OpenCloudOS-Kernel/tools/perf/util/intel-bts.c

952 lines
23 KiB
C

/*
* intel-bts.c: Intel Processor Trace support
* Copyright (c) 2013-2015, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <endian.h>
#include <byteswap.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/log2.h>
#include "cpumap.h"
#include "color.h"
#include "evsel.h"
#include "evlist.h"
#include "machine.h"
#include "session.h"
#include "util.h"
#include "thread.h"
#include "thread-stack.h"
#include "debug.h"
#include "tsc.h"
#include "auxtrace.h"
#include "intel-pt-decoder/intel-pt-insn-decoder.h"
#include "intel-bts.h"
#define MAX_TIMESTAMP (~0ULL)
#define INTEL_BTS_ERR_NOINSN 5
#define INTEL_BTS_ERR_LOST 9
#if __BYTE_ORDER == __BIG_ENDIAN
#define le64_to_cpu bswap_64
#else
#define le64_to_cpu
#endif
struct intel_bts {
struct auxtrace auxtrace;
struct auxtrace_queues queues;
struct auxtrace_heap heap;
u32 auxtrace_type;
struct perf_session *session;
struct machine *machine;
bool sampling_mode;
bool snapshot_mode;
bool data_queued;
u32 pmu_type;
struct perf_tsc_conversion tc;
bool cap_user_time_zero;
struct itrace_synth_opts synth_opts;
bool sample_branches;
u32 branches_filter;
u64 branches_sample_type;
u64 branches_id;
size_t branches_event_size;
bool synth_needs_swap;
unsigned long num_events;
};
struct intel_bts_queue {
struct intel_bts *bts;
unsigned int queue_nr;
struct auxtrace_buffer *buffer;
bool on_heap;
bool done;
pid_t pid;
pid_t tid;
int cpu;
u64 time;
struct intel_pt_insn intel_pt_insn;
u32 sample_flags;
};
struct branch {
u64 from;
u64 to;
u64 misc;
};
static void intel_bts_dump(struct intel_bts *bts __maybe_unused,
unsigned char *buf, size_t len)
{
struct branch *branch;
size_t i, pos = 0, br_sz = sizeof(struct branch), sz;
const char *color = PERF_COLOR_BLUE;
color_fprintf(stdout, color,
". ... Intel BTS data: size %zu bytes\n",
len);
while (len) {
if (len >= br_sz)
sz = br_sz;
else
sz = len;
printf(".");
color_fprintf(stdout, color, " %08x: ", pos);
for (i = 0; i < sz; i++)
color_fprintf(stdout, color, " %02x", buf[i]);
for (; i < br_sz; i++)
color_fprintf(stdout, color, " ");
if (len >= br_sz) {
branch = (struct branch *)buf;
color_fprintf(stdout, color, " %"PRIx64" -> %"PRIx64" %s\n",
le64_to_cpu(branch->from),
le64_to_cpu(branch->to),
le64_to_cpu(branch->misc) & 0x10 ?
"pred" : "miss");
} else {
color_fprintf(stdout, color, " Bad record!\n");
}
pos += sz;
buf += sz;
len -= sz;
}
}
static void intel_bts_dump_event(struct intel_bts *bts, unsigned char *buf,
size_t len)
{
printf(".\n");
intel_bts_dump(bts, buf, len);
}
static int intel_bts_lost(struct intel_bts *bts, struct perf_sample *sample)
{
union perf_event event;
int err;
auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
INTEL_BTS_ERR_LOST, sample->cpu, sample->pid,
sample->tid, 0, "Lost trace data");
err = perf_session__deliver_synth_event(bts->session, &event, NULL);
if (err)
pr_err("Intel BTS: failed to deliver error event, error %d\n",
err);
return err;
}
static struct intel_bts_queue *intel_bts_alloc_queue(struct intel_bts *bts,
unsigned int queue_nr)
{
struct intel_bts_queue *btsq;
btsq = zalloc(sizeof(struct intel_bts_queue));
if (!btsq)
return NULL;
btsq->bts = bts;
btsq->queue_nr = queue_nr;
btsq->pid = -1;
btsq->tid = -1;
btsq->cpu = -1;
return btsq;
}
static int intel_bts_setup_queue(struct intel_bts *bts,
struct auxtrace_queue *queue,
unsigned int queue_nr)
{
struct intel_bts_queue *btsq = queue->priv;
if (list_empty(&queue->head))
return 0;
if (!btsq) {
btsq = intel_bts_alloc_queue(bts, queue_nr);
if (!btsq)
return -ENOMEM;
queue->priv = btsq;
if (queue->cpu != -1)
btsq->cpu = queue->cpu;
btsq->tid = queue->tid;
}
if (bts->sampling_mode)
return 0;
if (!btsq->on_heap && !btsq->buffer) {
int ret;
btsq->buffer = auxtrace_buffer__next(queue, NULL);
if (!btsq->buffer)
return 0;
ret = auxtrace_heap__add(&bts->heap, queue_nr,
btsq->buffer->reference);
if (ret)
return ret;
btsq->on_heap = true;
}
return 0;
}
static int intel_bts_setup_queues(struct intel_bts *bts)
{
unsigned int i;
int ret;
for (i = 0; i < bts->queues.nr_queues; i++) {
ret = intel_bts_setup_queue(bts, &bts->queues.queue_array[i],
i);
if (ret)
return ret;
}
return 0;
}
static inline int intel_bts_update_queues(struct intel_bts *bts)
{
if (bts->queues.new_data) {
bts->queues.new_data = false;
return intel_bts_setup_queues(bts);
}
return 0;
}
static unsigned char *intel_bts_find_overlap(unsigned char *buf_a, size_t len_a,
unsigned char *buf_b, size_t len_b)
{
size_t offs, len;
if (len_a > len_b)
offs = len_a - len_b;
else
offs = 0;
for (; offs < len_a; offs += sizeof(struct branch)) {
len = len_a - offs;
if (!memcmp(buf_a + offs, buf_b, len))
return buf_b + len;
}
return buf_b;
}
static int intel_bts_do_fix_overlap(struct auxtrace_queue *queue,
struct auxtrace_buffer *b)
{
struct auxtrace_buffer *a;
void *start;
if (b->list.prev == &queue->head)
return 0;
a = list_entry(b->list.prev, struct auxtrace_buffer, list);
start = intel_bts_find_overlap(a->data, a->size, b->data, b->size);
if (!start)
return -EINVAL;
b->use_size = b->data + b->size - start;
b->use_data = start;
return 0;
}
static int intel_bts_synth_branch_sample(struct intel_bts_queue *btsq,
struct branch *branch)
{
int ret;
struct intel_bts *bts = btsq->bts;
union perf_event event;
struct perf_sample sample = { .ip = 0, };
if (bts->synth_opts.initial_skip &&
bts->num_events++ <= bts->synth_opts.initial_skip)
return 0;
event.sample.header.type = PERF_RECORD_SAMPLE;
event.sample.header.misc = PERF_RECORD_MISC_USER;
event.sample.header.size = sizeof(struct perf_event_header);
sample.cpumode = PERF_RECORD_MISC_USER;
sample.ip = le64_to_cpu(branch->from);
sample.pid = btsq->pid;
sample.tid = btsq->tid;
sample.addr = le64_to_cpu(branch->to);
sample.id = btsq->bts->branches_id;
sample.stream_id = btsq->bts->branches_id;
sample.period = 1;
sample.cpu = btsq->cpu;
sample.flags = btsq->sample_flags;
sample.insn_len = btsq->intel_pt_insn.length;
if (bts->synth_opts.inject) {
event.sample.header.size = bts->branches_event_size;
ret = perf_event__synthesize_sample(&event,
bts->branches_sample_type,
0, &sample,
bts->synth_needs_swap);
if (ret)
return ret;
}
ret = perf_session__deliver_synth_event(bts->session, &event, &sample);
if (ret)
pr_err("Intel BTS: failed to deliver branch event, error %d\n",
ret);
return ret;
}
static int intel_bts_get_next_insn(struct intel_bts_queue *btsq, u64 ip)
{
struct machine *machine = btsq->bts->machine;
struct thread *thread;
struct addr_location al;
unsigned char buf[1024];
size_t bufsz;
ssize_t len;
int x86_64;
uint8_t cpumode;
int err = -1;
bufsz = intel_pt_insn_max_size();
if (machine__kernel_ip(machine, ip))
cpumode = PERF_RECORD_MISC_KERNEL;
else
cpumode = PERF_RECORD_MISC_USER;
thread = machine__find_thread(machine, -1, btsq->tid);
if (!thread)
return -1;
thread__find_addr_map(thread, cpumode, MAP__FUNCTION, ip, &al);
if (!al.map || !al.map->dso)
goto out_put;
len = dso__data_read_addr(al.map->dso, al.map, machine, ip, buf, bufsz);
if (len <= 0)
goto out_put;
/* Load maps to ensure dso->is_64_bit has been updated */
map__load(al.map, machine->symbol_filter);
x86_64 = al.map->dso->is_64_bit;
if (intel_pt_get_insn(buf, len, x86_64, &btsq->intel_pt_insn))
goto out_put;
err = 0;
out_put:
thread__put(thread);
return err;
}
static int intel_bts_synth_error(struct intel_bts *bts, int cpu, pid_t pid,
pid_t tid, u64 ip)
{
union perf_event event;
int err;
auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
INTEL_BTS_ERR_NOINSN, cpu, pid, tid, ip,
"Failed to get instruction");
err = perf_session__deliver_synth_event(bts->session, &event, NULL);
if (err)
pr_err("Intel BTS: failed to deliver error event, error %d\n",
err);
return err;
}
static int intel_bts_get_branch_type(struct intel_bts_queue *btsq,
struct branch *branch)
{
int err;
if (!branch->from) {
if (branch->to)
btsq->sample_flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_TRACE_BEGIN;
else
btsq->sample_flags = 0;
btsq->intel_pt_insn.length = 0;
} else if (!branch->to) {
btsq->sample_flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_TRACE_END;
btsq->intel_pt_insn.length = 0;
} else {
err = intel_bts_get_next_insn(btsq, branch->from);
if (err) {
btsq->sample_flags = 0;
btsq->intel_pt_insn.length = 0;
if (!btsq->bts->synth_opts.errors)
return 0;
err = intel_bts_synth_error(btsq->bts, btsq->cpu,
btsq->pid, btsq->tid,
branch->from);
return err;
}
btsq->sample_flags = intel_pt_insn_type(btsq->intel_pt_insn.op);
/* Check for an async branch into the kernel */
if (!machine__kernel_ip(btsq->bts->machine, branch->from) &&
machine__kernel_ip(btsq->bts->machine, branch->to) &&
btsq->sample_flags != (PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_CALL |
PERF_IP_FLAG_SYSCALLRET))
btsq->sample_flags = PERF_IP_FLAG_BRANCH |
PERF_IP_FLAG_CALL |
PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_INTERRUPT;
}
return 0;
}
static int intel_bts_process_buffer(struct intel_bts_queue *btsq,
struct auxtrace_buffer *buffer,
struct thread *thread)
{
struct branch *branch;
size_t sz, bsz = sizeof(struct branch);
u32 filter = btsq->bts->branches_filter;
int err = 0;
if (buffer->use_data) {
sz = buffer->use_size;
branch = buffer->use_data;
} else {
sz = buffer->size;
branch = buffer->data;
}
if (!btsq->bts->sample_branches)
return 0;
for (; sz > bsz; branch += 1, sz -= bsz) {
if (!branch->from && !branch->to)
continue;
intel_bts_get_branch_type(btsq, branch);
if (btsq->bts->synth_opts.thread_stack)
thread_stack__event(thread, btsq->sample_flags,
le64_to_cpu(branch->from),
le64_to_cpu(branch->to),
btsq->intel_pt_insn.length,
buffer->buffer_nr + 1);
if (filter && !(filter & btsq->sample_flags))
continue;
err = intel_bts_synth_branch_sample(btsq, branch);
if (err)
break;
}
return err;
}
static int intel_bts_process_queue(struct intel_bts_queue *btsq, u64 *timestamp)
{
struct auxtrace_buffer *buffer = btsq->buffer, *old_buffer = buffer;
struct auxtrace_queue *queue;
struct thread *thread;
int err;
if (btsq->done)
return 1;
if (btsq->pid == -1) {
thread = machine__find_thread(btsq->bts->machine, -1,
btsq->tid);
if (thread)
btsq->pid = thread->pid_;
} else {
thread = machine__findnew_thread(btsq->bts->machine, btsq->pid,
btsq->tid);
}
queue = &btsq->bts->queues.queue_array[btsq->queue_nr];
if (!buffer)
buffer = auxtrace_buffer__next(queue, NULL);
if (!buffer) {
if (!btsq->bts->sampling_mode)
btsq->done = 1;
err = 1;
goto out_put;
}
/* Currently there is no support for split buffers */
if (buffer->consecutive) {
err = -EINVAL;
goto out_put;
}
if (!buffer->data) {
int fd = perf_data_file__fd(btsq->bts->session->file);
buffer->data = auxtrace_buffer__get_data(buffer, fd);
if (!buffer->data) {
err = -ENOMEM;
goto out_put;
}
}
if (btsq->bts->snapshot_mode && !buffer->consecutive &&
intel_bts_do_fix_overlap(queue, buffer)) {
err = -ENOMEM;
goto out_put;
}
if (!btsq->bts->synth_opts.callchain &&
!btsq->bts->synth_opts.thread_stack && thread &&
(!old_buffer || btsq->bts->sampling_mode ||
(btsq->bts->snapshot_mode && !buffer->consecutive)))
thread_stack__set_trace_nr(thread, buffer->buffer_nr + 1);
err = intel_bts_process_buffer(btsq, buffer, thread);
auxtrace_buffer__drop_data(buffer);
btsq->buffer = auxtrace_buffer__next(queue, buffer);
if (btsq->buffer) {
if (timestamp)
*timestamp = btsq->buffer->reference;
} else {
if (!btsq->bts->sampling_mode)
btsq->done = 1;
}
out_put:
thread__put(thread);
return err;
}
static int intel_bts_flush_queue(struct intel_bts_queue *btsq)
{
u64 ts = 0;
int ret;
while (1) {
ret = intel_bts_process_queue(btsq, &ts);
if (ret < 0)
return ret;
if (ret)
break;
}
return 0;
}
static int intel_bts_process_tid_exit(struct intel_bts *bts, pid_t tid)
{
struct auxtrace_queues *queues = &bts->queues;
unsigned int i;
for (i = 0; i < queues->nr_queues; i++) {
struct auxtrace_queue *queue = &bts->queues.queue_array[i];
struct intel_bts_queue *btsq = queue->priv;
if (btsq && btsq->tid == tid)
return intel_bts_flush_queue(btsq);
}
return 0;
}
static int intel_bts_process_queues(struct intel_bts *bts, u64 timestamp)
{
while (1) {
unsigned int queue_nr;
struct auxtrace_queue *queue;
struct intel_bts_queue *btsq;
u64 ts = 0;
int ret;
if (!bts->heap.heap_cnt)
return 0;
if (bts->heap.heap_array[0].ordinal > timestamp)
return 0;
queue_nr = bts->heap.heap_array[0].queue_nr;
queue = &bts->queues.queue_array[queue_nr];
btsq = queue->priv;
auxtrace_heap__pop(&bts->heap);
ret = intel_bts_process_queue(btsq, &ts);
if (ret < 0) {
auxtrace_heap__add(&bts->heap, queue_nr, ts);
return ret;
}
if (!ret) {
ret = auxtrace_heap__add(&bts->heap, queue_nr, ts);
if (ret < 0)
return ret;
} else {
btsq->on_heap = false;
}
}
return 0;
}
static int intel_bts_process_event(struct perf_session *session,
union perf_event *event,
struct perf_sample *sample,
struct perf_tool *tool)
{
struct intel_bts *bts = container_of(session->auxtrace, struct intel_bts,
auxtrace);
u64 timestamp;
int err;
if (dump_trace)
return 0;
if (!tool->ordered_events) {
pr_err("Intel BTS requires ordered events\n");
return -EINVAL;
}
if (sample->time && sample->time != (u64)-1)
timestamp = perf_time_to_tsc(sample->time, &bts->tc);
else
timestamp = 0;
err = intel_bts_update_queues(bts);
if (err)
return err;
err = intel_bts_process_queues(bts, timestamp);
if (err)
return err;
if (event->header.type == PERF_RECORD_EXIT) {
err = intel_bts_process_tid_exit(bts, event->fork.tid);
if (err)
return err;
}
if (event->header.type == PERF_RECORD_AUX &&
(event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
bts->synth_opts.errors)
err = intel_bts_lost(bts, sample);
return err;
}
static int intel_bts_process_auxtrace_event(struct perf_session *session,
union perf_event *event,
struct perf_tool *tool __maybe_unused)
{
struct intel_bts *bts = container_of(session->auxtrace, struct intel_bts,
auxtrace);
if (bts->sampling_mode)
return 0;
if (!bts->data_queued) {
struct auxtrace_buffer *buffer;
off_t data_offset;
int fd = perf_data_file__fd(session->file);
int err;
if (perf_data_file__is_pipe(session->file)) {
data_offset = 0;
} else {
data_offset = lseek(fd, 0, SEEK_CUR);
if (data_offset == -1)
return -errno;
}
err = auxtrace_queues__add_event(&bts->queues, session, event,
data_offset, &buffer);
if (err)
return err;
/* Dump here now we have copied a piped trace out of the pipe */
if (dump_trace) {
if (auxtrace_buffer__get_data(buffer, fd)) {
intel_bts_dump_event(bts, buffer->data,
buffer->size);
auxtrace_buffer__put_data(buffer);
}
}
}
return 0;
}
static int intel_bts_flush(struct perf_session *session,
struct perf_tool *tool __maybe_unused)
{
struct intel_bts *bts = container_of(session->auxtrace, struct intel_bts,
auxtrace);
int ret;
if (dump_trace || bts->sampling_mode)
return 0;
if (!tool->ordered_events)
return -EINVAL;
ret = intel_bts_update_queues(bts);
if (ret < 0)
return ret;
return intel_bts_process_queues(bts, MAX_TIMESTAMP);
}
static void intel_bts_free_queue(void *priv)
{
struct intel_bts_queue *btsq = priv;
if (!btsq)
return;
free(btsq);
}
static void intel_bts_free_events(struct perf_session *session)
{
struct intel_bts *bts = container_of(session->auxtrace, struct intel_bts,
auxtrace);
struct auxtrace_queues *queues = &bts->queues;
unsigned int i;
for (i = 0; i < queues->nr_queues; i++) {
intel_bts_free_queue(queues->queue_array[i].priv);
queues->queue_array[i].priv = NULL;
}
auxtrace_queues__free(queues);
}
static void intel_bts_free(struct perf_session *session)
{
struct intel_bts *bts = container_of(session->auxtrace, struct intel_bts,
auxtrace);
auxtrace_heap__free(&bts->heap);
intel_bts_free_events(session);
session->auxtrace = NULL;
free(bts);
}
struct intel_bts_synth {
struct perf_tool dummy_tool;
struct perf_session *session;
};
static int intel_bts_event_synth(struct perf_tool *tool,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
struct intel_bts_synth *intel_bts_synth =
container_of(tool, struct intel_bts_synth, dummy_tool);
return perf_session__deliver_synth_event(intel_bts_synth->session,
event, NULL);
}
static int intel_bts_synth_event(struct perf_session *session,
struct perf_event_attr *attr, u64 id)
{
struct intel_bts_synth intel_bts_synth;
memset(&intel_bts_synth, 0, sizeof(struct intel_bts_synth));
intel_bts_synth.session = session;
return perf_event__synthesize_attr(&intel_bts_synth.dummy_tool, attr, 1,
&id, intel_bts_event_synth);
}
static int intel_bts_synth_events(struct intel_bts *bts,
struct perf_session *session)
{
struct perf_evlist *evlist = session->evlist;
struct perf_evsel *evsel;
struct perf_event_attr attr;
bool found = false;
u64 id;
int err;
evlist__for_each_entry(evlist, evsel) {
if (evsel->attr.type == bts->pmu_type && evsel->ids) {
found = true;
break;
}
}
if (!found) {
pr_debug("There are no selected events with Intel BTS data\n");
return 0;
}
memset(&attr, 0, sizeof(struct perf_event_attr));
attr.size = sizeof(struct perf_event_attr);
attr.type = PERF_TYPE_HARDWARE;
attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
PERF_SAMPLE_PERIOD;
attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
attr.exclude_user = evsel->attr.exclude_user;
attr.exclude_kernel = evsel->attr.exclude_kernel;
attr.exclude_hv = evsel->attr.exclude_hv;
attr.exclude_host = evsel->attr.exclude_host;
attr.exclude_guest = evsel->attr.exclude_guest;
attr.sample_id_all = evsel->attr.sample_id_all;
attr.read_format = evsel->attr.read_format;
id = evsel->id[0] + 1000000000;
if (!id)
id = 1;
if (bts->synth_opts.branches) {
attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
attr.sample_period = 1;
attr.sample_type |= PERF_SAMPLE_ADDR;
pr_debug("Synthesizing 'branches' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
id, (u64)attr.sample_type);
err = intel_bts_synth_event(session, &attr, id);
if (err) {
pr_err("%s: failed to synthesize 'branches' event type\n",
__func__);
return err;
}
bts->sample_branches = true;
bts->branches_sample_type = attr.sample_type;
bts->branches_id = id;
/*
* We only use sample types from PERF_SAMPLE_MASK so we can use
* __perf_evsel__sample_size() here.
*/
bts->branches_event_size = sizeof(struct sample_event) +
__perf_evsel__sample_size(attr.sample_type);
}
bts->synth_needs_swap = evsel->needs_swap;
return 0;
}
static const char * const intel_bts_info_fmts[] = {
[INTEL_BTS_PMU_TYPE] = " PMU Type %"PRId64"\n",
[INTEL_BTS_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
[INTEL_BTS_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
[INTEL_BTS_TIME_ZERO] = " Time Zero %"PRIu64"\n",
[INTEL_BTS_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
[INTEL_BTS_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
};
static void intel_bts_print_info(u64 *arr, int start, int finish)
{
int i;
if (!dump_trace)
return;
for (i = start; i <= finish; i++)
fprintf(stdout, intel_bts_info_fmts[i], arr[i]);
}
u64 intel_bts_auxtrace_info_priv[INTEL_BTS_AUXTRACE_PRIV_SIZE];
int intel_bts_process_auxtrace_info(union perf_event *event,
struct perf_session *session)
{
struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
size_t min_sz = sizeof(u64) * INTEL_BTS_SNAPSHOT_MODE;
struct intel_bts *bts;
int err;
if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
min_sz)
return -EINVAL;
bts = zalloc(sizeof(struct intel_bts));
if (!bts)
return -ENOMEM;
err = auxtrace_queues__init(&bts->queues);
if (err)
goto err_free;
bts->session = session;
bts->machine = &session->machines.host; /* No kvm support */
bts->auxtrace_type = auxtrace_info->type;
bts->pmu_type = auxtrace_info->priv[INTEL_BTS_PMU_TYPE];
bts->tc.time_shift = auxtrace_info->priv[INTEL_BTS_TIME_SHIFT];
bts->tc.time_mult = auxtrace_info->priv[INTEL_BTS_TIME_MULT];
bts->tc.time_zero = auxtrace_info->priv[INTEL_BTS_TIME_ZERO];
bts->cap_user_time_zero =
auxtrace_info->priv[INTEL_BTS_CAP_USER_TIME_ZERO];
bts->snapshot_mode = auxtrace_info->priv[INTEL_BTS_SNAPSHOT_MODE];
bts->sampling_mode = false;
bts->auxtrace.process_event = intel_bts_process_event;
bts->auxtrace.process_auxtrace_event = intel_bts_process_auxtrace_event;
bts->auxtrace.flush_events = intel_bts_flush;
bts->auxtrace.free_events = intel_bts_free_events;
bts->auxtrace.free = intel_bts_free;
session->auxtrace = &bts->auxtrace;
intel_bts_print_info(&auxtrace_info->priv[0], INTEL_BTS_PMU_TYPE,
INTEL_BTS_SNAPSHOT_MODE);
if (dump_trace)
return 0;
if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
bts->synth_opts = *session->itrace_synth_opts;
} else {
itrace_synth_opts__set_default(&bts->synth_opts);
if (session->itrace_synth_opts)
bts->synth_opts.thread_stack =
session->itrace_synth_opts->thread_stack;
}
if (bts->synth_opts.calls)
bts->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
PERF_IP_FLAG_TRACE_END;
if (bts->synth_opts.returns)
bts->branches_filter |= PERF_IP_FLAG_RETURN |
PERF_IP_FLAG_TRACE_BEGIN;
err = intel_bts_synth_events(bts, session);
if (err)
goto err_free_queues;
err = auxtrace_queues__process_index(&bts->queues, session);
if (err)
goto err_free_queues;
if (bts->queues.populated)
bts->data_queued = true;
return 0;
err_free_queues:
auxtrace_queues__free(&bts->queues);
session->auxtrace = NULL;
err_free:
free(bts);
return err;
}