OpenCloudOS-Kernel/drivers/atm/solos-pci.c

1359 lines
34 KiB
C

/*
* Driver for the Solos PCI ADSL2+ card, designed to support Linux by
* Traverse Technologies -- http://www.traverse.com.au/
* Xrio Limited -- http://www.xrio.com/
*
*
* Copyright © 2008 Traverse Technologies
* Copyright © 2008 Intel Corporation
*
* Authors: Nathan Williams <nathan@traverse.com.au>
* David Woodhouse <dwmw2@infradead.org>
* Treker Chen <treker@xrio.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define DEBUG
#define VERBOSE_DEBUG
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/atm.h>
#include <linux/atmdev.h>
#include <linux/skbuff.h>
#include <linux/sysfs.h>
#include <linux/device.h>
#include <linux/kobject.h>
#include <linux/firmware.h>
#include <linux/ctype.h>
#include <linux/swab.h>
#define VERSION "0.07"
#define PTAG "solos-pci"
#define CONFIG_RAM_SIZE 128
#define FLAGS_ADDR 0x7C
#define IRQ_EN_ADDR 0x78
#define FPGA_VER 0x74
#define IRQ_CLEAR 0x70
#define WRITE_FLASH 0x6C
#define PORTS 0x68
#define FLASH_BLOCK 0x64
#define FLASH_BUSY 0x60
#define FPGA_MODE 0x5C
#define FLASH_MODE 0x58
#define TX_DMA_ADDR(port) (0x40 + (4 * (port)))
#define RX_DMA_ADDR(port) (0x30 + (4 * (port)))
#define DATA_RAM_SIZE 32768
#define BUF_SIZE 2048
#define OLD_BUF_SIZE 4096 /* For FPGA versions <= 2*/
#define FPGA_PAGE 528 /* FPGA flash page size*/
#define SOLOS_PAGE 512 /* Solos flash page size*/
#define FPGA_BLOCK (FPGA_PAGE * 8) /* FPGA flash block size*/
#define SOLOS_BLOCK (SOLOS_PAGE * 8) /* Solos flash block size*/
#define RX_BUF(card, nr) ((card->buffers) + (nr)*(card->buffer_size)*2)
#define TX_BUF(card, nr) ((card->buffers) + (nr)*(card->buffer_size)*2 + (card->buffer_size))
#define FLASH_BUF ((card->buffers) + 4*(card->buffer_size)*2)
#define RX_DMA_SIZE 2048
#define FPGA_VERSION(a,b) (((a) << 8) + (b))
#define LEGACY_BUFFERS 2
#define DMA_SUPPORTED 4
static int reset = 0;
static int atmdebug = 0;
static int firmware_upgrade = 0;
static int fpga_upgrade = 0;
static int db_firmware_upgrade = 0;
static int db_fpga_upgrade = 0;
struct pkt_hdr {
__le16 size;
__le16 vpi;
__le16 vci;
__le16 type;
};
struct solos_skb_cb {
struct atm_vcc *vcc;
uint32_t dma_addr;
};
#define SKB_CB(skb) ((struct solos_skb_cb *)skb->cb)
#define PKT_DATA 0
#define PKT_COMMAND 1
#define PKT_POPEN 3
#define PKT_PCLOSE 4
#define PKT_STATUS 5
struct solos_card {
void __iomem *config_regs;
void __iomem *buffers;
int nr_ports;
int tx_mask;
struct pci_dev *dev;
struct atm_dev *atmdev[4];
struct tasklet_struct tlet;
spinlock_t tx_lock;
spinlock_t tx_queue_lock;
spinlock_t cli_queue_lock;
spinlock_t param_queue_lock;
struct list_head param_queue;
struct sk_buff_head tx_queue[4];
struct sk_buff_head cli_queue[4];
struct sk_buff *tx_skb[4];
struct sk_buff *rx_skb[4];
wait_queue_head_t param_wq;
wait_queue_head_t fw_wq;
int using_dma;
int fpga_version;
int buffer_size;
};
struct solos_param {
struct list_head list;
pid_t pid;
int port;
struct sk_buff *response;
};
#define SOLOS_CHAN(atmdev) ((int)(unsigned long)(atmdev)->phy_data)
MODULE_AUTHOR("Traverse Technologies <support@traverse.com.au>");
MODULE_DESCRIPTION("Solos PCI driver");
MODULE_VERSION(VERSION);
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("solos-FPGA.bin");
MODULE_FIRMWARE("solos-Firmware.bin");
MODULE_FIRMWARE("solos-db-FPGA.bin");
MODULE_PARM_DESC(reset, "Reset Solos chips on startup");
MODULE_PARM_DESC(atmdebug, "Print ATM data");
MODULE_PARM_DESC(firmware_upgrade, "Initiate Solos firmware upgrade");
MODULE_PARM_DESC(fpga_upgrade, "Initiate FPGA upgrade");
MODULE_PARM_DESC(db_firmware_upgrade, "Initiate daughter board Solos firmware upgrade");
MODULE_PARM_DESC(db_fpga_upgrade, "Initiate daughter board FPGA upgrade");
module_param(reset, int, 0444);
module_param(atmdebug, int, 0644);
module_param(firmware_upgrade, int, 0444);
module_param(fpga_upgrade, int, 0444);
module_param(db_firmware_upgrade, int, 0444);
module_param(db_fpga_upgrade, int, 0444);
static void fpga_queue(struct solos_card *card, int port, struct sk_buff *skb,
struct atm_vcc *vcc);
static uint32_t fpga_tx(struct solos_card *);
static irqreturn_t solos_irq(int irq, void *dev_id);
static struct atm_vcc* find_vcc(struct atm_dev *dev, short vpi, int vci);
static int list_vccs(int vci);
static void release_vccs(struct atm_dev *dev);
static int atm_init(struct solos_card *);
static void atm_remove(struct solos_card *);
static int send_command(struct solos_card *card, int dev, const char *buf, size_t size);
static void solos_bh(unsigned long);
static int print_buffer(struct sk_buff *buf);
static inline void solos_pop(struct atm_vcc *vcc, struct sk_buff *skb)
{
if (vcc->pop)
vcc->pop(vcc, skb);
else
dev_kfree_skb_any(skb);
}
static ssize_t solos_param_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
struct solos_card *card = atmdev->dev_data;
struct solos_param prm;
struct sk_buff *skb;
struct pkt_hdr *header;
int buflen;
buflen = strlen(attr->attr.name) + 10;
skb = alloc_skb(sizeof(*header) + buflen, GFP_KERNEL);
if (!skb) {
dev_warn(&card->dev->dev, "Failed to allocate sk_buff in solos_param_show()\n");
return -ENOMEM;
}
header = (void *)skb_put(skb, sizeof(*header));
buflen = snprintf((void *)&header[1], buflen - 1,
"L%05d\n%s\n", current->pid, attr->attr.name);
skb_put(skb, buflen);
header->size = cpu_to_le16(buflen);
header->vpi = cpu_to_le16(0);
header->vci = cpu_to_le16(0);
header->type = cpu_to_le16(PKT_COMMAND);
prm.pid = current->pid;
prm.response = NULL;
prm.port = SOLOS_CHAN(atmdev);
spin_lock_irq(&card->param_queue_lock);
list_add(&prm.list, &card->param_queue);
spin_unlock_irq(&card->param_queue_lock);
fpga_queue(card, prm.port, skb, NULL);
wait_event_timeout(card->param_wq, prm.response, 5 * HZ);
spin_lock_irq(&card->param_queue_lock);
list_del(&prm.list);
spin_unlock_irq(&card->param_queue_lock);
if (!prm.response)
return -EIO;
buflen = prm.response->len;
memcpy(buf, prm.response->data, buflen);
kfree_skb(prm.response);
return buflen;
}
static ssize_t solos_param_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
struct solos_card *card = atmdev->dev_data;
struct solos_param prm;
struct sk_buff *skb;
struct pkt_hdr *header;
int buflen;
ssize_t ret;
buflen = strlen(attr->attr.name) + 11 + count;
skb = alloc_skb(sizeof(*header) + buflen, GFP_KERNEL);
if (!skb) {
dev_warn(&card->dev->dev, "Failed to allocate sk_buff in solos_param_store()\n");
return -ENOMEM;
}
header = (void *)skb_put(skb, sizeof(*header));
buflen = snprintf((void *)&header[1], buflen - 1,
"L%05d\n%s\n%s\n", current->pid, attr->attr.name, buf);
skb_put(skb, buflen);
header->size = cpu_to_le16(buflen);
header->vpi = cpu_to_le16(0);
header->vci = cpu_to_le16(0);
header->type = cpu_to_le16(PKT_COMMAND);
prm.pid = current->pid;
prm.response = NULL;
prm.port = SOLOS_CHAN(atmdev);
spin_lock_irq(&card->param_queue_lock);
list_add(&prm.list, &card->param_queue);
spin_unlock_irq(&card->param_queue_lock);
fpga_queue(card, prm.port, skb, NULL);
wait_event_timeout(card->param_wq, prm.response, 5 * HZ);
spin_lock_irq(&card->param_queue_lock);
list_del(&prm.list);
spin_unlock_irq(&card->param_queue_lock);
skb = prm.response;
if (!skb)
return -EIO;
buflen = skb->len;
/* Sometimes it has a newline, sometimes it doesn't. */
if (skb->data[buflen - 1] == '\n')
buflen--;
if (buflen == 2 && !strncmp(skb->data, "OK", 2))
ret = count;
else if (buflen == 5 && !strncmp(skb->data, "ERROR", 5))
ret = -EIO;
else {
/* We know we have enough space allocated for this; we allocated
it ourselves */
skb->data[buflen] = 0;
dev_warn(&card->dev->dev, "Unexpected parameter response: '%s'\n",
skb->data);
ret = -EIO;
}
kfree_skb(skb);
return ret;
}
static char *next_string(struct sk_buff *skb)
{
int i = 0;
char *this = skb->data;
for (i = 0; i < skb->len; i++) {
if (this[i] == '\n') {
this[i] = 0;
skb_pull(skb, i + 1);
return this;
}
if (!isprint(this[i]))
return NULL;
}
return NULL;
}
/*
* Status packet has fields separated by \n, starting with a version number
* for the information therein. Fields are....
*
* packet version
* RxBitRate (version >= 1)
* TxBitRate (version >= 1)
* State (version >= 1)
* LocalSNRMargin (version >= 1)
* LocalLineAttn (version >= 1)
*/
static int process_status(struct solos_card *card, int port, struct sk_buff *skb)
{
char *str, *end, *state_str, *snr, *attn;
int ver, rate_up, rate_down;
if (!card->atmdev[port])
return -ENODEV;
str = next_string(skb);
if (!str)
return -EIO;
ver = simple_strtol(str, NULL, 10);
if (ver < 1) {
dev_warn(&card->dev->dev, "Unexpected status interrupt version %d\n",
ver);
return -EIO;
}
str = next_string(skb);
if (!str)
return -EIO;
if (!strcmp(str, "ERROR")) {
dev_dbg(&card->dev->dev, "Status packet indicated Solos error on port %d (starting up?)\n",
port);
return 0;
}
rate_down = simple_strtol(str, &end, 10);
if (*end)
return -EIO;
str = next_string(skb);
if (!str)
return -EIO;
rate_up = simple_strtol(str, &end, 10);
if (*end)
return -EIO;
state_str = next_string(skb);
if (!state_str)
return -EIO;
/* Anything but 'Showtime' is down */
if (strcmp(state_str, "Showtime")) {
card->atmdev[port]->signal = ATM_PHY_SIG_LOST;
release_vccs(card->atmdev[port]);
dev_info(&card->dev->dev, "Port %d: %s\n", port, state_str);
return 0;
}
snr = next_string(skb);
if (!snr)
return -EIO;
attn = next_string(skb);
if (!attn)
return -EIO;
dev_info(&card->dev->dev, "Port %d: %s @%d/%d kb/s%s%s%s%s\n",
port, state_str, rate_down/1000, rate_up/1000,
snr[0]?", SNR ":"", snr, attn[0]?", Attn ":"", attn);
card->atmdev[port]->link_rate = rate_down / 424;
card->atmdev[port]->signal = ATM_PHY_SIG_FOUND;
return 0;
}
static int process_command(struct solos_card *card, int port, struct sk_buff *skb)
{
struct solos_param *prm;
unsigned long flags;
int cmdpid;
int found = 0;
if (skb->len < 7)
return 0;
if (skb->data[0] != 'L' || !isdigit(skb->data[1]) ||
!isdigit(skb->data[2]) || !isdigit(skb->data[3]) ||
!isdigit(skb->data[4]) || !isdigit(skb->data[5]) ||
skb->data[6] != '\n')
return 0;
cmdpid = simple_strtol(&skb->data[1], NULL, 10);
spin_lock_irqsave(&card->param_queue_lock, flags);
list_for_each_entry(prm, &card->param_queue, list) {
if (prm->port == port && prm->pid == cmdpid) {
prm->response = skb;
skb_pull(skb, 7);
wake_up(&card->param_wq);
found = 1;
break;
}
}
spin_unlock_irqrestore(&card->param_queue_lock, flags);
return found;
}
static ssize_t console_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
struct solos_card *card = atmdev->dev_data;
struct sk_buff *skb;
spin_lock(&card->cli_queue_lock);
skb = skb_dequeue(&card->cli_queue[SOLOS_CHAN(atmdev)]);
spin_unlock(&card->cli_queue_lock);
if(skb == NULL)
return sprintf(buf, "No data.\n");
memcpy(buf, skb->data, skb->len);
dev_dbg(&card->dev->dev, "len: %d\n", skb->len);
kfree_skb(skb);
return skb->len;
}
static int send_command(struct solos_card *card, int dev, const char *buf, size_t size)
{
struct sk_buff *skb;
struct pkt_hdr *header;
if (size > (BUF_SIZE - sizeof(*header))) {
dev_dbg(&card->dev->dev, "Command is too big. Dropping request\n");
return 0;
}
skb = alloc_skb(size + sizeof(*header), GFP_ATOMIC);
if (!skb) {
dev_warn(&card->dev->dev, "Failed to allocate sk_buff in send_command()\n");
return 0;
}
header = (void *)skb_put(skb, sizeof(*header));
header->size = cpu_to_le16(size);
header->vpi = cpu_to_le16(0);
header->vci = cpu_to_le16(0);
header->type = cpu_to_le16(PKT_COMMAND);
memcpy(skb_put(skb, size), buf, size);
fpga_queue(card, dev, skb, NULL);
return 0;
}
static ssize_t console_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct atm_dev *atmdev = container_of(dev, struct atm_dev, class_dev);
struct solos_card *card = atmdev->dev_data;
int err;
err = send_command(card, SOLOS_CHAN(atmdev), buf, count);
return err?:count;
}
static DEVICE_ATTR(console, 0644, console_show, console_store);
#define SOLOS_ATTR_RO(x) static DEVICE_ATTR(x, 0444, solos_param_show, NULL);
#define SOLOS_ATTR_RW(x) static DEVICE_ATTR(x, 0644, solos_param_show, solos_param_store);
#include "solos-attrlist.c"
#undef SOLOS_ATTR_RO
#undef SOLOS_ATTR_RW
#define SOLOS_ATTR_RO(x) &dev_attr_##x.attr,
#define SOLOS_ATTR_RW(x) &dev_attr_##x.attr,
static struct attribute *solos_attrs[] = {
#include "solos-attrlist.c"
NULL
};
static struct attribute_group solos_attr_group = {
.attrs = solos_attrs,
.name = "parameters",
};
static int flash_upgrade(struct solos_card *card, int chip)
{
const struct firmware *fw;
const char *fw_name;
uint32_t data32 = 0;
int blocksize = 0;
int numblocks = 0;
int offset;
switch (chip) {
case 0:
fw_name = "solos-FPGA.bin";
blocksize = FPGA_BLOCK;
break;
case 1:
fw_name = "solos-Firmware.bin";
blocksize = SOLOS_BLOCK;
break;
case 2:
if (card->fpga_version > LEGACY_BUFFERS){
fw_name = "solos-db-FPGA.bin";
blocksize = FPGA_BLOCK;
} else {
dev_info(&card->dev->dev, "FPGA version doesn't support"
" daughter board upgrades\n");
return -EPERM;
}
break;
case 3:
if (card->fpga_version > LEGACY_BUFFERS){
fw_name = "solos-Firmware.bin";
blocksize = SOLOS_BLOCK;
} else {
dev_info(&card->dev->dev, "FPGA version doesn't support"
" daughter board upgrades\n");
return -EPERM;
}
break;
default:
return -ENODEV;
}
if (request_firmware(&fw, fw_name, &card->dev->dev))
return -ENOENT;
dev_info(&card->dev->dev, "Flash upgrade starting\n");
numblocks = fw->size / blocksize;
dev_info(&card->dev->dev, "Firmware size: %zd\n", fw->size);
dev_info(&card->dev->dev, "Number of blocks: %d\n", numblocks);
dev_info(&card->dev->dev, "Changing FPGA to Update mode\n");
iowrite32(1, card->config_regs + FPGA_MODE);
data32 = ioread32(card->config_regs + FPGA_MODE);
/* Set mode to Chip Erase */
if(chip == 0 || chip == 2)
dev_info(&card->dev->dev, "Set FPGA Flash mode to FPGA Chip Erase\n");
if(chip == 1 || chip == 3)
dev_info(&card->dev->dev, "Set FPGA Flash mode to Solos Chip Erase\n");
iowrite32((chip * 2), card->config_regs + FLASH_MODE);
iowrite32(1, card->config_regs + WRITE_FLASH);
wait_event(card->fw_wq, !ioread32(card->config_regs + FLASH_BUSY));
for (offset = 0; offset < fw->size; offset += blocksize) {
int i;
/* Clear write flag */
iowrite32(0, card->config_regs + WRITE_FLASH);
/* Set mode to Block Write */
/* dev_info(&card->dev->dev, "Set FPGA Flash mode to Block Write\n"); */
iowrite32(((chip * 2) + 1), card->config_regs + FLASH_MODE);
/* Copy block to buffer, swapping each 16 bits */
for(i = 0; i < blocksize; i += 4) {
uint32_t word = swahb32p((uint32_t *)(fw->data + offset + i));
if(card->fpga_version > LEGACY_BUFFERS)
iowrite32(word, FLASH_BUF + i);
else
iowrite32(word, RX_BUF(card, 3) + i);
}
/* Specify block number and then trigger flash write */
iowrite32(offset / blocksize, card->config_regs + FLASH_BLOCK);
iowrite32(1, card->config_regs + WRITE_FLASH);
wait_event(card->fw_wq, !ioread32(card->config_regs + FLASH_BUSY));
}
release_firmware(fw);
iowrite32(0, card->config_regs + WRITE_FLASH);
iowrite32(0, card->config_regs + FPGA_MODE);
iowrite32(0, card->config_regs + FLASH_MODE);
dev_info(&card->dev->dev, "Returning FPGA to Data mode\n");
return 0;
}
static irqreturn_t solos_irq(int irq, void *dev_id)
{
struct solos_card *card = dev_id;
int handled = 1;
iowrite32(0, card->config_regs + IRQ_CLEAR);
/* If we're up and running, just kick the tasklet to process TX/RX */
if (card->atmdev[0])
tasklet_schedule(&card->tlet);
else
wake_up(&card->fw_wq);
return IRQ_RETVAL(handled);
}
void solos_bh(unsigned long card_arg)
{
struct solos_card *card = (void *)card_arg;
uint32_t card_flags;
uint32_t rx_done = 0;
int port;
/*
* Since fpga_tx() is going to need to read the flags under its lock,
* it can return them to us so that we don't have to hit PCI MMIO
* again for the same information
*/
card_flags = fpga_tx(card);
for (port = 0; port < card->nr_ports; port++) {
if (card_flags & (0x10 << port)) {
struct pkt_hdr _hdr, *header;
struct sk_buff *skb;
struct atm_vcc *vcc;
int size;
if (card->using_dma) {
skb = card->rx_skb[port];
card->rx_skb[port] = NULL;
pci_unmap_single(card->dev, SKB_CB(skb)->dma_addr,
RX_DMA_SIZE, PCI_DMA_FROMDEVICE);
header = (void *)skb->data;
size = le16_to_cpu(header->size);
skb_put(skb, size + sizeof(*header));
skb_pull(skb, sizeof(*header));
} else {
header = &_hdr;
rx_done |= 0x10 << port;
memcpy_fromio(header, RX_BUF(card, port), sizeof(*header));
size = le16_to_cpu(header->size);
if (size > (card->buffer_size - sizeof(*header))){
dev_warn(&card->dev->dev, "Invalid buffer size\n");
continue;
}
skb = alloc_skb(size + 1, GFP_ATOMIC);
if (!skb) {
if (net_ratelimit())
dev_warn(&card->dev->dev, "Failed to allocate sk_buff for RX\n");
continue;
}
memcpy_fromio(skb_put(skb, size),
RX_BUF(card, port) + sizeof(*header),
size);
}
if (atmdebug) {
dev_info(&card->dev->dev, "Received: device %d\n", port);
dev_info(&card->dev->dev, "size: %d VPI: %d VCI: %d\n",
size, le16_to_cpu(header->vpi),
le16_to_cpu(header->vci));
print_buffer(skb);
}
switch (le16_to_cpu(header->type)) {
case PKT_DATA:
vcc = find_vcc(card->atmdev[port], le16_to_cpu(header->vpi),
le16_to_cpu(header->vci));
if (!vcc) {
if (net_ratelimit())
dev_warn(&card->dev->dev, "Received packet for unknown VCI.VPI %d.%d on port %d\n",
le16_to_cpu(header->vci), le16_to_cpu(header->vpi),
port);
continue;
}
atm_charge(vcc, skb->truesize);
vcc->push(vcc, skb);
atomic_inc(&vcc->stats->rx);
break;
case PKT_STATUS:
if (process_status(card, port, skb) &&
net_ratelimit()) {
dev_warn(&card->dev->dev, "Bad status packet of %d bytes on port %d:\n", skb->len, port);
print_buffer(skb);
}
dev_kfree_skb_any(skb);
break;
case PKT_COMMAND:
default: /* FIXME: Not really, surely? */
if (process_command(card, port, skb))
break;
spin_lock(&card->cli_queue_lock);
if (skb_queue_len(&card->cli_queue[port]) > 10) {
if (net_ratelimit())
dev_warn(&card->dev->dev, "Dropping console response on port %d\n",
port);
dev_kfree_skb_any(skb);
} else
skb_queue_tail(&card->cli_queue[port], skb);
spin_unlock(&card->cli_queue_lock);
break;
}
}
/* Allocate RX skbs for any ports which need them */
if (card->using_dma && card->atmdev[port] &&
!card->rx_skb[port]) {
struct sk_buff *skb = alloc_skb(RX_DMA_SIZE, GFP_ATOMIC);
if (skb) {
SKB_CB(skb)->dma_addr =
pci_map_single(card->dev, skb->data,
RX_DMA_SIZE, PCI_DMA_FROMDEVICE);
iowrite32(SKB_CB(skb)->dma_addr,
card->config_regs + RX_DMA_ADDR(port));
card->rx_skb[port] = skb;
} else {
if (net_ratelimit())
dev_warn(&card->dev->dev, "Failed to allocate RX skb");
/* We'll have to try again later */
tasklet_schedule(&card->tlet);
}
}
}
if (rx_done)
iowrite32(rx_done, card->config_regs + FLAGS_ADDR);
return;
}
static struct atm_vcc *find_vcc(struct atm_dev *dev, short vpi, int vci)
{
struct hlist_head *head;
struct atm_vcc *vcc = NULL;
struct hlist_node *node;
struct sock *s;
read_lock(&vcc_sklist_lock);
head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
sk_for_each(s, node, head) {
vcc = atm_sk(s);
if (vcc->dev == dev && vcc->vci == vci &&
vcc->vpi == vpi && vcc->qos.rxtp.traffic_class != ATM_NONE)
goto out;
}
vcc = NULL;
out:
read_unlock(&vcc_sklist_lock);
return vcc;
}
static int list_vccs(int vci)
{
struct hlist_head *head;
struct atm_vcc *vcc;
struct hlist_node *node;
struct sock *s;
int num_found = 0;
int i;
read_lock(&vcc_sklist_lock);
if (vci != 0){
head = &vcc_hash[vci & (VCC_HTABLE_SIZE -1)];
sk_for_each(s, node, head) {
num_found ++;
vcc = atm_sk(s);
printk(KERN_DEBUG "Device: %d Vpi: %d Vci: %d\n",
vcc->dev->number,
vcc->vpi,
vcc->vci);
}
} else {
for(i = 0; i < VCC_HTABLE_SIZE; i++){
head = &vcc_hash[i];
sk_for_each(s, node, head) {
num_found ++;
vcc = atm_sk(s);
printk(KERN_DEBUG "Device: %d Vpi: %d Vci: %d\n",
vcc->dev->number,
vcc->vpi,
vcc->vci);
}
}
}
read_unlock(&vcc_sklist_lock);
return num_found;
}
static void release_vccs(struct atm_dev *dev)
{
int i;
write_lock_irq(&vcc_sklist_lock);
for (i = 0; i < VCC_HTABLE_SIZE; i++) {
struct hlist_head *head = &vcc_hash[i];
struct hlist_node *node, *tmp;
struct sock *s;
struct atm_vcc *vcc;
sk_for_each_safe(s, node, tmp, head) {
vcc = atm_sk(s);
if (vcc->dev == dev) {
vcc_release_async(vcc, -EPIPE);
sk_del_node_init(s);
}
}
}
write_unlock_irq(&vcc_sklist_lock);
}
static int popen(struct atm_vcc *vcc)
{
struct solos_card *card = vcc->dev->dev_data;
struct sk_buff *skb;
struct pkt_hdr *header;
if (vcc->qos.aal != ATM_AAL5) {
dev_warn(&card->dev->dev, "Unsupported ATM type %d\n",
vcc->qos.aal);
return -EINVAL;
}
skb = alloc_skb(sizeof(*header), GFP_ATOMIC);
if (!skb && net_ratelimit()) {
dev_warn(&card->dev->dev, "Failed to allocate sk_buff in popen()\n");
return -ENOMEM;
}
header = (void *)skb_put(skb, sizeof(*header));
header->size = cpu_to_le16(0);
header->vpi = cpu_to_le16(vcc->vpi);
header->vci = cpu_to_le16(vcc->vci);
header->type = cpu_to_le16(PKT_POPEN);
fpga_queue(card, SOLOS_CHAN(vcc->dev), skb, NULL);
set_bit(ATM_VF_ADDR, &vcc->flags);
set_bit(ATM_VF_READY, &vcc->flags);
list_vccs(0);
return 0;
}
static void pclose(struct atm_vcc *vcc)
{
struct solos_card *card = vcc->dev->dev_data;
struct sk_buff *skb;
struct pkt_hdr *header;
skb = alloc_skb(sizeof(*header), GFP_ATOMIC);
if (!skb) {
dev_warn(&card->dev->dev, "Failed to allocate sk_buff in pclose()\n");
return;
}
header = (void *)skb_put(skb, sizeof(*header));
header->size = cpu_to_le16(0);
header->vpi = cpu_to_le16(vcc->vpi);
header->vci = cpu_to_le16(vcc->vci);
header->type = cpu_to_le16(PKT_PCLOSE);
fpga_queue(card, SOLOS_CHAN(vcc->dev), skb, NULL);
clear_bit(ATM_VF_ADDR, &vcc->flags);
clear_bit(ATM_VF_READY, &vcc->flags);
return;
}
static int print_buffer(struct sk_buff *buf)
{
int len,i;
char msg[500];
char item[10];
len = buf->len;
for (i = 0; i < len; i++){
if(i % 8 == 0)
sprintf(msg, "%02X: ", i);
sprintf(item,"%02X ",*(buf->data + i));
strcat(msg, item);
if(i % 8 == 7) {
sprintf(item, "\n");
strcat(msg, item);
printk(KERN_DEBUG "%s", msg);
}
}
if (i % 8 != 0) {
sprintf(item, "\n");
strcat(msg, item);
printk(KERN_DEBUG "%s", msg);
}
printk(KERN_DEBUG "\n");
return 0;
}
static void fpga_queue(struct solos_card *card, int port, struct sk_buff *skb,
struct atm_vcc *vcc)
{
int old_len;
unsigned long flags;
SKB_CB(skb)->vcc = vcc;
spin_lock_irqsave(&card->tx_queue_lock, flags);
old_len = skb_queue_len(&card->tx_queue[port]);
skb_queue_tail(&card->tx_queue[port], skb);
if (!old_len)
card->tx_mask |= (1 << port);
spin_unlock_irqrestore(&card->tx_queue_lock, flags);
/* Theoretically we could just schedule the tasklet here, but
that introduces latency we don't want -- it's noticeable */
if (!old_len)
fpga_tx(card);
}
static uint32_t fpga_tx(struct solos_card *card)
{
uint32_t tx_pending, card_flags;
uint32_t tx_started = 0;
struct sk_buff *skb;
struct atm_vcc *vcc;
unsigned char port;
unsigned long flags;
spin_lock_irqsave(&card->tx_lock, flags);
card_flags = ioread32(card->config_regs + FLAGS_ADDR);
/*
* The queue lock is required for _writing_ to tx_mask, but we're
* OK to read it here without locking. The only potential update
* that we could race with is in fpga_queue() where it sets a bit
* for a new port... but it's going to call this function again if
* it's doing that, anyway.
*/
tx_pending = card->tx_mask & ~card_flags;
for (port = 0; tx_pending; tx_pending >>= 1, port++) {
if (tx_pending & 1) {
struct sk_buff *oldskb = card->tx_skb[port];
if (oldskb)
pci_unmap_single(card->dev, SKB_CB(oldskb)->dma_addr,
oldskb->len, PCI_DMA_TODEVICE);
spin_lock(&card->tx_queue_lock);
skb = skb_dequeue(&card->tx_queue[port]);
if (!skb)
card->tx_mask &= ~(1 << port);
spin_unlock(&card->tx_queue_lock);
if (skb && !card->using_dma) {
memcpy_toio(TX_BUF(card, port), skb->data, skb->len);
tx_started |= 1 << port;
oldskb = skb; /* We're done with this skb already */
} else if (skb && card->using_dma) {
SKB_CB(skb)->dma_addr = pci_map_single(card->dev, skb->data,
skb->len, PCI_DMA_TODEVICE);
iowrite32(SKB_CB(skb)->dma_addr,
card->config_regs + TX_DMA_ADDR(port));
}
if (!oldskb)
continue;
/* Clean up and free oldskb now it's gone */
if (atmdebug) {
dev_info(&card->dev->dev, "Transmitted: port %d\n",
port);
print_buffer(oldskb);
}
vcc = SKB_CB(oldskb)->vcc;
if (vcc) {
atomic_inc(&vcc->stats->tx);
solos_pop(vcc, oldskb);
} else
dev_kfree_skb_irq(oldskb);
}
}
/* For non-DMA TX, write the 'TX start' bit for all four ports simultaneously */
if (tx_started)
iowrite32(tx_started, card->config_regs + FLAGS_ADDR);
spin_unlock_irqrestore(&card->tx_lock, flags);
return card_flags;
}
static int psend(struct atm_vcc *vcc, struct sk_buff *skb)
{
struct solos_card *card = vcc->dev->dev_data;
struct pkt_hdr *header;
int pktlen;
pktlen = skb->len;
if (pktlen > (BUF_SIZE - sizeof(*header))) {
dev_warn(&card->dev->dev, "Length of PDU is too large. Dropping PDU.\n");
solos_pop(vcc, skb);
return 0;
}
if (!skb_clone_writable(skb, sizeof(*header))) {
int expand_by = 0;
int ret;
if (skb_headroom(skb) < sizeof(*header))
expand_by = sizeof(*header) - skb_headroom(skb);
ret = pskb_expand_head(skb, expand_by, 0, GFP_ATOMIC);
if (ret) {
dev_warn(&card->dev->dev, "pskb_expand_head failed.\n");
solos_pop(vcc, skb);
return ret;
}
}
header = (void *)skb_push(skb, sizeof(*header));
/* This does _not_ include the size of the header */
header->size = cpu_to_le16(pktlen);
header->vpi = cpu_to_le16(vcc->vpi);
header->vci = cpu_to_le16(vcc->vci);
header->type = cpu_to_le16(PKT_DATA);
fpga_queue(card, SOLOS_CHAN(vcc->dev), skb, vcc);
return 0;
}
static struct atmdev_ops fpga_ops = {
.open = popen,
.close = pclose,
.ioctl = NULL,
.getsockopt = NULL,
.setsockopt = NULL,
.send = psend,
.send_oam = NULL,
.phy_put = NULL,
.phy_get = NULL,
.change_qos = NULL,
.proc_read = NULL,
.owner = THIS_MODULE
};
static int fpga_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
int err;
uint16_t fpga_ver;
uint8_t major_ver, minor_ver;
uint32_t data32;
struct solos_card *card;
card = kzalloc(sizeof(*card), GFP_KERNEL);
if (!card)
return -ENOMEM;
card->dev = dev;
init_waitqueue_head(&card->fw_wq);
init_waitqueue_head(&card->param_wq);
err = pci_enable_device(dev);
if (err) {
dev_warn(&dev->dev, "Failed to enable PCI device\n");
goto out;
}
err = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
if (err) {
dev_warn(&dev->dev, "Failed to set 32-bit DMA mask\n");
goto out;
}
err = pci_request_regions(dev, "solos");
if (err) {
dev_warn(&dev->dev, "Failed to request regions\n");
goto out;
}
card->config_regs = pci_iomap(dev, 0, CONFIG_RAM_SIZE);
if (!card->config_regs) {
dev_warn(&dev->dev, "Failed to ioremap config registers\n");
goto out_release_regions;
}
card->buffers = pci_iomap(dev, 1, DATA_RAM_SIZE);
if (!card->buffers) {
dev_warn(&dev->dev, "Failed to ioremap data buffers\n");
goto out_unmap_config;
}
if (reset) {
iowrite32(1, card->config_regs + FPGA_MODE);
data32 = ioread32(card->config_regs + FPGA_MODE);
iowrite32(0, card->config_regs + FPGA_MODE);
data32 = ioread32(card->config_regs + FPGA_MODE);
}
data32 = ioread32(card->config_regs + FPGA_VER);
fpga_ver = (data32 & 0x0000FFFF);
major_ver = ((data32 & 0xFF000000) >> 24);
minor_ver = ((data32 & 0x00FF0000) >> 16);
card->fpga_version = FPGA_VERSION(major_ver,minor_ver);
if (card->fpga_version > LEGACY_BUFFERS)
card->buffer_size = BUF_SIZE;
else
card->buffer_size = OLD_BUF_SIZE;
dev_info(&dev->dev, "Solos FPGA Version %d.%02d svn-%d\n",
major_ver, minor_ver, fpga_ver);
if (card->fpga_version >= DMA_SUPPORTED){
card->using_dma = 1;
} else {
card->using_dma = 0;
/* Set RX empty flag for all ports */
iowrite32(0xF0, card->config_regs + FLAGS_ADDR);
}
data32 = ioread32(card->config_regs + PORTS);
card->nr_ports = (data32 & 0x000000FF);
pci_set_drvdata(dev, card);
tasklet_init(&card->tlet, solos_bh, (unsigned long)card);
spin_lock_init(&card->tx_lock);
spin_lock_init(&card->tx_queue_lock);
spin_lock_init(&card->cli_queue_lock);
spin_lock_init(&card->param_queue_lock);
INIT_LIST_HEAD(&card->param_queue);
err = request_irq(dev->irq, solos_irq, IRQF_SHARED,
"solos-pci", card);
if (err) {
dev_dbg(&card->dev->dev, "Failed to request interrupt IRQ: %d\n", dev->irq);
goto out_unmap_both;
}
iowrite32(1, card->config_regs + IRQ_EN_ADDR);
if (fpga_upgrade)
flash_upgrade(card, 0);
if (firmware_upgrade)
flash_upgrade(card, 1);
if (db_fpga_upgrade)
flash_upgrade(card, 2);
if (db_firmware_upgrade)
flash_upgrade(card, 3);
err = atm_init(card);
if (err)
goto out_free_irq;
return 0;
out_free_irq:
iowrite32(0, card->config_regs + IRQ_EN_ADDR);
free_irq(dev->irq, card);
tasklet_kill(&card->tlet);
out_unmap_both:
pci_set_drvdata(dev, NULL);
pci_iounmap(dev, card->config_regs);
out_unmap_config:
pci_iounmap(dev, card->buffers);
out_release_regions:
pci_release_regions(dev);
out:
kfree(card);
return err;
}
static int atm_init(struct solos_card *card)
{
int i;
for (i = 0; i < card->nr_ports; i++) {
struct sk_buff *skb;
struct pkt_hdr *header;
skb_queue_head_init(&card->tx_queue[i]);
skb_queue_head_init(&card->cli_queue[i]);
card->atmdev[i] = atm_dev_register("solos-pci", &fpga_ops, -1, NULL);
if (!card->atmdev[i]) {
dev_err(&card->dev->dev, "Could not register ATM device %d\n", i);
atm_remove(card);
return -ENODEV;
}
if (device_create_file(&card->atmdev[i]->class_dev, &dev_attr_console))
dev_err(&card->dev->dev, "Could not register console for ATM device %d\n", i);
if (sysfs_create_group(&card->atmdev[i]->class_dev.kobj, &solos_attr_group))
dev_err(&card->dev->dev, "Could not register parameter group for ATM device %d\n", i);
dev_info(&card->dev->dev, "Registered ATM device %d\n", card->atmdev[i]->number);
card->atmdev[i]->ci_range.vpi_bits = 8;
card->atmdev[i]->ci_range.vci_bits = 16;
card->atmdev[i]->dev_data = card;
card->atmdev[i]->phy_data = (void *)(unsigned long)i;
card->atmdev[i]->signal = ATM_PHY_SIG_UNKNOWN;
skb = alloc_skb(sizeof(*header), GFP_ATOMIC);
if (!skb) {
dev_warn(&card->dev->dev, "Failed to allocate sk_buff in atm_init()\n");
continue;
}
header = (void *)skb_put(skb, sizeof(*header));
header->size = cpu_to_le16(0);
header->vpi = cpu_to_le16(0);
header->vci = cpu_to_le16(0);
header->type = cpu_to_le16(PKT_STATUS);
fpga_queue(card, i, skb, NULL);
}
return 0;
}
static void atm_remove(struct solos_card *card)
{
int i;
for (i = 0; i < card->nr_ports; i++) {
if (card->atmdev[i]) {
struct sk_buff *skb;
dev_info(&card->dev->dev, "Unregistering ATM device %d\n", card->atmdev[i]->number);
sysfs_remove_group(&card->atmdev[i]->class_dev.kobj, &solos_attr_group);
atm_dev_deregister(card->atmdev[i]);
skb = card->rx_skb[i];
if (skb) {
pci_unmap_single(card->dev, SKB_CB(skb)->dma_addr,
RX_DMA_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb(skb);
}
skb = card->tx_skb[i];
if (skb) {
pci_unmap_single(card->dev, SKB_CB(skb)->dma_addr,
skb->len, PCI_DMA_TODEVICE);
dev_kfree_skb(skb);
}
while ((skb = skb_dequeue(&card->tx_queue[i])))
dev_kfree_skb(skb);
}
}
}
static void fpga_remove(struct pci_dev *dev)
{
struct solos_card *card = pci_get_drvdata(dev);
/* Disable IRQs */
iowrite32(0, card->config_regs + IRQ_EN_ADDR);
/* Reset FPGA */
iowrite32(1, card->config_regs + FPGA_MODE);
(void)ioread32(card->config_regs + FPGA_MODE);
atm_remove(card);
free_irq(dev->irq, card);
tasklet_kill(&card->tlet);
/* Release device from reset */
iowrite32(0, card->config_regs + FPGA_MODE);
(void)ioread32(card->config_regs + FPGA_MODE);
pci_iounmap(dev, card->buffers);
pci_iounmap(dev, card->config_regs);
pci_release_regions(dev);
pci_disable_device(dev);
pci_set_drvdata(dev, NULL);
kfree(card);
}
static struct pci_device_id fpga_pci_tbl[] __devinitdata = {
{ 0x10ee, 0x0300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ 0, }
};
MODULE_DEVICE_TABLE(pci,fpga_pci_tbl);
static struct pci_driver fpga_driver = {
.name = "solos",
.id_table = fpga_pci_tbl,
.probe = fpga_probe,
.remove = fpga_remove,
};
static int __init solos_pci_init(void)
{
printk(KERN_INFO "Solos PCI Driver Version %s\n", VERSION);
return pci_register_driver(&fpga_driver);
}
static void __exit solos_pci_exit(void)
{
pci_unregister_driver(&fpga_driver);
printk(KERN_INFO "Solos PCI Driver %s Unloaded\n", VERSION);
}
module_init(solos_pci_init);
module_exit(solos_pci_exit);