000 * bt->hsync / ((u32)bt->pixelclock/1000);
hsmin = _hsper - 2;
hsmax = _hsper + 2;
/* vmatch matches the framerate */
vmatch = ((vper <= vmax) && (vper >= vmin)) ? 1 : 0;
/* hmatch matches the width */
hmatch = ((hper <= hmax) && (hper >= hmin)) ? 1 : 0;
/* hsmatch matches the hswidth */
hsmatch = ((hsper <= hsmax) && (hsper >= hsmin)) ? 1 : 0;
if (hmatch && vmatch && hsmatch) {
v4l2_print_dv_timings(sd->name, "Detected format: ",
&v4l2_dv_timings_presets[i],
false);
if (timings)
*timings = v4l2_dv_timings_presets[i];
return 0;
}
}
v4l_err(state->client, "no resolution match for timings: %d/%d/%d\n",
vper, hper, hsper);
return -ERANGE;
}
/* some sort of errata workaround for chip revision 0 (N1) */
static void tda1997x_reset_n1(struct tda1997x_state *state)
{
struct v4l2_subdev *sd = &state->sd;
u8 reg;
/* clear HDMI mode flag in BCAPS */
io_write(sd, REG_CLK_CFG, CLK_CFG_SEL_ACLK_EN | CLK_CFG_SEL_ACLK);
io_write(sd, REG_PON_OVR_EN, PON_EN);
io_write(sd, REG_PON_CBIAS, PON_EN);
io_write(sd, REG_PON_PLL, PON_EN);
reg = io_read(sd, REG_MODE_REC_CFG1);
reg &= ~0x06;
reg |= 0x02;
io_write(sd, REG_MODE_REC_CFG1, reg);
io_write(sd, REG_CLK_CFG, CLK_CFG_DIS);
io_write(sd, REG_PON_OVR_EN, PON_DIS);
reg = io_read(sd, REG_MODE_REC_CFG1);
reg &= ~0x06;
io_write(sd, REG_MODE_REC_CFG1, reg);
}
/*
* Activity detection must only be notified when stable_clk_x AND active_x
* bits are set to 1. If only stable_clk_x bit is set to 1 but not
* active_x, it means that the TMDS clock is not in the defined range
* and activity detection must not be notified.
*/
static u8
tda1997x_read_activity_status_regs(struct v4l2_subdev *sd)
{
u8 reg, status = 0;
/* Read CLK_A_STATUS register */
reg = io_read(sd, REG_CLK_A_STATUS);
/* ignore if not active */
if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
reg &= ~MASK_CLK_STABLE;
status |= ((reg & MASK_CLK_STABLE) >> 2);
/* Read CLK_B_STATUS register */
reg = io_read(sd, REG_CLK_B_STATUS);
/* ignore if not active */
if ((reg & MASK_CLK_STABLE) && !(reg & MASK_CLK_ACTIVE))
reg &= ~MASK_CLK_STABLE;
status |= ((reg & MASK_CLK_STABLE) >> 1);
/* Read the SUS_STATUS register */
reg = io_read(sd, REG_SUS_STATUS);
/* If state = 5 => TMDS is locked */
if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED)
status |= MASK_SUS_STATE;
else
status &= ~MASK_SUS_STATE;
return status;
}
static void
set_rgb_quantization_range(struct tda1997x_state *state)
{
struct v4l2_hdmi_colorimetry *c = &state->colorimetry;
state->colorimetry = v4l2_hdmi_rx_colorimetry(&state->avi_infoframe,
NULL,
state->timings.bt.height);
/* If ycbcr_enc is V4L2_YCBCR_ENC_DEFAULT, we receive RGB */
if (c->ycbcr_enc == V4L2_YCBCR_ENC_DEFAULT) {
switch (state->rgb_quantization_range) {
case V4L2_DV_RGB_RANGE_LIMITED:
c->quantization = V4L2_QUANTIZATION_FULL_RANGE;
break;
case V4L2_DV_RGB_RANGE_FULL:
c->quantization = V4L2_QUANTIZATION_LIM_RANGE;
break;
}
}
v4l_dbg(1, debug, state->client,
"colorspace=%d/%d colorimetry=%d range=%s content=%d\n",
state->avi_infoframe.colorspace, c->colorspace,
state->avi_infoframe.colorimetry,
v4l2_quantization_names[c->quantization],
state->avi_infoframe.content_type);
}
/* parse an infoframe and do some sanity checks on it */
static unsigned int
tda1997x_parse_infoframe(struct tda1997x_state *state, u16 addr)
{
struct v4l2_subdev *sd = &state->sd;
union hdmi_infoframe frame;
u8 buffer[40];
u8 reg;
int len, err;
/* read data */
len = io_readn(sd, addr, sizeof(buffer), buffer);
err = hdmi_infoframe_unpack(&frame, buffer, sizeof(buffer));
if (err) {
v4l_err(state->client,
"failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
len, addr, buffer[0]);
return err;
}
hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
switch (frame.any.type) {
/* Audio InfoFrame: see HDMI spec 8.2.2 */
case HDMI_INFOFRAME_TYPE_AUDIO:
/* sample rate */
switch (frame.audio.sample_frequency) {
case HDMI_AUDIO_SAMPLE_FREQUENCY_32000:
state->audio_samplerate = 32000;
break;
case HDMI_AUDIO_SAMPLE_FREQUENCY_44100:
state->audio_samplerate = 44100;
break;
case HDMI_AUDIO_SAMPLE_FREQUENCY_48000:
state->audio_samplerate = 48000;
break;
case HDMI_AUDIO_SAMPLE_FREQUENCY_88200:
state->audio_samplerate = 88200;
break;
case HDMI_AUDIO_SAMPLE_FREQUENCY_96000:
state->audio_samplerate = 96000;
break;
case HDMI_AUDIO_SAMPLE_FREQUENCY_176400:
state->audio_samplerate = 176400;
break;
case HDMI_AUDIO_SAMPLE_FREQUENCY_192000:
state->audio_samplerate = 192000;
break;
default:
case HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM:
break;
}
/* sample size */
switch (frame.audio.sample_size) {
case HDMI_AUDIO_SAMPLE_SIZE_16:
state->audio_samplesize = 16;
break;
case HDMI_AUDIO_SAMPLE_SIZE_20:
state->audio_samplesize = 20;
break;
case HDMI_AUDIO_SAMPLE_SIZE_24:
state->audio_samplesize = 24;
break;
case HDMI_AUDIO_SAMPLE_SIZE_STREAM:
default:
break;
}
/* Channel Count */
state->audio_channels = frame.audio.channels;
if (frame.audio.channel_allocation &&
frame.audio.channel_allocation != state->audio_ch_alloc) {
/* use the channel assignment from the infoframe */
state->audio_ch_alloc = frame.audio.channel_allocation;
tda1997x_configure_audout(sd, state->audio_ch_alloc);
/* reset the audio FIFO */
tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
}
break;
/* Auxiliary Video information (AVI) InfoFrame: see HDMI spec 8.2.1 */
case HDMI_INFOFRAME_TYPE_AVI:
state->avi_infoframe = frame.avi;
set_rgb_quantization_range(state);
/* configure upsampler: 0=bypass 1=repeatchroma 2=interpolate */
reg = io_read(sd, REG_PIX_REPEAT);
reg &= ~PIX_REPEAT_MASK_UP_SEL;
if (frame.avi.colorspace == HDMI_COLORSPACE_YUV422)
reg |= (PIX_REPEAT_CHROMA << PIX_REPEAT_SHIFT);
io_write(sd, REG_PIX_REPEAT, reg);
/* ConfigurePixelRepeater: repeat n-times each pixel */
reg = io_read(sd, REG_PIX_REPEAT);
reg &= ~PIX_REPEAT_MASK_REP;
reg |= frame.avi.pixel_repeat;
io_write(sd, REG_PIX_REPEAT, reg);
/* configure the receiver with the new colorspace */
tda1997x_configure_csc(sd);
break;
default:
break;
}
return 0;
}
static void tda1997x_irq_sus(struct tda1997x_state *state, u8 *flags)
{
struct v4l2_subdev *sd = &state->sd;
u8 reg, source;
source = io_read(sd, REG_INT_FLG_CLR_SUS);
io_write(sd, REG_INT_FLG_CLR_SUS, source);
if (source & MASK_MPT) {
/* reset MTP in use flag if set */
if (state->mptrw_in_progress)
state->mptrw_in_progress = 0;
}
if (source & MASK_SUS_END) {
/* reset audio FIFO */
reg = io_read(sd, REG_HDMI_INFO_RST);
reg |= MASK_SR_FIFO_FIFO_CTRL;
io_write(sd, REG_HDMI_INFO_RST, reg);
reg &= ~MASK_SR_FIFO_FIFO_CTRL;
io_write(sd, REG_HDMI_INFO_RST, reg);
/* reset HDMI flags */
state->hdmi_status = 0;
}
/* filter FMT interrupt based on SUS state */
reg = io_read(sd, REG_SUS_STATUS);
if (((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED)
|| (source & MASK_MPT)) {
source &= ~MASK_FMT;
}
if (source & (MASK_FMT | MASK_SUS_END)) {
reg = io_read(sd, REG_SUS_STATUS);
if ((reg & MASK_SUS_STATUS) != LAST_STATE_REACHED) {
v4l_err(state->client, "BAD SUS STATUS\n");
return;
}
if (debug)
tda1997x_detect_std(state, NULL);
/* notify user of change in resolution */
v4l2_subdev_notify_event(&state->sd, &tda1997x_ev_fmt);
}
}
static void tda1997x_irq_ddc(struct tda1997x_state *state, u8 *flags)
{
struct v4l2_subdev *sd = &state->sd;
u8 source;
source = io_read(sd, REG_INT_FLG_CLR_DDC);
io_write(sd, REG_INT_FLG_CLR_DDC, source);
if (source & MASK_EDID_MTP) {
/* reset MTP in use flag if set */
if (state->mptrw_in_progress)
state->mptrw_in_progress = 0;
}
/* Detection of +5V */
if (source & MASK_DET_5V) {
v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
tda1997x_detect_tx_5v(sd));
}
}
static void tda1997x_irq_rate(struct tda1997x_state *state, u8 *flags)
{
struct v4l2_subdev *sd = &state->sd;
u8 reg, source;
u8 irq_status;
source = io_read(sd, REG_INT_FLG_CLR_RATE);
io_write(sd, REG_INT_FLG_CLR_RATE, source);
/* read status regs */
irq_status = tda1997x_read_activity_status_regs(sd);
/*
* read clock status reg until INT_FLG_CLR_RATE is still 0
* after the read to make sure its the last one
*/
reg = source;
while (reg != 0) {
irq_status = tda1997x_read_activity_status_regs(sd);
reg = io_read(sd, REG_INT_FLG_CLR_RATE);
io_write(sd, REG_INT_FLG_CLR_RATE, reg);
source |= reg;
}
/* we only pay attention to stability change events */
if (source & (MASK_RATE_A_ST | MASK_RATE_B_ST)) {
int input = (source & MASK_RATE_A_ST)?0:1;
u8 mask = 1<<input;
/* state change */
if ((irq_status & mask) != (state->activity_status & mask)) {
/* activity lost */
if ((irq_status & mask) == 0) {
v4l_info(state->client,
"HDMI-%c: Digital Activity Lost\n",
input+'A');
/* bypass up/down sampler and pixel repeater */
reg = io_read(sd, REG_PIX_REPEAT);
reg &= ~PIX_REPEAT_MASK_UP_SEL;
reg &= ~PIX_REPEAT_MASK_REP;
io_write(sd, REG_PIX_REPEAT, reg);
if (state->chip_revision == 0)
tda1997x_reset_n1(state);
state->input_detect[input] = 0;
v4l2_subdev_notify_event(sd, &tda1997x_ev_fmt);
}
/* activity detected */
else {
v4l_info(state->client,
"HDMI-%c: Digital Activity Detected\n",
input+'A');
state->input_detect[input] = 1;
}
/* hold onto current state */
state->activity_status = (irq_status & mask);
}
}
}
static void tda1997x_irq_info(struct tda1997x_state *state, u8 *flags)
{
struct v4l2_subdev *sd = &state->sd;
u8 source;
source = io_read(sd, REG_INT_FLG_CLR_INFO);
io_write(sd, REG_INT_FLG_CLR_INFO, source);
/* Audio infoframe */
if (source & MASK_AUD_IF) {
tda1997x_parse_infoframe(state, AUD_IF);
source &= ~MASK_AUD_IF;
}
/* Source Product Descriptor infoframe change */
if (source & MASK_SPD_IF) {
tda1997x_parse_infoframe(state, SPD_IF);
source &= ~MASK_SPD_IF;
}
/* Auxiliary Video Information infoframe */
if (source & MASK_AVI_IF) {
tda1997x_parse_infoframe(state, AVI_IF);
source &= ~MASK_AVI_IF;
}
}
static void tda1997x_irq_audio(struct tda1997x_state *state, u8 *flags)
{
struct v4l2_subdev *sd = &state->sd;
u8 reg, source;
source = io_read(sd, REG_INT_FLG_CLR_AUDIO);
io_write(sd, REG_INT_FLG_CLR_AUDIO, source);
/* reset audio FIFO on FIFO pointer error or audio mute */
if (source & MASK_ERROR_FIFO_PT ||
source & MASK_MUTE_FLG) {
/* audio reset audio FIFO */
reg = io_read(sd, REG_SUS_STATUS);
if ((reg & MASK_SUS_STATUS) == LAST_STATE_REACHED) {
reg = io_read(sd, REG_HDMI_INFO_RST);
reg |= MASK_SR_FIFO_FIFO_CTRL;
io_write(sd, REG_HDMI_INFO_RST, reg);
reg &= ~MASK_SR_FIFO_FIFO_CTRL;
io_write(sd, REG_HDMI_INFO_RST, reg);
/* reset channel status IT if present */
source &= ~(MASK_CH_STATE);
}
}
if (source & MASK_AUDIO_FREQ_FLG) {
static const int freq[] = {
0, 32000, 44100, 48000, 88200, 96000, 176400, 192000
};
reg = io_read(sd, REG_AUDIO_FREQ);
state->audio_samplerate = freq[reg & 7];
v4l_info(state->client, "Audio Frequency Change: %dHz\n",
state->audio_samplerate);
}
if (source & MASK_AUDIO_FLG) {
reg = io_read(sd, REG_AUDIO_FLAGS);
if (reg & BIT(AUDCFG_TYPE_DST))
state->audio_type = AUDCFG_TYPE_DST;
if (reg & BIT(AUDCFG_TYPE_OBA))
state->audio_type = AUDCFG_TYPE_OBA;
if (reg & BIT(AUDCFG_TYPE_HBR))
state->audio_type = AUDCFG_TYPE_HBR;
if (reg & BIT(AUDCFG_TYPE_PCM))
state->audio_type = AUDCFG_TYPE_PCM;
v4l_info(state->client, "Audio Type: %s\n",
audtype_names[state->audio_type]);
}
}
static void tda1997x_irq_hdcp(struct tda1997x_state *state, u8 *flags)
{
struct v4l2_subdev *sd = &state->sd;
u8 reg, source;
source = io_read(sd, REG_INT_FLG_CLR_HDCP);
io_write(sd, REG_INT_FLG_CLR_HDCP, source);
/* reset MTP in use flag if set */
if (source & MASK_HDCP_MTP)
state->mptrw_in_progress = 0;
if (source & MASK_STATE_C5) {
/* REPEATER: mask AUDIO and IF irqs to avoid IF during auth */
reg = io_read(sd, REG_INT_MASK_TOP);
reg &= ~(INTERRUPT_AUDIO | INTERRUPT_INFO);
io_write(sd, REG_INT_MASK_TOP, reg);
*flags &= (INTERRUPT_AUDIO | INTERRUPT_INFO);
}
}
static irqreturn_t tda1997x_isr_thread(int irq, void *d)
{
struct tda1997x_state *state = d;
struct v4l2_subdev *sd = &state->sd;
u8 flags;
mutex_lock(&state->lock);
do {
/* read interrupt flags */
flags = io_read(sd, REG_INT_FLG_CLR_TOP);
if (flags == 0)
break;
/* SUS interrupt source (Input activity events) */
if (flags & INTERRUPT_SUS)
tda1997x_irq_sus(state, &flags);
/* DDC interrupt source (Display Data Channel) */
else if (flags & INTERRUPT_DDC)
tda1997x_irq_ddc(state, &flags);
/* RATE interrupt source (Digital Input activity) */
else if (flags & INTERRUPT_RATE)
tda1997x_irq_rate(state, &flags);
/* Infoframe change interrupt */
else if (flags & INTERRUPT_INFO)
tda1997x_irq_info(state, &flags);
/* Audio interrupt source:
* freq change, DST,OBA,HBR,ASP flags, mute, FIFO err
*/
else if (flags & INTERRUPT_AUDIO)
tda1997x_irq_audio(state, &flags);
/* HDCP interrupt source (content protection) */
if (flags & INTERRUPT_HDCP)
tda1997x_irq_hdcp(state, &flags);
} while (flags != 0);
mutex_unlock(&state->lock);
return IRQ_HANDLED;
}
/* -----------------------------------------------------------------------------
* v4l2_subdev_video_ops
*/
static int
tda1997x_g_input_status(struct v4l2_subdev *sd, u32 *status)
{
struct tda1997x_state *state = to_state(sd);
u32 vper;
u16 hper;
u16 hsper;
mutex_lock(&state->lock);
vper = io_read24(sd, REG_V_PER) & MASK_VPER;
hper = io_read16(sd, REG_H_PER) & MASK_HPER;
hsper = io_read16(sd, REG_HS_WIDTH) & MASK_HSWIDTH;
/*
* The tda1997x supports A/B inputs but only a single output.
* The irq handler monitors for timing changes on both inputs and
* sets the input_detect array to 0|1 depending on signal presence.
* I believe selection of A vs B is automatic.
*
* The vper/hper/hsper registers provide the frame period, line period
* and horiz sync period (units of MCLK clock cycles (27MHz)) and
* testing shows these values to be random if no signal is present
* or locked.
*/
v4l2_dbg(1, debug, sd, "inputs:%d/%d timings:%d/%d/%d\n",
state->input_detect[0], state->input_detect[1],
vper, hper, hsper);
if (!state->input_detect[0] && !state->input_detect[1])
*status = V4L2_IN_ST_NO_SIGNAL;
else if (!vper || !hper || !hsper)
*status = V4L2_IN_ST_NO_SYNC;
else
*status = 0;
mutex_unlock(&state->lock);
return 0;
};
static int tda1997x_s_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct tda1997x_state *state = to_state(sd);
v4l_dbg(1, debug, state->client, "%s\n", __func__);
if (v4l2_match_dv_timings(&state->timings, timings, 0, false))
return 0; /* no changes */
if (!v4l2_valid_dv_timings(timings, &tda1997x_dv_timings_cap,
NULL, NULL))
return -ERANGE;
mutex_lock(&state->lock);
state->timings = *timings;
/* setup frame detection window and VHREF timing generator */
tda1997x_configure_vhref(sd);
/* configure colorspace conversion */
tda1997x_configure_csc(sd);
mutex_unlock(&state->lock);
return 0;
}
static int tda1997x_g_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct tda1997x_state *state = to_state(sd);
v4l_dbg(1, debug, state->client, "%s\n", __func__);
mutex_lock(&state->lock);
*timings = state->timings;
mutex_unlock(&state->lock);
return 0;
}
static int tda1997x_query_dv_timings(struct v4l2_subdev *sd,
struct v4l2_dv_timings *timings)
{
struct tda1997x_state *state = to_state(sd);
v4l_dbg(1, debug, state->client, "%s\n", __func__);
memset(timings, 0, sizeof(struct v4l2_dv_timings));
mutex_lock(&state->lock);
tda1997x_detect_std(state, timings);
mutex_unlock(&state->lock);
return 0;
}
static const struct v4l2_subdev_video_ops tda1997x_video_ops = {
.g_input_status = tda1997x_g_input_status,
.s_dv_timings = tda1997x_s_dv_timings,
.g_dv_timings = tda1997x_g_dv_timings,
.query_dv_timings = tda1997x_query_dv_timings,
};
/* -----------------------------------------------------------------------------
* v4l2_subdev_pad_ops
*/
static int tda1997x_init_cfg(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg)
{
struct tda1997x_state *state = to_state(sd);
struct v4l2_mbus_framefmt *mf;
mf = v4l2_subdev_get_try_format(sd, cfg, 0);
mf->code = state->mbus_codes[0];
return 0;
}
static int tda1997x_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
{
struct tda1997x_state *state = to_state(sd);
v4l_dbg(1, debug, state->client, "%s %d\n", __func__, code->index);
if (code->index >= ARRAY_SIZE(state->mbus_codes))
return -EINVAL;
if (!state->mbus_codes[code->index])
return -EINVAL;
code->code = state->mbus_codes[code->index];
return 0;
}
static void tda1997x_fill_format(struct tda1997x_state *state,
struct v4l2_mbus_framefmt *format)
{
const struct v4l2_bt_timings *bt;
memset(format, 0, sizeof(*format));
bt = &state->timings.bt;
format->width = bt->width;
format->height = bt->height;
format->colorspace = state->colorimetry.colorspace;
format->field = (bt->interlaced) ?
V4L2_FIELD_SEQ_TB : V4L2_FIELD_NONE;
}
static int tda1997x_get_format(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct tda1997x_state *state = to_state(sd);
v4l_dbg(1, debug, state->client, "%s pad=%d which=%d\n",
__func__, format->pad, format->which);
tda1997x_fill_format(state, &format->format);
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
format->format.code = fmt->code;
} else
format->format.code = state->mbus_code;
return 0;
}
static int tda1997x_set_format(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *format)
{
struct tda1997x_state *state = to_state(sd);
u32 code = 0;
int i;
v4l_dbg(1, debug, state->client, "%s pad=%d which=%d fmt=0x%x\n",
__func__, format->pad, format->which, format->format.code);
for (i = 0; i < ARRAY_SIZE(state->mbus_codes); i++) {
if (format->format.code == state->mbus_codes[i]) {
code = state->mbus_codes[i];
break;
}
}
if (!code)
code = state->mbus_codes[0];
tda1997x_fill_format(state, &format->format);
format->format.code = code;
if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
*fmt = format->format;
} else {
int ret = tda1997x_setup_format(state, format->format.code);
if (ret)
return ret;
/* mbus_code has changed - re-configure csc/vidout */
tda1997x_configure_csc(sd);
tda1997x_configure_vidout(state);
}
return 0;
}
static int tda1997x_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
{
struct tda1997x_state *state = to_state(sd);
v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
memset(edid->reserved, 0, sizeof(edid->reserved));
if (edid->start_block == 0 && edid->blocks == 0) {
edid->blocks = state->edid.blocks;
return 0;
}
if (!state->edid.present)
return -ENODATA;
if (edid->start_block >= state->edid.blocks)
return -EINVAL;
if (edid->start_block + edid->blocks > state->edid.blocks)
edid->blocks = state->edid.blocks - edid->start_block;
memcpy(edid->edid, state->edid.edid + edid->start_block * 128,
edid->blocks * 128);
return 0;
}
static int tda1997x_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
{
struct tda1997x_state *state = to_state(sd);
int i;
v4l_dbg(1, debug, state->client, "%s pad=%d\n", __func__, edid->pad);
memset(edid->reserved, 0, sizeof(edid->reserved));
if (edid->start_block != 0)
return -EINVAL;
if (edid->blocks == 0) {
state->edid.blocks = 0;
state->edid.present = 0;
tda1997x_disable_edid(sd);
return 0;
}
if (edid->blocks > 2) {
edid->blocks = 2;
return -E2BIG;
}
tda1997x_disable_edid(sd);
/* write base EDID */
for (i = 0; i < 128; i++)
io_write(sd, REG_EDID_IN_BYTE0 + i, edid->edid[i]);
/* write CEA Extension */
for (i = 0; i < 128; i++)
io_write(sd, REG_EDID_IN_BYTE128 + i, edid->edid[i+128]);
/* store state */
memcpy(state->edid.edid, edid->edid, 256);
state->edid.blocks = edid->blocks;
tda1997x_enable_edid(sd);
return 0;
}
static int tda1997x_get_dv_timings_cap(struct v4l2_subdev *sd,
struct v4l2_dv_timings_cap *cap)
{
*cap = tda1997x_dv_timings_cap;
return 0;
}
static int tda1997x_enum_dv_timings(struct v4l2_subdev *sd,
struct v4l2_enum_dv_timings *timings)
{
return v4l2_enum_dv_timings_cap(timings, &tda1997x_dv_timings_cap,
NULL, NULL);
}
static const struct v4l2_subdev_pad_ops tda1997x_pad_ops = {
.init_cfg = tda1997x_init_cfg,
.enum_mbus_code = tda1997x_enum_mbus_code,
.get_fmt = tda1997x_get_format,
.set_fmt = tda1997x_set_format,
.get_edid = tda1997x_get_edid,
.set_edid = tda1997x_set_edid,
.dv_timings_cap = tda1997x_get_dv_timings_cap,
.enum_dv_timings = tda1997x_enum_dv_timings,
};
/* -----------------------------------------------------------------------------
* v4l2_subdev_core_ops
*/
static int tda1997x_log_infoframe(struct v4l2_subdev *sd, int addr)
{
struct tda1997x_state *state = to_state(sd);
union hdmi_infoframe frame;
u8 buffer[40];
int len, err;
/* read data */
len = io_readn(sd, addr, sizeof(buffer), buffer);
v4l2_dbg(1, debug, sd, "infoframe: addr=%d len=%d\n", addr, len);
err = hdmi_infoframe_unpack(&frame, buffer, sizeof(buffer));
if (err) {
v4l_err(state->client,
"failed parsing %d byte infoframe: 0x%04x/0x%02x\n",
len, addr, buffer[0]);
return err;
}
hdmi_infoframe_log(KERN_INFO, &state->client->dev, &frame);
return 0;
}
static int tda1997x_log_status(struct v4l2_subdev *sd)
{
struct tda1997x_state *state = to_state(sd);
struct v4l2_dv_timings timings;
struct hdmi_avi_infoframe *avi = &state->avi_infoframe;
v4l2_info(sd, "-----Chip status-----\n");
v4l2_info(sd, "Chip: %s N%d\n", state->info->name,
state->chip_revision + 1);
v4l2_info(sd, "EDID Enabled: %s\n", state->edid.present ? "yes" : "no");
v4l2_info(sd, "-----Signal status-----\n");
v4l2_info(sd, "Cable detected (+5V power): %s\n",
tda1997x_detect_tx_5v(sd) ? "yes" : "no");
v4l2_info(sd, "HPD detected: %s\n",
tda1997x_detect_tx_hpd(sd) ? "yes" : "no");
v4l2_info(sd, "-----Video Timings-----\n");
switch (tda1997x_detect_std(state, &timings)) {
case -ENOLINK:
v4l2_info(sd, "No video detected\n");
break;
case -ERANGE:
v4l2_info(sd, "Invalid signal detected\n");
break;
}
v4l2_print_dv_timings(sd->name, "Configured format: ",
&state->timings, true);
v4l2_info(sd, "-----Color space-----\n");
v4l2_info(sd, "Input color space: %s %s %s",
hdmi_colorspace_names[avi->colorspace],
(avi->colorspace == HDMI_COLORSPACE_RGB) ? "" :
hdmi_colorimetry_names[avi->colorimetry],
v4l2_quantization_names[state->colorimetry.quantization]);
v4l2_info(sd, "Output color space: %s",
vidfmt_names[state->vid_fmt]);
v4l2_info(sd, "Color space conversion: %s", state->conv ?
state->conv->name : "None");
v4l2_info(sd, "-----Audio-----\n");
if (state->audio_channels) {
v4l2_info(sd, "audio: %dch %dHz\n", state->audio_channels,
state->audio_samplerate);
} else {
v4l2_info(sd, "audio: none\n");
}
v4l2_info(sd, "-----Infoframes-----\n");
tda1997x_log_infoframe(sd, AUD_IF);
tda1997x_log_infoframe(sd, SPD_IF);
tda1997x_log_infoframe(sd, AVI_IF);
return 0;
}
static int tda1997x_subscribe_event(struct v4l2_subdev *sd,
struct v4l2_fh *fh,
struct v4l2_event_subscription *sub)
{
switch (sub->type) {
case V4L2_EVENT_SOURCE_CHANGE:
return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
case V4L2_EVENT_CTRL:
return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
default:
return -EINVAL;
}
}
static const struct v4l2_subdev_core_ops tda1997x_core_ops = {
.log_status = tda1997x_log_status,
.subscribe_event = tda1997x_subscribe_event,
.unsubscribe_event = v4l2_event_subdev_unsubscribe,
};
/* -----------------------------------------------------------------------------
* v4l2_subdev_ops
*/
static const struct v4l2_subdev_ops tda1997x_subdev_ops = {
.core = &tda1997x_core_ops,
.video = &tda1997x_video_ops,
.pad = &tda1997x_pad_ops,
};
/* -----------------------------------------------------------------------------
* v4l2_controls
*/
static int tda1997x_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = to_sd(ctrl);
struct tda1997x_state *state = to_state(sd);
switch (ctrl->id) {
/* allow overriding the default RGB quantization range */
case V4L2_CID_DV_RX_RGB_RANGE:
state->rgb_quantization_range = ctrl->val;
set_rgb_quantization_range(state);
tda1997x_configure_csc(sd);
return 0;
}
return -EINVAL;
};
static int tda1997x_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct v4l2_subdev *sd = to_sd(ctrl);
struct tda1997x_state *state = to_state(sd);
if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
ctrl->val = state->avi_infoframe.content_type;
return 0;
}
return -EINVAL;
};
static const struct v4l2_ctrl_ops tda1997x_ctrl_ops = {
.s_ctrl = tda1997x_s_ctrl,
.g_volatile_ctrl = tda1997x_g_volatile_ctrl,
};
static int tda1997x_core_init(struct v4l2_subdev *sd)
{
struct tda1997x_state *state = to_state(sd);
struct tda1997x_platform_data *pdata = &state->pdata;
u8 reg;
int i;
/* disable HPD */
io_write(sd, REG_HPD_AUTO_CTRL, HPD_AUTO_HPD_UNSEL);
if (state->chip_revision == 0) {
io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_DIS_HDCP | MAN_RST_HDCP);
io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
}
/* reset infoframe at end of start-up-sequencer */
io_write(sd, REG_SUS_SET_RGB2, 0x06);
io_write(sd, REG_SUS_SET_RGB3, 0x06);
/* Enable TMDS pull-ups */
io_write(sd, REG_RT_MAN_CTRL, RT_MAN_CTRL_RT |
RT_MAN_CTRL_RT_B | RT_MAN_CTRL_RT_A);
/* enable sync measurement timing */
tda1997x_cec_write(sd, REG_PWR_CONTROL & 0xff, 0x04);
/* adjust CEC clock divider */
tda1997x_cec_write(sd, REG_OSC_DIVIDER & 0xff, 0x03);
tda1997x_cec_write(sd, REG_EN_OSC_PERIOD_LSB & 0xff, 0xa0);
io_write(sd, REG_TIMER_D, 0x54);
/* enable power switch */
reg = tda1997x_cec_read(sd, REG_CONTROL & 0xff);
reg |= 0x20;
tda1997x_cec_write(sd, REG_CONTROL & 0xff, reg);
mdelay(50);
/* read the chip version */
reg = io_read(sd, REG_VERSION);
/* get the chip configuration */
reg = io_read(sd, REG_CMTP_REG10);
/* enable interrupts we care about */
io_write(sd, REG_INT_MASK_TOP,
INTERRUPT_HDCP | INTERRUPT_AUDIO | INTERRUPT_INFO |
INTERRUPT_RATE | INTERRUPT_SUS);
/* config_mtp,fmt,sus_end,sus_st */
io_write(sd, REG_INT_MASK_SUS, MASK_MPT | MASK_FMT | MASK_SUS_END);
/* rate stability change for inputs A/B */
io_write(sd, REG_INT_MASK_RATE, MASK_RATE_B_ST | MASK_RATE_A_ST);
/* aud,spd,avi*/
io_write(sd, REG_INT_MASK_INFO,
MASK_AUD_IF | MASK_SPD_IF | MASK_AVI_IF);
/* audio_freq,audio_flg,mute_flg,fifo_err */
io_write(sd, REG_INT_MASK_AUDIO,
MASK_AUDIO_FREQ_FLG | MASK_AUDIO_FLG | MASK_MUTE_FLG |
MASK_ERROR_FIFO_PT);
/* HDCP C5 state reached */
io_write(sd, REG_INT_MASK_HDCP, MASK_STATE_C5);
/* 5V detect and HDP pulse end */
io_write(sd, REG_INT_MASK_DDC, MASK_DET_5V);
/* don't care about AFE/MODE */
io_write(sd, REG_INT_MASK_AFE, 0);
io_write(sd, REG_INT_MASK_MODE, 0);
/* clear all interrupts */
io_write(sd, REG_INT_FLG_CLR_TOP, 0xff);
io_write(sd, REG_INT_FLG_CLR_SUS, 0xff);
io_write(sd, REG_INT_FLG_CLR_DDC, 0xff);
io_write(sd, REG_INT_FLG_CLR_RATE, 0xff);
io_write(sd, REG_INT_FLG_CLR_MODE, 0xff);
io_write(sd, REG_INT_FLG_CLR_INFO, 0xff);
io_write(sd, REG_INT_FLG_CLR_AUDIO, 0xff);
io_write(sd, REG_INT_FLG_CLR_HDCP, 0xff);
io_write(sd, REG_INT_FLG_CLR_AFE, 0xff);
/* init TMDS equalizer */
if (state->chip_revision == 0)
io_write(sd, REG_CGU_DBG_SEL, 1 << CGU_DBG_CLK_SEL_SHIFT);
io_write24(sd, REG_CLK_MIN_RATE, CLK_MIN_RATE);
io_write24(sd, REG_CLK_MAX_RATE, CLK_MAX_RATE);
if (state->chip_revision == 0)
io_write(sd, REG_WDL_CFG, WDL_CFG_VAL);
/* DC filter */
io_write(sd, REG_DEEP_COLOR_CTRL, DC_FILTER_VAL);
/* disable test pattern */
io_write(sd, REG_SVC_MODE, 0x00);
/* update HDMI INFO CTRL */
io_write(sd, REG_INFO_CTRL, 0xff);
/* write HDMI INFO EXCEED value */
io_write(sd, REG_INFO_EXCEED, 3);
if (state->chip_revision == 0)
tda1997x_reset_n1(state);
/*
* No HDCP acknowledge when HDCP is disabled
* and reset SUS to force format detection
*/
tda1997x_hdmi_info_reset(sd, NACK_HDCP, true);
/* Set HPD low */
tda1997x_manual_hpd(sd, HPD_LOW_BP);
/* Configure receiver capabilities */
io_write(sd, REG_HDCP_BCAPS, HDCP_HDMI | HDCP_FAST_REAUTH);
/* Configure HDMI: Auto HDCP mode, packet controlled mute */
reg = HDMI_CTRL_MUTE_AUTO << HDMI_CTRL_MUTE_SHIFT;
reg |= HDMI_CTRL_HDCP_AUTO << HDMI_CTRL_HDCP_SHIFT;
io_write(sd, REG_HDMI_CTRL, reg);
/* reset start-up-sequencer to force format detection */
tda1997x_hdmi_info_reset(sd, 0, true);
/* disable matrix conversion */
reg = io_read(sd, REG_VDP_CTRL);
reg |= VDP_CTRL_MATRIX_BP;
io_write(sd, REG_VDP_CTRL, reg);
/* set video output mode */
tda1997x_configure_vidout(state);
/* configure video output port */
for (i = 0; i < 9; i++) {
v4l_dbg(1, debug, state->client, "vidout_cfg[%d]=0x%02x\n", i,
pdata->vidout_port_cfg[i]);
io_write(sd, REG_VP35_32_CTRL + i, pdata->vidout_port_cfg[i]);
}
/* configure audio output port */
tda1997x_configure_audout(sd, 0);
/* configure audio clock freq */
switch (pdata->audout_mclk_fs) {
case 512:
reg = AUDIO_CLOCK_SEL_512FS;
break;
case 256:
reg = AUDIO_CLOCK_SEL_256FS;
break;
case 128:
reg = AUDIO_CLOCK_SEL_128FS;
break;
case 64:
reg = AUDIO_CLOCK_SEL_64FS;
break;
case 32:
reg = AUDIO_CLOCK_SEL_32FS;
break;
default:
reg = AUDIO_CLOCK_SEL_16FS;
break;
}
io_write(sd, REG_AUDIO_CLOCK, reg);
/* reset advanced infoframes (ISRC1/ISRC2/ACP) */
tda1997x_hdmi_info_reset(sd, RESET_AI, false);
/* reset infoframe */
tda1997x_hdmi_info_reset(sd, RESET_IF, false);
/* reset audio infoframes */
tda1997x_hdmi_info_reset(sd, RESET_AUDIO, false);
/* reset gamut */
tda1997x_hdmi_info_reset(sd, RESET_GAMUT, false);
/* get initial HDMI status */
state->hdmi_status = io_read(sd, REG_HDMI_FLAGS);
return 0;
}
static int tda1997x_set_power(struct tda1997x_state *state, bool on)
{
int ret = 0;
if (on) {
ret = regulator_bulk_enable(TDA1997X_NUM_SUPPLIES,
state->supplies);
msleep(300);
} else {
ret = regulator_bulk_disable(TDA1997X_NUM_SUPPLIES,
state->supplies);
}
return ret;
}
static const struct i2c_device_id tda1997x_i2c_id[] = {
{"tda19971", (kernel_ulong_t)&tda1997x_chip_info[TDA19971]},
{"tda19973", (kernel_ulong_t)&tda1997x_chip_info[TDA19973]},
{ },
};
MODULE_DEVICE_TABLE(i2c, tda1997x_i2c_id);
static const struct of_device_id tda1997x_of_id[] __maybe_unused = {
{ .compatible = "nxp,tda19971", .data = &tda1997x_chip_info[TDA19971] },
{ .compatible = "nxp,tda19973", .data = &tda1997x_chip_info[TDA19973] },
{ },
};
MODULE_DEVICE_TABLE(of, tda1997x_of_id);
static int tda1997x_parse_dt(struct tda1997x_state *state)
{
struct tda1997x_platform_data *pdata = &state->pdata;
struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
struct device_node *ep;
struct device_node *np;
unsigned int flags;
const char *str;
int ret;
u32 v;
/*
* setup default values:
* - HREF: active high from start to end of row
* - VS: Vertical Sync active high at beginning of frame
* - DE: Active high when data valid
* - A_CLK: 128*Fs
*/
pdata->vidout_sel_hs = HS_HREF_SEL_HREF_VHREF;
pdata->vidout_sel_vs = VS_VREF_SEL_VREF_HDMI;
pdata->vidout_sel_de = DE_FREF_SEL_DE_VHREF;
np = state->client->dev.of_node;
ep = of_graph_get_next_endpoint(np, NULL);
if (!ep)
return -EINVAL;
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep), &bus_cfg);
if (ret) {
of_node_put(ep);
return ret;
}
of_node_put(ep);
pdata->vidout_bus_type = bus_cfg.bus_type;
/* polarity of HS/VS/DE */
flags = bus_cfg.bus.parallel.flags;
if (flags & V4L2_MBUS_HSYNC_ACTIVE_LOW)
pdata->vidout_inv_hs = 1;
if (flags & V4L2_MBUS_VSYNC_ACTIVE_LOW)
pdata->vidout_inv_vs = 1;
if (flags & V4L2_MBUS_DATA_ACTIVE_LOW)
pdata->vidout_inv_de = 1;
pdata->vidout_bus_width = bus_cfg.bus.parallel.bus_width;
/* video output port config */
ret = of_property_count_u32_elems(np, "nxp,vidout-portcfg");
if (ret > 0) {
u32 reg, val, i;
for (i = 0; i < ret / 2 && i < 9; i++) {
of_property_read_u32_index(np, "nxp,vidout-portcfg",
i * 2, &reg);
of_property_read_u32_index(np, "nxp,vidout-portcfg",
i * 2 + 1, &val);
if (reg < 9)
pdata->vidout_port_cfg[reg] = val;
}
} else {
v4l_err(state->client, "nxp,vidout-portcfg missing\n");
return -EINVAL;
}
/* default to channel layout dictated by packet header */
pdata->audout_layoutauto = true;
pdata->audout_format = AUDFMT_TYPE_DISABLED;
if (!of_property_read_string(np, "nxp,audout-format", &str)) {
if (strcmp(str, "i2s") == 0)
pdata->audout_format = AUDFMT_TYPE_I2S;
else if (strcmp(str, "spdif") == 0)
pdata->audout_format = AUDFMT_TYPE_SPDIF;
else {
v4l_err(state->client, "nxp,audout-format invalid\n");
return -EINVAL;
}
if (!of_property_read_u32(np, "nxp,audout-layout", &v)) {
switch (v) {
case 0:
case 1:
break;
default:
v4l_err(state->client,
"nxp,audout-layout invalid\n");
return -EINVAL;
}
pdata->audout_layout = v;
}
if (!of_property_read_u32(np, "nxp,audout-width", &v)) {
switch (v) {
case 16:
case 32:
break;
default:
v4l_err(state->client,
"nxp,audout-width invalid\n");
return -EINVAL;
}
pdata->audout_width = v;
}
if (!of_property_read_u32(np, "nxp,audout-mclk-fs", &v)) {
switch (v) {
case 512:
case 256:
case 128:
case 64:
case 32:
case 16:
break;
default:
v4l_err(state->client,
"nxp,audout-mclk-fs invalid\n");
return -EINVAL;
}
pdata->audout_mclk_fs = v;
}
}
return 0;
}
static int tda1997x_get_regulators(struct tda1997x_state *state)
{
int i;
for (i = 0; i < TDA1997X_NUM_SUPPLIES; i++)
state->supplies[i].supply = tda1997x_supply_name[i];
return devm_regulator_bulk_get(&state->client->dev,
TDA1997X_NUM_SUPPLIES,
state->supplies);
}
static int tda1997x_identify_module(struct tda1997x_state *state)
{
struct v4l2_subdev *sd = &state->sd;
enum tda1997x_type type;
u8 reg;
/* Read chip configuration*/
reg = io_read(sd, REG_CMTP_REG10);
state->tmdsb_clk = (reg >> 6) & 0x01; /* use tmds clock B_inv for B */
state->tmdsb_soc = (reg >> 5) & 0x01; /* tmds of input B */
state->port_30bit = (reg >> 2) & 0x03; /* 30bit vs 24bit */
state->output_2p5 = (reg >> 1) & 0x01; /* output supply 2.5v */
switch ((reg >> 4) & 0x03) {
case 0x00:
type = TDA19971;
break;
case 0x02:
case 0x03:
type = TDA19973;
break;
default:
dev_err(&state->client->dev, "unsupported chip ID\n");
return -EIO;
}
if (state->info->type != type) {
dev_err(&state->client->dev, "chip id mismatch\n");
return -EIO;
}
/* read chip revision */
state->chip_revision = io_read(sd, REG_CMTP_REG11);
return 0;
}
static const struct media_entity_operations tda1997x_media_ops = {
.link_validate = v4l2_subdev_link_validate,
};
/* -----------------------------------------------------------------------------
* HDMI Audio Codec
*/
/* refine sample-rate based on HDMI source */
static int tda1997x_pcm_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct tda1997x_state *state = snd_soc_dai_get_drvdata(dai);
struct snd_soc_component *component = dai->component;
struct snd_pcm_runtime *rtd = substream->runtime;
int rate, err;
rate = state->audio_samplerate;
err = snd_pcm_hw_constraint_minmax(rtd, SNDRV_PCM_HW_PARAM_RATE,
rate, rate);
if (err < 0) {
dev_err(component->dev, "failed to constrain samplerate to %dHz\n",
rate);
return err;
}
dev_info(component->dev, "set samplerate constraint to %dHz\n", rate);
return 0;
}
static const struct snd_soc_dai_ops tda1997x_dai_ops = {
.startup = tda1997x_pcm_startup,
};
static struct snd_soc_dai_driver tda1997x_audio_dai = {
.name = "tda1997x",
.capture = {
.stream_name = "Capture",
.channels_min = 2,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 |
SNDRV_PCM_RATE_192000,
},
.ops = &tda1997x_dai_ops,
};
static int tda1997x_codec_probe(struct snd_soc_component *component)
{
return 0;
}
static void tda1997x_codec_remove(struct snd_soc_component *component)
{
}
static struct snd_soc_component_driver tda1997x_codec_driver = {
.probe = tda1997x_codec_probe,
.remove = tda1997x_codec_remove,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static int tda1997x_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct tda1997x_state *state;
struct tda1997x_platform_data *pdata;
struct v4l2_subdev *sd;
struct v4l2_ctrl_handler *hdl;
struct v4l2_ctrl *ctrl;
static const struct v4l2_dv_timings cea1920x1080 =
V4L2_DV_BT_CEA_1920X1080P60;
u32 *mbus_codes;
int i, ret;
/* Check if the adapter supports the needed features */
if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -EIO;
state = kzalloc(sizeof(struct tda1997x_state), GFP_KERNEL);
if (!state)
return -ENOMEM;
state->client = client;
pdata = &state->pdata;
if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
const struct of_device_id *oid;
oid = of_match_node(tda1997x_of_id, client->dev.of_node);
state->info = oid->data;
ret = tda1997x_parse_dt(state);
if (ret < 0) {
v4l_err(client, "DT parsing error\n");
goto err_free_state;
}
} else if (client->dev.platform_data) {
struct tda1997x_platform_data *pdata =
client->dev.platform_data;
state->info =
(const struct tda1997x_chip_info *)id->driver_data;
state->pdata = *pdata;
} else {
v4l_err(client, "No platform data\n");
ret = -ENODEV;
goto err_free_state;
}
ret = tda1997x_get_regulators(state);
if (ret)
goto err_free_state;
ret = tda1997x_set_power(state, 1);
if (ret)
goto err_free_state;
mutex_init(&state->page_lock);
mutex_init(&state->lock);
state->page = 0xff;
INIT_DELAYED_WORK(&state->delayed_work_enable_hpd,
tda1997x_delayed_work_enable_hpd);
/* set video format based on chip and bus width */
ret = tda1997x_identify_module(state);
if (ret)
goto err_free_mutex;
/* initialize subdev */
sd = &state->sd;
v4l2_i2c_subdev_init(sd, client, &tda1997x_subdev_ops);
snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
id->name, i2c_adapter_id(client->adapter),
client->addr);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
sd->entity.function = MEDIA_ENT_F_DV_DECODER;
sd->entity.ops = &tda1997x_media_ops;
/* set allowed mbus modes based on chip, bus-type, and bus-width */
i = 0;
mbus_codes = state->mbus_codes;
switch (state->info->type) {
case TDA19973:
switch (pdata->vidout_bus_type) {
case V4L2_MBUS_PARALLEL:
switch (pdata->vidout_bus_width) {
case 36:
mbus_codes[i++] = MEDIA_BUS_FMT_RGB121212_1X36;
mbus_codes[i++] = MEDIA_BUS_FMT_YUV12_1X36;
fallthrough;
case 24:
mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
break;
}
break;
case V4L2_MBUS_BT656:
switch (pdata->vidout_bus_width) {
case 36:
case 24:
case 12:
mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
break;
}
break;
default:
break;
}
break;
case TDA19971:
switch (pdata->vidout_bus_type) {
case V4L2_MBUS_PARALLEL:
switch (pdata->vidout_bus_width) {
case 24:
mbus_codes[i++] = MEDIA_BUS_FMT_RGB888_1X24;
mbus_codes[i++] = MEDIA_BUS_FMT_YUV8_1X24;
mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_1X24;
fallthrough;
case 20:
mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_1X20;
fallthrough;
case 16:
mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_1X16;
break;
}
break;
case V4L2_MBUS_BT656:
switch (pdata->vidout_bus_width) {
case 24:
case 20:
case 16:
case 12:
mbus_codes[i++] = MEDIA_BUS_FMT_UYVY12_2X12;
fallthrough;
case 10:
mbus_codes[i++] = MEDIA_BUS_FMT_UYVY10_2X10;
fallthrough;
case 8:
mbus_codes[i++] = MEDIA_BUS_FMT_UYVY8_2X8;
break;
}
break;
default:
break;
}
break;
}
if (WARN_ON(i > ARRAY_SIZE(state->mbus_codes))) {
ret = -EINVAL;
goto err_free_mutex;
}
/* default format */
tda1997x_setup_format(state, state->mbus_codes[0]);
state->timings = cea1920x1080;
/*
* default to SRGB full range quantization
* (in case we don't get an infoframe such as DVI signal
*/
state->colorimetry.colorspace = V4L2_COLORSPACE_SRGB;
state->colorimetry.quantization = V4L2_QUANTIZATION_FULL_RANGE;
/* disable/reset HDCP to get correct I2C access to Rx HDMI */
io_write(sd, REG_MAN_SUS_HDMI_SEL, MAN_RST_HDCP | MAN_DIS_HDCP);
/*
* if N2 version, reset compdel_bp as it may generate some small pixel
* shifts in case of embedded sync/or delay lower than 4
*/
if (state->chip_revision != 0) {
io_write(sd, REG_MAN_SUS_HDMI_SEL, 0x00);
io_write(sd, REG_VDP_CTRL, 0x1f);
}
v4l_info(client, "NXP %s N%d detected\n", state->info->name,
state->chip_revision + 1);
v4l_info(client, "video: %dbit %s %d formats available\n",
pdata->vidout_bus_width,
(pdata->vidout_bus_type == V4L2_MBUS_PARALLEL) ?
"parallel" : "BT656",
i);
if (pdata->audout_format) {
v4l_info(client, "audio: %dch %s layout%d sysclk=%d*fs\n",
pdata->audout_layout ? 2 : 8,
audfmt_names[pdata->audout_format],
pdata->audout_layout,
pdata->audout_mclk_fs);
}
ret = 0x34 + ((io_read(sd, REG_SLAVE_ADDR)>>4) & 0x03);
state->client_cec = devm_i2c_new_dummy_device(&client->dev,
client->adapter, ret);
if (IS_ERR(state->client_cec)) {
ret = PTR_ERR(state->client_cec);
goto err_free_mutex;
}
v4l_info(client, "CEC slave address 0x%02x\n", ret);
ret = tda1997x_core_init(sd);
if (ret)
goto err_free_mutex;
/* control handlers */
hdl = &state->hdl;
v4l2_ctrl_handler_init(hdl, 3);
ctrl = v4l2_ctrl_new_std_menu(hdl, &tda1997x_ctrl_ops,
V4L2_CID_DV_RX_IT_CONTENT_TYPE,
V4L2_DV_IT_CONTENT_TYPE_NO_ITC, 0,
V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
/* custom controls */
state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
V4L2_CID_DV_RX_POWER_PRESENT, 0, 1, 0, 0);
state->rgb_quantization_range_ctrl = v4l2_ctrl_new_std_menu(hdl,
&tda1997x_ctrl_ops,
V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL, 0,
V4L2_DV_RGB_RANGE_AUTO);
state->sd.ctrl_handler = hdl;
if (hdl->error) {
ret = hdl->error;
goto err_free_handler;
}
v4l2_ctrl_handler_setup(hdl);
/* initialize source pads */
state->pads[TDA1997X_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&sd->entity, TDA1997X_NUM_PADS,
state->pads);
if (ret) {
v4l_err(client, "failed entity_init: %d", ret);
goto err_free_handler;
}
ret = v4l2_async_register_subdev(sd);
if (ret)
goto err_free_media;
/* register audio DAI */
if (pdata->audout_format) {
u64 formats;
if (pdata->audout_width == 32)
formats = SNDRV_PCM_FMTBIT_S32_LE;
else
formats = SNDRV_PCM_FMTBIT_S16_LE;
tda1997x_audio_dai.capture.formats = formats;
ret = devm_snd_soc_register_component(&state->client->dev,
&tda1997x_codec_driver,
&tda1997x_audio_dai, 1);
if (ret) {
dev_err(&client->dev, "register audio codec failed\n");
goto err_free_media;
}
dev_set_drvdata(&state->client->dev, state);
v4l_info(state->client, "registered audio codec\n");
}
/* request irq */
ret = devm_request_threaded_irq(&client->dev, client->irq,
NULL, tda1997x_isr_thread,
IRQF_TRIGGER_LOW | IRQF_ONESHOT,
KBUILD_MODNAME, state);
if (ret) {
v4l_err(client, "irq%d reg failed: %d\n", client->irq, ret);
goto err_free_media;
}
return 0;
err_free_media:
media_entity_cleanup(&sd->entity);
err_free_handler:
v4l2_ctrl_handler_free(&state->hdl);
err_free_mutex:
cancel_delayed_work(&state->delayed_work_enable_hpd);
mutex_destroy(&state->page_lock);
mutex_destroy(&state->lock);
err_free_state:
kfree(state);
dev_err(&client->dev, "%s failed: %d\n", __func__, ret);
return ret;
}
static int tda1997x_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct tda1997x_state *state = to_state(sd);
struct tda1997x_platform_data *pdata = &state->pdata;
if (pdata->audout_format) {
mutex_destroy(&state->audio_lock);
}
disable_irq(state->client->irq);
tda1997x_power_mode(state, 0);
v4l2_async_unregister_subdev(sd);
media_entity_cleanup(&sd->entity);
v4l2_ctrl_handler_free(&state->hdl);
regulator_bulk_disable(TDA1997X_NUM_SUPPLIES, state->supplies);
cancel_delayed_work(&state->delayed_work_enable_hpd);
mutex_destroy(&state->page_lock);
mutex_destroy(&state->lock);
kfree(state);
return 0;
}
static struct i2c_driver tda1997x_i2c_driver = {
.driver = {
.name = "tda1997x",
.of_match_table = of_match_ptr(tda1997x_of_id),
},
.probe = tda1997x_probe,
.remove = tda1997x_remove,
.id_table = tda1997x_i2c_id,
};
module_i2c_driver(tda1997x_i2c_driver);
MODULE_AUTHOR("Tim Harvey <tharvey@gateworks.com>");
MODULE_DESCRIPTION("TDA1997X HDMI Receiver driver");
MODULE_LICENSE("GPL v2");