OpenCloudOS-Kernel/drivers/media/platform/exynos4-is/fimc-core.c

1303 lines
32 KiB
C

/*
* Samsung S5P/EXYNOS4 SoC series FIMC (CAMIF) driver
*
* Copyright (C) 2010-2012 Samsung Electronics Co., Ltd.
* Sylwester Nawrocki <s.nawrocki@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 2 of the License,
* or (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/bug.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/list.h>
#include <linux/mfd/syscon.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <media/v4l2-ioctl.h>
#include <media/videobuf2-core.h>
#include <media/videobuf2-dma-contig.h>
#include "fimc-core.h"
#include "fimc-reg.h"
#include "media-dev.h"
static char *fimc_clocks[MAX_FIMC_CLOCKS] = {
"sclk_fimc", "fimc"
};
static struct fimc_fmt fimc_formats[] = {
{
.name = "RGB565",
.fourcc = V4L2_PIX_FMT_RGB565,
.depth = { 16 },
.color = FIMC_FMT_RGB565,
.memplanes = 1,
.colplanes = 1,
.flags = FMT_FLAGS_M2M,
}, {
.name = "BGR666",
.fourcc = V4L2_PIX_FMT_BGR666,
.depth = { 32 },
.color = FIMC_FMT_RGB666,
.memplanes = 1,
.colplanes = 1,
.flags = FMT_FLAGS_M2M,
}, {
.name = "ARGB8888, 32 bpp",
.fourcc = V4L2_PIX_FMT_RGB32,
.depth = { 32 },
.color = FIMC_FMT_RGB888,
.memplanes = 1,
.colplanes = 1,
.flags = FMT_FLAGS_M2M | FMT_HAS_ALPHA,
}, {
.name = "ARGB1555",
.fourcc = V4L2_PIX_FMT_RGB555,
.depth = { 16 },
.color = FIMC_FMT_RGB555,
.memplanes = 1,
.colplanes = 1,
.flags = FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
}, {
.name = "ARGB4444",
.fourcc = V4L2_PIX_FMT_RGB444,
.depth = { 16 },
.color = FIMC_FMT_RGB444,
.memplanes = 1,
.colplanes = 1,
.flags = FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
}, {
.name = "YUV 4:4:4",
.mbus_code = V4L2_MBUS_FMT_YUV10_1X30,
.flags = FMT_FLAGS_WRITEBACK,
}, {
.name = "YUV 4:2:2 packed, YCbYCr",
.fourcc = V4L2_PIX_FMT_YUYV,
.depth = { 16 },
.color = FIMC_FMT_YCBYCR422,
.memplanes = 1,
.colplanes = 1,
.mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
.flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
}, {
.name = "YUV 4:2:2 packed, CbYCrY",
.fourcc = V4L2_PIX_FMT_UYVY,
.depth = { 16 },
.color = FIMC_FMT_CBYCRY422,
.memplanes = 1,
.colplanes = 1,
.mbus_code = V4L2_MBUS_FMT_UYVY8_2X8,
.flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
}, {
.name = "YUV 4:2:2 packed, CrYCbY",
.fourcc = V4L2_PIX_FMT_VYUY,
.depth = { 16 },
.color = FIMC_FMT_CRYCBY422,
.memplanes = 1,
.colplanes = 1,
.mbus_code = V4L2_MBUS_FMT_VYUY8_2X8,
.flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
}, {
.name = "YUV 4:2:2 packed, YCrYCb",
.fourcc = V4L2_PIX_FMT_YVYU,
.depth = { 16 },
.color = FIMC_FMT_YCRYCB422,
.memplanes = 1,
.colplanes = 1,
.mbus_code = V4L2_MBUS_FMT_YVYU8_2X8,
.flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
}, {
.name = "YUV 4:2:2 planar, Y/Cb/Cr",
.fourcc = V4L2_PIX_FMT_YUV422P,
.depth = { 12 },
.color = FIMC_FMT_YCBYCR422,
.memplanes = 1,
.colplanes = 3,
.flags = FMT_FLAGS_M2M,
}, {
.name = "YUV 4:2:2 planar, Y/CbCr",
.fourcc = V4L2_PIX_FMT_NV16,
.depth = { 16 },
.color = FIMC_FMT_YCBYCR422,
.memplanes = 1,
.colplanes = 2,
.flags = FMT_FLAGS_M2M,
}, {
.name = "YUV 4:2:2 planar, Y/CrCb",
.fourcc = V4L2_PIX_FMT_NV61,
.depth = { 16 },
.color = FIMC_FMT_YCRYCB422,
.memplanes = 1,
.colplanes = 2,
.flags = FMT_FLAGS_M2M,
}, {
.name = "YUV 4:2:0 planar, YCbCr",
.fourcc = V4L2_PIX_FMT_YUV420,
.depth = { 12 },
.color = FIMC_FMT_YCBCR420,
.memplanes = 1,
.colplanes = 3,
.flags = FMT_FLAGS_M2M,
}, {
.name = "YUV 4:2:0 planar, Y/CbCr",
.fourcc = V4L2_PIX_FMT_NV12,
.depth = { 12 },
.color = FIMC_FMT_YCBCR420,
.memplanes = 1,
.colplanes = 2,
.flags = FMT_FLAGS_M2M,
}, {
.name = "YUV 4:2:0 non-contig. 2p, Y/CbCr",
.fourcc = V4L2_PIX_FMT_NV12M,
.color = FIMC_FMT_YCBCR420,
.depth = { 8, 4 },
.memplanes = 2,
.colplanes = 2,
.flags = FMT_FLAGS_M2M,
}, {
.name = "YUV 4:2:0 non-contig. 3p, Y/Cb/Cr",
.fourcc = V4L2_PIX_FMT_YUV420M,
.color = FIMC_FMT_YCBCR420,
.depth = { 8, 2, 2 },
.memplanes = 3,
.colplanes = 3,
.flags = FMT_FLAGS_M2M,
}, {
.name = "YUV 4:2:0 non-contig. 2p, tiled",
.fourcc = V4L2_PIX_FMT_NV12MT,
.color = FIMC_FMT_YCBCR420,
.depth = { 8, 4 },
.memplanes = 2,
.colplanes = 2,
.flags = FMT_FLAGS_M2M,
}, {
.name = "JPEG encoded data",
.fourcc = V4L2_PIX_FMT_JPEG,
.color = FIMC_FMT_JPEG,
.depth = { 8 },
.memplanes = 1,
.colplanes = 1,
.mbus_code = V4L2_MBUS_FMT_JPEG_1X8,
.flags = FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
}, {
.name = "S5C73MX interleaved UYVY/JPEG",
.fourcc = V4L2_PIX_FMT_S5C_UYVY_JPG,
.color = FIMC_FMT_YUYV_JPEG,
.depth = { 8 },
.memplanes = 2,
.colplanes = 1,
.mdataplanes = 0x2, /* plane 1 holds frame meta data */
.mbus_code = V4L2_MBUS_FMT_S5C_UYVY_JPEG_1X8,
.flags = FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
},
};
struct fimc_fmt *fimc_get_format(unsigned int index)
{
if (index >= ARRAY_SIZE(fimc_formats))
return NULL;
return &fimc_formats[index];
}
int fimc_check_scaler_ratio(struct fimc_ctx *ctx, int sw, int sh,
int dw, int dh, int rotation)
{
if (rotation == 90 || rotation == 270)
swap(dw, dh);
if (!ctx->scaler.enabled)
return (sw == dw && sh == dh) ? 0 : -EINVAL;
if ((sw >= SCALER_MAX_HRATIO * dw) || (sh >= SCALER_MAX_VRATIO * dh))
return -EINVAL;
return 0;
}
static int fimc_get_scaler_factor(u32 src, u32 tar, u32 *ratio, u32 *shift)
{
u32 sh = 6;
if (src >= 64 * tar)
return -EINVAL;
while (sh--) {
u32 tmp = 1 << sh;
if (src >= tar * tmp) {
*shift = sh, *ratio = tmp;
return 0;
}
}
*shift = 0, *ratio = 1;
return 0;
}
int fimc_set_scaler_info(struct fimc_ctx *ctx)
{
const struct fimc_variant *variant = ctx->fimc_dev->variant;
struct device *dev = &ctx->fimc_dev->pdev->dev;
struct fimc_scaler *sc = &ctx->scaler;
struct fimc_frame *s_frame = &ctx->s_frame;
struct fimc_frame *d_frame = &ctx->d_frame;
int tx, ty, sx, sy;
int ret;
if (ctx->rotation == 90 || ctx->rotation == 270) {
ty = d_frame->width;
tx = d_frame->height;
} else {
tx = d_frame->width;
ty = d_frame->height;
}
if (tx <= 0 || ty <= 0) {
dev_err(dev, "Invalid target size: %dx%d\n", tx, ty);
return -EINVAL;
}
sx = s_frame->width;
sy = s_frame->height;
if (sx <= 0 || sy <= 0) {
dev_err(dev, "Invalid source size: %dx%d\n", sx, sy);
return -EINVAL;
}
sc->real_width = sx;
sc->real_height = sy;
ret = fimc_get_scaler_factor(sx, tx, &sc->pre_hratio, &sc->hfactor);
if (ret)
return ret;
ret = fimc_get_scaler_factor(sy, ty, &sc->pre_vratio, &sc->vfactor);
if (ret)
return ret;
sc->pre_dst_width = sx / sc->pre_hratio;
sc->pre_dst_height = sy / sc->pre_vratio;
if (variant->has_mainscaler_ext) {
sc->main_hratio = (sx << 14) / (tx << sc->hfactor);
sc->main_vratio = (sy << 14) / (ty << sc->vfactor);
} else {
sc->main_hratio = (sx << 8) / (tx << sc->hfactor);
sc->main_vratio = (sy << 8) / (ty << sc->vfactor);
}
sc->scaleup_h = (tx >= sx) ? 1 : 0;
sc->scaleup_v = (ty >= sy) ? 1 : 0;
/* check to see if input and output size/format differ */
if (s_frame->fmt->color == d_frame->fmt->color
&& s_frame->width == d_frame->width
&& s_frame->height == d_frame->height)
sc->copy_mode = 1;
else
sc->copy_mode = 0;
return 0;
}
static irqreturn_t fimc_irq_handler(int irq, void *priv)
{
struct fimc_dev *fimc = priv;
struct fimc_ctx *ctx;
fimc_hw_clear_irq(fimc);
spin_lock(&fimc->slock);
if (test_and_clear_bit(ST_M2M_PEND, &fimc->state)) {
if (test_and_clear_bit(ST_M2M_SUSPENDING, &fimc->state)) {
set_bit(ST_M2M_SUSPENDED, &fimc->state);
wake_up(&fimc->irq_queue);
goto out;
}
ctx = v4l2_m2m_get_curr_priv(fimc->m2m.m2m_dev);
if (ctx != NULL) {
spin_unlock(&fimc->slock);
fimc_m2m_job_finish(ctx, VB2_BUF_STATE_DONE);
if (ctx->state & FIMC_CTX_SHUT) {
ctx->state &= ~FIMC_CTX_SHUT;
wake_up(&fimc->irq_queue);
}
return IRQ_HANDLED;
}
} else if (test_bit(ST_CAPT_PEND, &fimc->state)) {
int last_buf = test_bit(ST_CAPT_JPEG, &fimc->state) &&
fimc->vid_cap.reqbufs_count == 1;
fimc_capture_irq_handler(fimc, !last_buf);
}
out:
spin_unlock(&fimc->slock);
return IRQ_HANDLED;
}
/* The color format (colplanes, memplanes) must be already configured. */
int fimc_prepare_addr(struct fimc_ctx *ctx, struct vb2_buffer *vb,
struct fimc_frame *frame, struct fimc_addr *paddr)
{
int ret = 0;
u32 pix_size;
if (vb == NULL || frame == NULL)
return -EINVAL;
pix_size = frame->width * frame->height;
dbg("memplanes= %d, colplanes= %d, pix_size= %d",
frame->fmt->memplanes, frame->fmt->colplanes, pix_size);
paddr->y = vb2_dma_contig_plane_dma_addr(vb, 0);
if (frame->fmt->memplanes == 1) {
switch (frame->fmt->colplanes) {
case 1:
paddr->cb = 0;
paddr->cr = 0;
break;
case 2:
/* decompose Y into Y/Cb */
paddr->cb = (u32)(paddr->y + pix_size);
paddr->cr = 0;
break;
case 3:
paddr->cb = (u32)(paddr->y + pix_size);
/* decompose Y into Y/Cb/Cr */
if (FIMC_FMT_YCBCR420 == frame->fmt->color)
paddr->cr = (u32)(paddr->cb
+ (pix_size >> 2));
else /* 422 */
paddr->cr = (u32)(paddr->cb
+ (pix_size >> 1));
break;
default:
return -EINVAL;
}
} else if (!frame->fmt->mdataplanes) {
if (frame->fmt->memplanes >= 2)
paddr->cb = vb2_dma_contig_plane_dma_addr(vb, 1);
if (frame->fmt->memplanes == 3)
paddr->cr = vb2_dma_contig_plane_dma_addr(vb, 2);
}
dbg("PHYS_ADDR: y= 0x%X cb= 0x%X cr= 0x%X ret= %d",
paddr->y, paddr->cb, paddr->cr, ret);
return ret;
}
/* Set order for 1 and 2 plane YCBCR 4:2:2 formats. */
void fimc_set_yuv_order(struct fimc_ctx *ctx)
{
/* The one only mode supported in SoC. */
ctx->in_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
ctx->out_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
/* Set order for 1 plane input formats. */
switch (ctx->s_frame.fmt->color) {
case FIMC_FMT_YCRYCB422:
ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCRYCB;
break;
case FIMC_FMT_CBYCRY422:
ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CBYCRY;
break;
case FIMC_FMT_CRYCBY422:
ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CRYCBY;
break;
case FIMC_FMT_YCBYCR422:
default:
ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCBYCR;
break;
}
dbg("ctx->in_order_1p= %d", ctx->in_order_1p);
switch (ctx->d_frame.fmt->color) {
case FIMC_FMT_YCRYCB422:
ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCRYCB;
break;
case FIMC_FMT_CBYCRY422:
ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CBYCRY;
break;
case FIMC_FMT_CRYCBY422:
ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CRYCBY;
break;
case FIMC_FMT_YCBYCR422:
default:
ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCBYCR;
break;
}
dbg("ctx->out_order_1p= %d", ctx->out_order_1p);
}
void fimc_prepare_dma_offset(struct fimc_ctx *ctx, struct fimc_frame *f)
{
bool pix_hoff = ctx->fimc_dev->drv_data->dma_pix_hoff;
u32 i, depth = 0;
for (i = 0; i < f->fmt->colplanes; i++)
depth += f->fmt->depth[i];
f->dma_offset.y_h = f->offs_h;
if (!pix_hoff)
f->dma_offset.y_h *= (depth >> 3);
f->dma_offset.y_v = f->offs_v;
f->dma_offset.cb_h = f->offs_h;
f->dma_offset.cb_v = f->offs_v;
f->dma_offset.cr_h = f->offs_h;
f->dma_offset.cr_v = f->offs_v;
if (!pix_hoff) {
if (f->fmt->colplanes == 3) {
f->dma_offset.cb_h >>= 1;
f->dma_offset.cr_h >>= 1;
}
if (f->fmt->color == FIMC_FMT_YCBCR420) {
f->dma_offset.cb_v >>= 1;
f->dma_offset.cr_v >>= 1;
}
}
dbg("in_offset: color= %d, y_h= %d, y_v= %d",
f->fmt->color, f->dma_offset.y_h, f->dma_offset.y_v);
}
static int fimc_set_color_effect(struct fimc_ctx *ctx, enum v4l2_colorfx colorfx)
{
struct fimc_effect *effect = &ctx->effect;
switch (colorfx) {
case V4L2_COLORFX_NONE:
effect->type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
break;
case V4L2_COLORFX_BW:
effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
effect->pat_cb = 128;
effect->pat_cr = 128;
break;
case V4L2_COLORFX_SEPIA:
effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
effect->pat_cb = 115;
effect->pat_cr = 145;
break;
case V4L2_COLORFX_NEGATIVE:
effect->type = FIMC_REG_CIIMGEFF_FIN_NEGATIVE;
break;
case V4L2_COLORFX_EMBOSS:
effect->type = FIMC_REG_CIIMGEFF_FIN_EMBOSSING;
break;
case V4L2_COLORFX_ART_FREEZE:
effect->type = FIMC_REG_CIIMGEFF_FIN_ARTFREEZE;
break;
case V4L2_COLORFX_SILHOUETTE:
effect->type = FIMC_REG_CIIMGEFF_FIN_SILHOUETTE;
break;
case V4L2_COLORFX_SET_CBCR:
effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
effect->pat_cb = ctx->ctrls.colorfx_cbcr->val >> 8;
effect->pat_cr = ctx->ctrls.colorfx_cbcr->val & 0xff;
break;
default:
return -EINVAL;
}
return 0;
}
/*
* V4L2 controls handling
*/
#define ctrl_to_ctx(__ctrl) \
container_of((__ctrl)->handler, struct fimc_ctx, ctrls.handler)
static int __fimc_s_ctrl(struct fimc_ctx *ctx, struct v4l2_ctrl *ctrl)
{
struct fimc_dev *fimc = ctx->fimc_dev;
const struct fimc_variant *variant = fimc->variant;
int ret = 0;
if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
return 0;
switch (ctrl->id) {
case V4L2_CID_HFLIP:
ctx->hflip = ctrl->val;
break;
case V4L2_CID_VFLIP:
ctx->vflip = ctrl->val;
break;
case V4L2_CID_ROTATE:
if (fimc_capture_pending(fimc)) {
ret = fimc_check_scaler_ratio(ctx, ctx->s_frame.width,
ctx->s_frame.height, ctx->d_frame.width,
ctx->d_frame.height, ctrl->val);
if (ret)
return -EINVAL;
}
if ((ctrl->val == 90 || ctrl->val == 270) &&
!variant->has_out_rot)
return -EINVAL;
ctx->rotation = ctrl->val;
break;
case V4L2_CID_ALPHA_COMPONENT:
ctx->d_frame.alpha = ctrl->val;
break;
case V4L2_CID_COLORFX:
ret = fimc_set_color_effect(ctx, ctrl->val);
if (ret)
return ret;
break;
}
ctx->state |= FIMC_PARAMS;
set_bit(ST_CAPT_APPLY_CFG, &fimc->state);
return 0;
}
static int fimc_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct fimc_ctx *ctx = ctrl_to_ctx(ctrl);
unsigned long flags;
int ret;
spin_lock_irqsave(&ctx->fimc_dev->slock, flags);
ret = __fimc_s_ctrl(ctx, ctrl);
spin_unlock_irqrestore(&ctx->fimc_dev->slock, flags);
return ret;
}
static const struct v4l2_ctrl_ops fimc_ctrl_ops = {
.s_ctrl = fimc_s_ctrl,
};
int fimc_ctrls_create(struct fimc_ctx *ctx)
{
unsigned int max_alpha = fimc_get_alpha_mask(ctx->d_frame.fmt);
struct fimc_ctrls *ctrls = &ctx->ctrls;
struct v4l2_ctrl_handler *handler = &ctrls->handler;
if (ctx->ctrls.ready)
return 0;
v4l2_ctrl_handler_init(handler, 6);
ctrls->rotate = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
V4L2_CID_ROTATE, 0, 270, 90, 0);
ctrls->hflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
V4L2_CID_HFLIP, 0, 1, 1, 0);
ctrls->vflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
V4L2_CID_VFLIP, 0, 1, 1, 0);
if (ctx->fimc_dev->drv_data->alpha_color)
ctrls->alpha = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
V4L2_CID_ALPHA_COMPONENT,
0, max_alpha, 1, 0);
else
ctrls->alpha = NULL;
ctrls->colorfx = v4l2_ctrl_new_std_menu(handler, &fimc_ctrl_ops,
V4L2_CID_COLORFX, V4L2_COLORFX_SET_CBCR,
~0x983f, V4L2_COLORFX_NONE);
ctrls->colorfx_cbcr = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
V4L2_CID_COLORFX_CBCR, 0, 0xffff, 1, 0);
ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
if (!handler->error) {
v4l2_ctrl_cluster(2, &ctrls->colorfx);
ctrls->ready = true;
}
return handler->error;
}
void fimc_ctrls_delete(struct fimc_ctx *ctx)
{
struct fimc_ctrls *ctrls = &ctx->ctrls;
if (ctrls->ready) {
v4l2_ctrl_handler_free(&ctrls->handler);
ctrls->ready = false;
ctrls->alpha = NULL;
}
}
void fimc_ctrls_activate(struct fimc_ctx *ctx, bool active)
{
unsigned int has_alpha = ctx->d_frame.fmt->flags & FMT_HAS_ALPHA;
struct fimc_ctrls *ctrls = &ctx->ctrls;
if (!ctrls->ready)
return;
mutex_lock(ctrls->handler.lock);
v4l2_ctrl_activate(ctrls->rotate, active);
v4l2_ctrl_activate(ctrls->hflip, active);
v4l2_ctrl_activate(ctrls->vflip, active);
v4l2_ctrl_activate(ctrls->colorfx, active);
if (ctrls->alpha)
v4l2_ctrl_activate(ctrls->alpha, active && has_alpha);
if (active) {
fimc_set_color_effect(ctx, ctrls->colorfx->cur.val);
ctx->rotation = ctrls->rotate->val;
ctx->hflip = ctrls->hflip->val;
ctx->vflip = ctrls->vflip->val;
} else {
ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
ctx->rotation = 0;
ctx->hflip = 0;
ctx->vflip = 0;
}
mutex_unlock(ctrls->handler.lock);
}
/* Update maximum value of the alpha color control */
void fimc_alpha_ctrl_update(struct fimc_ctx *ctx)
{
struct fimc_dev *fimc = ctx->fimc_dev;
struct v4l2_ctrl *ctrl = ctx->ctrls.alpha;
if (ctrl == NULL || !fimc->drv_data->alpha_color)
return;
v4l2_ctrl_lock(ctrl);
ctrl->maximum = fimc_get_alpha_mask(ctx->d_frame.fmt);
if (ctrl->cur.val > ctrl->maximum)
ctrl->cur.val = ctrl->maximum;
v4l2_ctrl_unlock(ctrl);
}
void __fimc_get_format(struct fimc_frame *frame, struct v4l2_format *f)
{
struct v4l2_pix_format_mplane *pixm = &f->fmt.pix_mp;
int i;
pixm->width = frame->o_width;
pixm->height = frame->o_height;
pixm->field = V4L2_FIELD_NONE;
pixm->pixelformat = frame->fmt->fourcc;
pixm->colorspace = V4L2_COLORSPACE_JPEG;
pixm->num_planes = frame->fmt->memplanes;
for (i = 0; i < pixm->num_planes; ++i) {
pixm->plane_fmt[i].bytesperline = frame->bytesperline[i];
pixm->plane_fmt[i].sizeimage = frame->payload[i];
}
}
/**
* fimc_adjust_mplane_format - adjust bytesperline/sizeimage for each plane
* @fmt: fimc pixel format description (input)
* @width: requested pixel width
* @height: requested pixel height
* @pix: multi-plane format to adjust
*/
void fimc_adjust_mplane_format(struct fimc_fmt *fmt, u32 width, u32 height,
struct v4l2_pix_format_mplane *pix)
{
u32 bytesperline = 0;
int i;
pix->colorspace = V4L2_COLORSPACE_JPEG;
pix->field = V4L2_FIELD_NONE;
pix->num_planes = fmt->memplanes;
pix->pixelformat = fmt->fourcc;
pix->height = height;
pix->width = width;
for (i = 0; i < pix->num_planes; ++i) {
struct v4l2_plane_pix_format *plane_fmt = &pix->plane_fmt[i];
u32 bpl = plane_fmt->bytesperline;
if (fmt->colplanes > 1 && (bpl == 0 || bpl < pix->width))
bpl = pix->width; /* Planar */
if (fmt->colplanes == 1 && /* Packed */
(bpl == 0 || ((bpl * 8) / fmt->depth[i]) < pix->width))
bpl = (pix->width * fmt->depth[0]) / 8;
/*
* Currently bytesperline for each plane is same, except
* V4L2_PIX_FMT_YUV420M format. This calculation may need
* to be changed when other multi-planar formats are added
* to the fimc_formats[] array.
*/
if (i == 0)
bytesperline = bpl;
else if (i == 1 && fmt->memplanes == 3)
bytesperline /= 2;
plane_fmt->bytesperline = bytesperline;
plane_fmt->sizeimage = max((pix->width * pix->height *
fmt->depth[i]) / 8, plane_fmt->sizeimage);
}
}
/**
* fimc_find_format - lookup fimc color format by fourcc or media bus format
* @pixelformat: fourcc to match, ignored if null
* @mbus_code: media bus code to match, ignored if null
* @mask: the color flags to match
* @index: offset in the fimc_formats array, ignored if negative
*/
struct fimc_fmt *fimc_find_format(const u32 *pixelformat, const u32 *mbus_code,
unsigned int mask, int index)
{
struct fimc_fmt *fmt, *def_fmt = NULL;
unsigned int i;
int id = 0;
if (index >= (int)ARRAY_SIZE(fimc_formats))
return NULL;
for (i = 0; i < ARRAY_SIZE(fimc_formats); ++i) {
fmt = &fimc_formats[i];
if (!(fmt->flags & mask))
continue;
if (pixelformat && fmt->fourcc == *pixelformat)
return fmt;
if (mbus_code && fmt->mbus_code == *mbus_code)
return fmt;
if (index == id)
def_fmt = fmt;
id++;
}
return def_fmt;
}
static void fimc_clk_put(struct fimc_dev *fimc)
{
int i;
for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
if (IS_ERR(fimc->clock[i]))
continue;
clk_unprepare(fimc->clock[i]);
clk_put(fimc->clock[i]);
fimc->clock[i] = ERR_PTR(-EINVAL);
}
}
static int fimc_clk_get(struct fimc_dev *fimc)
{
int i, ret;
for (i = 0; i < MAX_FIMC_CLOCKS; i++)
fimc->clock[i] = ERR_PTR(-EINVAL);
for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
fimc->clock[i] = clk_get(&fimc->pdev->dev, fimc_clocks[i]);
if (IS_ERR(fimc->clock[i])) {
ret = PTR_ERR(fimc->clock[i]);
goto err;
}
ret = clk_prepare(fimc->clock[i]);
if (ret < 0) {
clk_put(fimc->clock[i]);
fimc->clock[i] = ERR_PTR(-EINVAL);
goto err;
}
}
return 0;
err:
fimc_clk_put(fimc);
dev_err(&fimc->pdev->dev, "failed to get clock: %s\n",
fimc_clocks[i]);
return -ENXIO;
}
static int fimc_m2m_suspend(struct fimc_dev *fimc)
{
unsigned long flags;
int timeout;
spin_lock_irqsave(&fimc->slock, flags);
if (!fimc_m2m_pending(fimc)) {
spin_unlock_irqrestore(&fimc->slock, flags);
return 0;
}
clear_bit(ST_M2M_SUSPENDED, &fimc->state);
set_bit(ST_M2M_SUSPENDING, &fimc->state);
spin_unlock_irqrestore(&fimc->slock, flags);
timeout = wait_event_timeout(fimc->irq_queue,
test_bit(ST_M2M_SUSPENDED, &fimc->state),
FIMC_SHUTDOWN_TIMEOUT);
clear_bit(ST_M2M_SUSPENDING, &fimc->state);
return timeout == 0 ? -EAGAIN : 0;
}
static int fimc_m2m_resume(struct fimc_dev *fimc)
{
struct fimc_ctx *ctx;
unsigned long flags;
spin_lock_irqsave(&fimc->slock, flags);
/* Clear for full H/W setup in first run after resume */
ctx = fimc->m2m.ctx;
fimc->m2m.ctx = NULL;
spin_unlock_irqrestore(&fimc->slock, flags);
if (test_and_clear_bit(ST_M2M_SUSPENDED, &fimc->state))
fimc_m2m_job_finish(ctx, VB2_BUF_STATE_ERROR);
return 0;
}
static const struct of_device_id fimc_of_match[];
static int fimc_parse_dt(struct fimc_dev *fimc, u32 *clk_freq)
{
struct device *dev = &fimc->pdev->dev;
struct device_node *node = dev->of_node;
const struct of_device_id *of_id;
struct fimc_variant *v;
struct fimc_pix_limit *lim;
u32 args[FIMC_PIX_LIMITS_MAX];
int ret;
if (of_property_read_bool(node, "samsung,lcd-wb"))
return -ENODEV;
v = devm_kzalloc(dev, sizeof(*v) + sizeof(*lim), GFP_KERNEL);
if (!v)
return -ENOMEM;
of_id = of_match_node(fimc_of_match, node);
if (!of_id)
return -EINVAL;
fimc->drv_data = of_id->data;
ret = of_property_read_u32_array(node, "samsung,pix-limits",
args, FIMC_PIX_LIMITS_MAX);
if (ret < 0)
return ret;
lim = (struct fimc_pix_limit *)&v[1];
lim->scaler_en_w = args[0];
lim->scaler_dis_w = args[1];
lim->out_rot_en_w = args[2];
lim->out_rot_dis_w = args[3];
v->pix_limit = lim;
ret = of_property_read_u32_array(node, "samsung,min-pix-sizes",
args, 2);
v->min_inp_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[0];
v->min_out_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[1];
ret = of_property_read_u32_array(node, "samsung,min-pix-alignment",
args, 2);
v->min_vsize_align = ret ? FIMC_DEF_HEIGHT_ALIGN : args[0];
v->hor_offs_align = ret ? FIMC_DEF_HOR_OFFS_ALIGN : args[1];
ret = of_property_read_u32(node, "samsung,rotators", &args[1]);
v->has_inp_rot = ret ? 1 : args[1] & 0x01;
v->has_out_rot = ret ? 1 : args[1] & 0x10;
v->has_mainscaler_ext = of_property_read_bool(node,
"samsung,mainscaler-ext");
v->has_isp_wb = of_property_read_bool(node, "samsung,isp-wb");
v->has_cam_if = of_property_read_bool(node, "samsung,cam-if");
of_property_read_u32(node, "clock-frequency", clk_freq);
fimc->id = of_alias_get_id(node, "fimc");
fimc->variant = v;
return 0;
}
static int fimc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
u32 lclk_freq = 0;
struct fimc_dev *fimc;
struct resource *res;
int ret = 0;
fimc = devm_kzalloc(dev, sizeof(*fimc), GFP_KERNEL);
if (!fimc)
return -ENOMEM;
fimc->pdev = pdev;
if (dev->of_node) {
ret = fimc_parse_dt(fimc, &lclk_freq);
if (ret < 0)
return ret;
} else {
fimc->drv_data = fimc_get_drvdata(pdev);
fimc->id = pdev->id;
}
if (!fimc->drv_data || fimc->id >= fimc->drv_data->num_entities ||
fimc->id < 0) {
dev_err(dev, "Invalid driver data or device id (%d)\n",
fimc->id);
return -EINVAL;
}
if (!dev->of_node)
fimc->variant = fimc->drv_data->variant[fimc->id];
init_waitqueue_head(&fimc->irq_queue);
spin_lock_init(&fimc->slock);
mutex_init(&fimc->lock);
fimc->sysreg = fimc_get_sysreg_regmap(dev->of_node);
if (IS_ERR(fimc->sysreg))
return PTR_ERR(fimc->sysreg);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
fimc->regs = devm_ioremap_resource(dev, res);
if (IS_ERR(fimc->regs))
return PTR_ERR(fimc->regs);
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (res == NULL) {
dev_err(dev, "Failed to get IRQ resource\n");
return -ENXIO;
}
ret = fimc_clk_get(fimc);
if (ret)
return ret;
if (lclk_freq == 0)
lclk_freq = fimc->drv_data->lclk_frequency;
ret = clk_set_rate(fimc->clock[CLK_BUS], lclk_freq);
if (ret < 0)
return ret;
ret = clk_enable(fimc->clock[CLK_BUS]);
if (ret < 0)
return ret;
ret = devm_request_irq(dev, res->start, fimc_irq_handler,
0, dev_name(dev), fimc);
if (ret) {
dev_err(dev, "failed to install irq (%d)\n", ret);
goto err_clk;
}
ret = fimc_initialize_capture_subdev(fimc);
if (ret)
goto err_clk;
platform_set_drvdata(pdev, fimc);
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0)
goto err_sd;
/* Initialize contiguous memory allocator */
fimc->alloc_ctx = vb2_dma_contig_init_ctx(dev);
if (IS_ERR(fimc->alloc_ctx)) {
ret = PTR_ERR(fimc->alloc_ctx);
goto err_pm;
}
dev_dbg(dev, "FIMC.%d registered successfully\n", fimc->id);
pm_runtime_put(dev);
return 0;
err_pm:
pm_runtime_put(dev);
err_sd:
fimc_unregister_capture_subdev(fimc);
err_clk:
clk_disable(fimc->clock[CLK_BUS]);
fimc_clk_put(fimc);
return ret;
}
static int fimc_runtime_resume(struct device *dev)
{
struct fimc_dev *fimc = dev_get_drvdata(dev);
dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
/* Enable clocks and perform basic initialization */
clk_enable(fimc->clock[CLK_GATE]);
fimc_hw_reset(fimc);
/* Resume the capture or mem-to-mem device */
if (fimc_capture_busy(fimc))
return fimc_capture_resume(fimc);
return fimc_m2m_resume(fimc);
}
static int fimc_runtime_suspend(struct device *dev)
{
struct fimc_dev *fimc = dev_get_drvdata(dev);
int ret = 0;
if (fimc_capture_busy(fimc))
ret = fimc_capture_suspend(fimc);
else
ret = fimc_m2m_suspend(fimc);
if (!ret)
clk_disable(fimc->clock[CLK_GATE]);
dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
return ret;
}
#ifdef CONFIG_PM_SLEEP
static int fimc_resume(struct device *dev)
{
struct fimc_dev *fimc = dev_get_drvdata(dev);
unsigned long flags;
dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
/* Do not resume if the device was idle before system suspend */
spin_lock_irqsave(&fimc->slock, flags);
if (!test_and_clear_bit(ST_LPM, &fimc->state) ||
(!fimc_m2m_active(fimc) && !fimc_capture_busy(fimc))) {
spin_unlock_irqrestore(&fimc->slock, flags);
return 0;
}
fimc_hw_reset(fimc);
spin_unlock_irqrestore(&fimc->slock, flags);
if (fimc_capture_busy(fimc))
return fimc_capture_resume(fimc);
return fimc_m2m_resume(fimc);
}
static int fimc_suspend(struct device *dev)
{
struct fimc_dev *fimc = dev_get_drvdata(dev);
dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
if (test_and_set_bit(ST_LPM, &fimc->state))
return 0;
if (fimc_capture_busy(fimc))
return fimc_capture_suspend(fimc);
return fimc_m2m_suspend(fimc);
}
#endif /* CONFIG_PM_SLEEP */
static int fimc_remove(struct platform_device *pdev)
{
struct fimc_dev *fimc = platform_get_drvdata(pdev);
pm_runtime_disable(&pdev->dev);
if (!pm_runtime_status_suspended(&pdev->dev))
clk_disable(fimc->clock[CLK_GATE]);
pm_runtime_set_suspended(&pdev->dev);
fimc_unregister_capture_subdev(fimc);
vb2_dma_contig_cleanup_ctx(fimc->alloc_ctx);
clk_disable(fimc->clock[CLK_BUS]);
fimc_clk_put(fimc);
dev_info(&pdev->dev, "driver unloaded\n");
return 0;
}
/* Image pixel limits, similar across several FIMC HW revisions. */
static const struct fimc_pix_limit s5p_pix_limit[4] = {
[0] = {
.scaler_en_w = 3264,
.scaler_dis_w = 8192,
.out_rot_en_w = 1920,
.out_rot_dis_w = 4224,
},
[1] = {
.scaler_en_w = 4224,
.scaler_dis_w = 8192,
.out_rot_en_w = 1920,
.out_rot_dis_w = 4224,
},
[2] = {
.scaler_en_w = 1920,
.scaler_dis_w = 8192,
.out_rot_en_w = 1280,
.out_rot_dis_w = 1920,
},
};
static const struct fimc_variant fimc0_variant_s5p = {
.has_inp_rot = 1,
.has_out_rot = 1,
.has_cam_if = 1,
.min_inp_pixsize = 16,
.min_out_pixsize = 16,
.hor_offs_align = 8,
.min_vsize_align = 16,
.pix_limit = &s5p_pix_limit[0],
};
static const struct fimc_variant fimc2_variant_s5p = {
.has_cam_if = 1,
.min_inp_pixsize = 16,
.min_out_pixsize = 16,
.hor_offs_align = 8,
.min_vsize_align = 16,
.pix_limit = &s5p_pix_limit[1],
};
static const struct fimc_variant fimc0_variant_s5pv210 = {
.has_inp_rot = 1,
.has_out_rot = 1,
.has_cam_if = 1,
.min_inp_pixsize = 16,
.min_out_pixsize = 16,
.hor_offs_align = 8,
.min_vsize_align = 16,
.pix_limit = &s5p_pix_limit[1],
};
static const struct fimc_variant fimc1_variant_s5pv210 = {
.has_inp_rot = 1,
.has_out_rot = 1,
.has_cam_if = 1,
.has_mainscaler_ext = 1,
.min_inp_pixsize = 16,
.min_out_pixsize = 16,
.hor_offs_align = 1,
.min_vsize_align = 1,
.pix_limit = &s5p_pix_limit[2],
};
static const struct fimc_variant fimc2_variant_s5pv210 = {
.has_cam_if = 1,
.min_inp_pixsize = 16,
.min_out_pixsize = 16,
.hor_offs_align = 8,
.min_vsize_align = 16,
.pix_limit = &s5p_pix_limit[2],
};
/* S5PC100 */
static const struct fimc_drvdata fimc_drvdata_s5p = {
.variant = {
[0] = &fimc0_variant_s5p,
[1] = &fimc0_variant_s5p,
[2] = &fimc2_variant_s5p,
},
.num_entities = 3,
.lclk_frequency = 133000000UL,
.out_buf_count = 4,
};
/* S5PV210, S5PC110 */
static const struct fimc_drvdata fimc_drvdata_s5pv210 = {
.variant = {
[0] = &fimc0_variant_s5pv210,
[1] = &fimc1_variant_s5pv210,
[2] = &fimc2_variant_s5pv210,
},
.num_entities = 3,
.lclk_frequency = 166000000UL,
.out_buf_count = 4,
.dma_pix_hoff = 1,
};
/* EXYNOS4210, S5PV310, S5PC210 */
static const struct fimc_drvdata fimc_drvdata_exynos4210 = {
.num_entities = 4,
.lclk_frequency = 166000000UL,
.dma_pix_hoff = 1,
.cistatus2 = 1,
.alpha_color = 1,
.out_buf_count = 32,
};
/* EXYNOS4212, EXYNOS4412 */
static const struct fimc_drvdata fimc_drvdata_exynos4x12 = {
.num_entities = 4,
.lclk_frequency = 166000000UL,
.dma_pix_hoff = 1,
.cistatus2 = 1,
.alpha_color = 1,
.out_buf_count = 32,
};
static const struct platform_device_id fimc_driver_ids[] = {
{
.name = "s5p-fimc",
.driver_data = (unsigned long)&fimc_drvdata_s5p,
}, {
.name = "s5pv210-fimc",
.driver_data = (unsigned long)&fimc_drvdata_s5pv210,
}, {
.name = "exynos4-fimc",
.driver_data = (unsigned long)&fimc_drvdata_exynos4210,
}, {
.name = "exynos4x12-fimc",
.driver_data = (unsigned long)&fimc_drvdata_exynos4x12,
},
{ },
};
static const struct of_device_id fimc_of_match[] = {
{
.compatible = "samsung,s5pv210-fimc",
.data = &fimc_drvdata_s5pv210,
}, {
.compatible = "samsung,exynos4210-fimc",
.data = &fimc_drvdata_exynos4210,
}, {
.compatible = "samsung,exynos4212-fimc",
.data = &fimc_drvdata_exynos4x12,
},
{ /* sentinel */ },
};
static const struct dev_pm_ops fimc_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(fimc_suspend, fimc_resume)
SET_RUNTIME_PM_OPS(fimc_runtime_suspend, fimc_runtime_resume, NULL)
};
static struct platform_driver fimc_driver = {
.probe = fimc_probe,
.remove = fimc_remove,
.id_table = fimc_driver_ids,
.driver = {
.of_match_table = fimc_of_match,
.name = FIMC_DRIVER_NAME,
.owner = THIS_MODULE,
.pm = &fimc_pm_ops,
}
};
int __init fimc_register_driver(void)
{
return platform_driver_register(&fimc_driver);
}
void __exit fimc_unregister_driver(void)
{
platform_driver_unregister(&fimc_driver);
}