OpenCloudOS-Kernel/drivers/gpu/drm/i915/intel_guc_fwif.h

706 lines
22 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef _INTEL_GUC_FWIF_H
#define _INTEL_GUC_FWIF_H
#define GUC_CLIENT_PRIORITY_KMD_HIGH 0
#define GUC_CLIENT_PRIORITY_HIGH 1
#define GUC_CLIENT_PRIORITY_KMD_NORMAL 2
#define GUC_CLIENT_PRIORITY_NORMAL 3
#define GUC_CLIENT_PRIORITY_NUM 4
#define GUC_MAX_STAGE_DESCRIPTORS 1024
#define GUC_INVALID_STAGE_ID GUC_MAX_STAGE_DESCRIPTORS
#define GUC_RENDER_ENGINE 0
#define GUC_VIDEO_ENGINE 1
#define GUC_BLITTER_ENGINE 2
#define GUC_VIDEOENHANCE_ENGINE 3
#define GUC_VIDEO_ENGINE2 4
#define GUC_MAX_ENGINES_NUM (GUC_VIDEO_ENGINE2 + 1)
#define GUC_DOORBELL_INVALID 256
#define GUC_DB_SIZE (PAGE_SIZE)
#define GUC_WQ_SIZE (PAGE_SIZE * 2)
/* Work queue item header definitions */
#define WQ_STATUS_ACTIVE 1
#define WQ_STATUS_SUSPENDED 2
#define WQ_STATUS_CMD_ERROR 3
#define WQ_STATUS_ENGINE_ID_NOT_USED 4
#define WQ_STATUS_SUSPENDED_FROM_RESET 5
#define WQ_TYPE_SHIFT 0
#define WQ_TYPE_BATCH_BUF (0x1 << WQ_TYPE_SHIFT)
#define WQ_TYPE_PSEUDO (0x2 << WQ_TYPE_SHIFT)
#define WQ_TYPE_INORDER (0x3 << WQ_TYPE_SHIFT)
#define WQ_TYPE_NOOP (0x4 << WQ_TYPE_SHIFT)
#define WQ_TARGET_SHIFT 10
#define WQ_LEN_SHIFT 16
#define WQ_NO_WCFLUSH_WAIT (1 << 27)
#define WQ_PRESENT_WORKLOAD (1 << 28)
#define WQ_RING_TAIL_SHIFT 20
#define WQ_RING_TAIL_MAX 0x7FF /* 2^11 QWords */
#define WQ_RING_TAIL_MASK (WQ_RING_TAIL_MAX << WQ_RING_TAIL_SHIFT)
#define GUC_STAGE_DESC_ATTR_ACTIVE BIT(0)
#define GUC_STAGE_DESC_ATTR_PENDING_DB BIT(1)
#define GUC_STAGE_DESC_ATTR_KERNEL BIT(2)
#define GUC_STAGE_DESC_ATTR_PREEMPT BIT(3)
#define GUC_STAGE_DESC_ATTR_RESET BIT(4)
#define GUC_STAGE_DESC_ATTR_WQLOCKED BIT(5)
#define GUC_STAGE_DESC_ATTR_PCH BIT(6)
#define GUC_STAGE_DESC_ATTR_TERMINATED BIT(7)
/* The guc control data is 10 DWORDs */
#define GUC_CTL_CTXINFO 0
#define GUC_CTL_CTXNUM_IN16_SHIFT 0
#define GUC_CTL_BASE_ADDR_SHIFT 12
#define GUC_CTL_ARAT_HIGH 1
#define GUC_CTL_ARAT_LOW 2
#define GUC_CTL_DEVICE_INFO 3
#define GUC_CTL_LOG_PARAMS 4
#define GUC_LOG_VALID (1 << 0)
#define GUC_LOG_NOTIFY_ON_HALF_FULL (1 << 1)
#define GUC_LOG_ALLOC_IN_MEGABYTE (1 << 3)
#define GUC_LOG_CRASH_SHIFT 4
#define GUC_LOG_CRASH_MASK (0x1 << GUC_LOG_CRASH_SHIFT)
#define GUC_LOG_DPC_SHIFT 6
#define GUC_LOG_DPC_MASK (0x7 << GUC_LOG_DPC_SHIFT)
#define GUC_LOG_ISR_SHIFT 9
#define GUC_LOG_ISR_MASK (0x7 << GUC_LOG_ISR_SHIFT)
#define GUC_LOG_BUF_ADDR_SHIFT 12
#define GUC_CTL_PAGE_FAULT_CONTROL 5
#define GUC_CTL_WA 6
#define GUC_CTL_WA_UK_BY_DRIVER (1 << 3)
#define GUC_CTL_FEATURE 7
#define GUC_CTL_VCS2_ENABLED (1 << 0)
#define GUC_CTL_KERNEL_SUBMISSIONS (1 << 1)
#define GUC_CTL_FEATURE2 (1 << 2)
#define GUC_CTL_POWER_GATING (1 << 3)
#define GUC_CTL_DISABLE_SCHEDULER (1 << 4)
#define GUC_CTL_PREEMPTION_LOG (1 << 5)
#define GUC_CTL_ENABLE_SLPC (1 << 7)
#define GUC_CTL_RESET_ON_PREMPT_FAILURE (1 << 8)
#define GUC_CTL_DEBUG 8
#define GUC_LOG_VERBOSITY_SHIFT 0
#define GUC_LOG_VERBOSITY_LOW (0 << GUC_LOG_VERBOSITY_SHIFT)
#define GUC_LOG_VERBOSITY_MED (1 << GUC_LOG_VERBOSITY_SHIFT)
#define GUC_LOG_VERBOSITY_HIGH (2 << GUC_LOG_VERBOSITY_SHIFT)
#define GUC_LOG_VERBOSITY_ULTRA (3 << GUC_LOG_VERBOSITY_SHIFT)
/* Verbosity range-check limits, without the shift */
#define GUC_LOG_VERBOSITY_MIN 0
#define GUC_LOG_VERBOSITY_MAX 3
#define GUC_LOG_VERBOSITY_MASK 0x0000000f
#define GUC_LOG_DESTINATION_MASK (3 << 4)
#define GUC_LOG_DISABLED (1 << 6)
#define GUC_PROFILE_ENABLED (1 << 7)
#define GUC_WQ_TRACK_ENABLED (1 << 8)
#define GUC_ADS_ENABLED (1 << 9)
#define GUC_LOG_DEFAULT_DISABLED (1 << 10)
#define GUC_ADS_ADDR_SHIFT 11
#define GUC_ADS_ADDR_MASK 0xfffff800
#define GUC_CTL_RSRVD 9
#define GUC_CTL_MAX_DWORDS (SOFT_SCRATCH_COUNT - 2) /* [1..14] */
/**
* DOC: GuC Firmware Layout
*
* The GuC firmware layout looks like this:
*
* +-------------------------------+
* | uc_css_header |
* | |
* | contains major/minor version |
* +-------------------------------+
* | uCode |
* +-------------------------------+
* | RSA signature |
* +-------------------------------+
* | modulus key |
* +-------------------------------+
* | exponent val |
* +-------------------------------+
*
* The firmware may or may not have modulus key and exponent data. The header,
* uCode and RSA signature are must-have components that will be used by driver.
* Length of each components, which is all in dwords, can be found in header.
* In the case that modulus and exponent are not present in fw, a.k.a truncated
* image, the length value still appears in header.
*
* Driver will do some basic fw size validation based on the following rules:
*
* 1. Header, uCode and RSA are must-have components.
* 2. All firmware components, if they present, are in the sequence illustrated
* in the layout table above.
* 3. Length info of each component can be found in header, in dwords.
* 4. Modulus and exponent key are not required by driver. They may not appear
* in fw. So driver will load a truncated firmware in this case.
*
* HuC firmware layout is same as GuC firmware.
*
* HuC firmware css header is different. However, the only difference is where
* the version information is saved. The uc_css_header is unified to support
* both. Driver should get HuC version from uc_css_header.huc_sw_version, while
* uc_css_header.guc_sw_version for GuC.
*/
struct uc_css_header {
u32 module_type;
/* header_size includes all non-uCode bits, including css_header, rsa
* key, modulus key and exponent data. */
u32 header_size_dw;
u32 header_version;
u32 module_id;
u32 module_vendor;
union {
struct {
u8 day;
u8 month;
u16 year;
};
u32 date;
};
u32 size_dw; /* uCode plus header_size_dw */
u32 key_size_dw;
u32 modulus_size_dw;
u32 exponent_size_dw;
union {
struct {
u8 hour;
u8 min;
u16 sec;
};
u32 time;
};
char username[8];
char buildnumber[12];
union {
struct {
u32 branch_client_version;
u32 sw_version;
} guc;
struct {
u32 sw_version;
u32 reserved;
} huc;
};
u32 prod_preprod_fw;
u32 reserved[12];
u32 header_info;
} __packed;
/* Work item for submitting workloads into work queue of GuC. */
struct guc_wq_item {
u32 header;
u32 context_desc;
u32 submit_element_info;
u32 fence_id;
} __packed;
struct guc_process_desc {
u32 stage_id;
u64 db_base_addr;
u32 head;
u32 tail;
u32 error_offset;
u64 wq_base_addr;
u32 wq_size_bytes;
u32 wq_status;
u32 engine_presence;
u32 priority;
u32 reserved[30];
} __packed;
/* engine id and context id is packed into guc_execlist_context.context_id*/
#define GUC_ELC_CTXID_OFFSET 0
#define GUC_ELC_ENGINE_OFFSET 29
/* The execlist context including software and HW information */
struct guc_execlist_context {
u32 context_desc;
u32 context_id;
u32 ring_status;
u32 ring_lrca;
u32 ring_begin;
u32 ring_end;
u32 ring_next_free_location;
u32 ring_current_tail_pointer_value;
u8 engine_state_submit_value;
u8 engine_state_wait_value;
u16 pagefault_count;
u16 engine_submit_queue_count;
} __packed;
/*
* This structure describes a stage set arranged for a particular communication
* between uKernel (GuC) and Driver (KMD). Technically, this is known as a
* "GuC Context descriptor" in the specs, but we use the term "stage descriptor"
* to avoid confusion with all the other things already named "context" in the
* driver. A static pool of these descriptors are stored inside a GEM object
* (stage_desc_pool) which is held for the entire lifetime of our interaction
* with the GuC, being allocated before the GuC is loaded with its firmware.
*/
struct guc_stage_desc {
u32 sched_common_area;
u32 stage_id;
u32 pas_id;
u8 engines_used;
u64 db_trigger_cpu;
u32 db_trigger_uk;
u64 db_trigger_phy;
u16 db_id;
struct guc_execlist_context lrc[GUC_MAX_ENGINES_NUM];
u8 attribute;
u32 priority;
u32 wq_sampled_tail_offset;
u32 wq_total_submit_enqueues;
u32 process_desc;
u32 wq_addr;
u32 wq_size;
u32 engine_presence;
u8 engine_suspended;
u8 reserved0[3];
u64 reserved1[1];
u64 desc_private;
} __packed;
/**
* DOC: CTB based communication
*
* The CTB (command transport buffer) communication between Host and GuC
* is based on u32 data stream written to the shared buffer. One buffer can
* be used to transmit data only in one direction (one-directional channel).
*
* Current status of the each buffer is stored in the buffer descriptor.
* Buffer descriptor holds tail and head fields that represents active data
* stream. The tail field is updated by the data producer (sender), and head
* field is updated by the data consumer (receiver)::
*
* +------------+
* | DESCRIPTOR | +=================+============+========+
* +============+ | | MESSAGE(s) | |
* | address |--------->+=================+============+========+
* +------------+
* | head | ^-----head--------^
* +------------+
* | tail | ^---------tail-----------------^
* +------------+
* | size | ^---------------size--------------------^
* +------------+
*
* Each message in data stream starts with the single u32 treated as a header,
* followed by optional set of u32 data that makes message specific payload::
*
* +------------+---------+---------+---------+
* | MESSAGE |
* +------------+---------+---------+---------+
* | msg[0] | [1] | ... | [n-1] |
* +------------+---------+---------+---------+
* | MESSAGE | MESSAGE PAYLOAD |
* + HEADER +---------+---------+---------+
* | | 0 | ... | n |
* +======+=====+=========+=========+=========+
* | 31:16| code| | | |
* +------+-----+ | | |
* | 15:5|flags| | | |
* +------+-----+ | | |
* | 4:0| len| | | |
* +------+-----+---------+---------+---------+
*
* ^-------------len-------------^
*
* The message header consists of:
*
* - **len**, indicates length of the message payload (in u32)
* - **code**, indicates message code
* - **flags**, holds various bits to control message handling
*/
/*
* Describes single command transport buffer.
* Used by both guc-master and clients.
*/
struct guc_ct_buffer_desc {
u32 addr; /* gfx address */
u64 host_private; /* host private data */
u32 size; /* size in bytes */
u32 head; /* offset updated by GuC*/
u32 tail; /* offset updated by owner */
u32 is_in_error; /* error indicator */
u32 fence; /* fence updated by GuC */
u32 status; /* status updated by GuC */
u32 owner; /* id of the channel owner */
u32 owner_sub_id; /* owner-defined field for extra tracking */
u32 reserved[5];
} __packed;
/* Type of command transport buffer */
#define INTEL_GUC_CT_BUFFER_TYPE_SEND 0x0u
#define INTEL_GUC_CT_BUFFER_TYPE_RECV 0x1u
/*
* Definition of the command transport message header (DW0)
*
* bit[4..0] message len (in dwords)
* bit[7..5] reserved
* bit[8] write fence to desc
* bit[9] write status to H2G buff
* bit[10] send status (via G2H)
* bit[15..11] reserved
* bit[31..16] action code
*/
#define GUC_CT_MSG_LEN_SHIFT 0
#define GUC_CT_MSG_LEN_MASK 0x1F
#define GUC_CT_MSG_WRITE_FENCE_TO_DESC (1 << 8)
#define GUC_CT_MSG_WRITE_STATUS_TO_BUFF (1 << 9)
#define GUC_CT_MSG_SEND_STATUS (1 << 10)
#define GUC_CT_MSG_ACTION_SHIFT 16
#define GUC_CT_MSG_ACTION_MASK 0xFFFF
#define GUC_FORCEWAKE_RENDER (1 << 0)
#define GUC_FORCEWAKE_MEDIA (1 << 1)
#define GUC_POWER_UNSPECIFIED 0
#define GUC_POWER_D0 1
#define GUC_POWER_D1 2
#define GUC_POWER_D2 3
#define GUC_POWER_D3 4
/* Scheduling policy settings */
/* Reset engine upon preempt failure */
#define POLICY_RESET_ENGINE (1<<0)
/* Preempt to idle on quantum expiry */
#define POLICY_PREEMPT_TO_IDLE (1<<1)
#define POLICY_MAX_NUM_WI 15
#define POLICY_DEFAULT_DPC_PROMOTE_TIME_US 500000
#define POLICY_DEFAULT_EXECUTION_QUANTUM_US 1000000
#define POLICY_DEFAULT_PREEMPTION_TIME_US 500000
#define POLICY_DEFAULT_FAULT_TIME_US 250000
struct guc_policy {
/* Time for one workload to execute. (in micro seconds) */
u32 execution_quantum;
u32 reserved1;
/* Time to wait for a preemption request to completed before issuing a
* reset. (in micro seconds). */
u32 preemption_time;
/* How much time to allow to run after the first fault is observed.
* Then preempt afterwards. (in micro seconds) */
u32 fault_time;
u32 policy_flags;
u32 reserved[2];
} __packed;
struct guc_policies {
struct guc_policy policy[GUC_CLIENT_PRIORITY_NUM][GUC_MAX_ENGINES_NUM];
/* In micro seconds. How much time to allow before DPC processing is
* called back via interrupt (to prevent DPC queue drain starving).
* Typically 1000s of micro seconds (example only, not granularity). */
u32 dpc_promote_time;
/* Must be set to take these new values. */
u32 is_valid;
/* Max number of WIs to process per call. A large value may keep CS
* idle. */
u32 max_num_work_items;
u32 reserved[19];
} __packed;
/* GuC MMIO reg state struct */
#define GUC_REGSET_FLAGS_NONE 0x0
#define GUC_REGSET_POWERCYCLE 0x1
#define GUC_REGSET_MASKED 0x2
#define GUC_REGSET_ENGINERESET 0x4
#define GUC_REGSET_SAVE_DEFAULT_VALUE 0x8
#define GUC_REGSET_SAVE_CURRENT_VALUE 0x10
#define GUC_REGSET_MAX_REGISTERS 25
#define GUC_MMIO_WHITE_LIST_START 0x24d0
#define GUC_MMIO_WHITE_LIST_MAX 12
#define GUC_S3_SAVE_SPACE_PAGES 10
struct guc_mmio_regset {
struct __packed {
u32 offset;
u32 value;
u32 flags;
} registers[GUC_REGSET_MAX_REGISTERS];
u32 values_valid;
u32 number_of_registers;
} __packed;
/* MMIO registers that are set as non privileged */
struct mmio_white_list {
u32 mmio_start;
u32 offsets[GUC_MMIO_WHITE_LIST_MAX];
u32 count;
} __packed;
struct guc_mmio_reg_state {
struct guc_mmio_regset global_reg;
struct guc_mmio_regset engine_reg[GUC_MAX_ENGINES_NUM];
struct mmio_white_list white_list[GUC_MAX_ENGINES_NUM];
} __packed;
/* GuC Additional Data Struct */
struct guc_ads {
u32 reg_state_addr;
u32 reg_state_buffer;
u32 golden_context_lrca;
u32 scheduler_policies;
u32 reserved0[3];
u32 eng_state_size[GUC_MAX_ENGINES_NUM];
u32 reserved2[4];
} __packed;
/* GuC logging structures */
enum guc_log_buffer_type {
GUC_ISR_LOG_BUFFER,
GUC_DPC_LOG_BUFFER,
GUC_CRASH_DUMP_LOG_BUFFER,
GUC_MAX_LOG_BUFFER
};
/**
* Below state structure is used for coordination of retrieval of GuC firmware
* logs. Separate state is maintained for each log buffer type.
* read_ptr points to the location where i915 read last in log buffer and
* is read only for GuC firmware. write_ptr is incremented by GuC with number
* of bytes written for each log entry and is read only for i915.
* When any type of log buffer becomes half full, GuC sends a flush interrupt.
* GuC firmware expects that while it is writing to 2nd half of the buffer,
* first half would get consumed by Host and then get a flush completed
* acknowledgment from Host, so that it does not end up doing any overwrite
* causing loss of logs. So when buffer gets half filled & i915 has requested
* for interrupt, GuC will set flush_to_file field, set the sampled_write_ptr
* to the value of write_ptr and raise the interrupt.
* On receiving the interrupt i915 should read the buffer, clear flush_to_file
* field and also update read_ptr with the value of sample_write_ptr, before
* sending an acknowledgment to GuC. marker & version fields are for internal
* usage of GuC and opaque to i915. buffer_full_cnt field is incremented every
* time GuC detects the log buffer overflow.
*/
struct guc_log_buffer_state {
u32 marker[2];
u32 read_ptr;
u32 write_ptr;
u32 size;
u32 sampled_write_ptr;
union {
struct {
u32 flush_to_file:1;
u32 buffer_full_cnt:4;
u32 reserved:27;
};
u32 flags;
};
u32 version;
} __packed;
struct guc_ctx_report {
u32 report_return_status;
u32 reserved1[64];
u32 affected_count;
u32 reserved2[2];
} __packed;
/* GuC Shared Context Data Struct */
struct guc_shared_ctx_data {
u32 addr_of_last_preempted_data_low;
u32 addr_of_last_preempted_data_high;
u32 addr_of_last_preempted_data_high_tmp;
u32 padding;
u32 is_mapped_to_proxy;
u32 proxy_ctx_id;
u32 engine_reset_ctx_id;
u32 media_reset_count;
u32 reserved1[8];
u32 uk_last_ctx_switch_reason;
u32 was_reset;
u32 lrca_gpu_addr;
u64 execlist_ctx;
u32 reserved2[66];
struct guc_ctx_report preempt_ctx_report[GUC_MAX_ENGINES_NUM];
} __packed;
/**
* DOC: MMIO based communication
*
* The MMIO based communication between Host and GuC uses software scratch
* registers, where first register holds data treated as message header,
* and other registers are used to hold message payload.
*
* For Gen9+, GuC uses software scratch registers 0xC180-0xC1B8,
* but no H2G command takes more than 8 parameters and the GuC FW
* itself uses an 8-element array to store the H2G message.
*
* +-----------+---------+---------+---------+
* | MMIO[0] | MMIO[1] | ... | MMIO[n] |
* +-----------+---------+---------+---------+
* | header | optional payload |
* +======+====+=========+=========+=========+
* | 31:28|type| | | |
* +------+----+ | | |
* | 27:16|data| | | |
* +------+----+ | | |
* | 15:0|code| | | |
* +------+----+---------+---------+---------+
*
* The message header consists of:
*
* - **type**, indicates message type
* - **code**, indicates message code, is specific for **type**
* - **data**, indicates message data, optional, depends on **code**
*
* The following message **types** are supported:
*
* - **REQUEST**, indicates Host-to-GuC request, requested GuC action code
* must be priovided in **code** field. Optional action specific parameters
* can be provided in remaining payload registers or **data** field.
*
* - **RESPONSE**, indicates GuC-to-Host response from earlier GuC request,
* action response status will be provided in **code** field. Optional
* response data can be returned in remaining payload registers or **data**
* field.
*/
#define GUC_MAX_MMIO_MSG_LEN 8
#define INTEL_GUC_MSG_TYPE_SHIFT 28
#define INTEL_GUC_MSG_TYPE_MASK (0xF << INTEL_GUC_MSG_TYPE_SHIFT)
#define INTEL_GUC_MSG_DATA_SHIFT 16
#define INTEL_GUC_MSG_DATA_MASK (0xFFF << INTEL_GUC_MSG_DATA_SHIFT)
#define INTEL_GUC_MSG_CODE_SHIFT 0
#define INTEL_GUC_MSG_CODE_MASK (0xFFFF << INTEL_GUC_MSG_CODE_SHIFT)
#define __INTEL_GUC_MSG_GET(T, m) \
(((m) & INTEL_GUC_MSG_ ## T ## _MASK) >> INTEL_GUC_MSG_ ## T ## _SHIFT)
#define INTEL_GUC_MSG_TO_TYPE(m) __INTEL_GUC_MSG_GET(TYPE, m)
#define INTEL_GUC_MSG_TO_DATA(m) __INTEL_GUC_MSG_GET(DATA, m)
#define INTEL_GUC_MSG_TO_CODE(m) __INTEL_GUC_MSG_GET(CODE, m)
enum intel_guc_msg_type {
INTEL_GUC_MSG_TYPE_REQUEST = 0x0,
INTEL_GUC_MSG_TYPE_RESPONSE = 0xF,
};
#define __INTEL_GUC_MSG_TYPE_IS(T, m) \
(INTEL_GUC_MSG_TO_TYPE(m) == INTEL_GUC_MSG_TYPE_ ## T)
#define INTEL_GUC_MSG_IS_REQUEST(m) __INTEL_GUC_MSG_TYPE_IS(REQUEST, m)
#define INTEL_GUC_MSG_IS_RESPONSE(m) __INTEL_GUC_MSG_TYPE_IS(RESPONSE, m)
enum intel_guc_action {
INTEL_GUC_ACTION_DEFAULT = 0x0,
INTEL_GUC_ACTION_REQUEST_PREEMPTION = 0x2,
INTEL_GUC_ACTION_REQUEST_ENGINE_RESET = 0x3,
INTEL_GUC_ACTION_SAMPLE_FORCEWAKE = 0x6,
INTEL_GUC_ACTION_ALLOCATE_DOORBELL = 0x10,
INTEL_GUC_ACTION_DEALLOCATE_DOORBELL = 0x20,
INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE = 0x30,
INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH = 0x302,
INTEL_GUC_ACTION_ENTER_S_STATE = 0x501,
INTEL_GUC_ACTION_EXIT_S_STATE = 0x502,
INTEL_GUC_ACTION_SLPC_REQUEST = 0x3003,
INTEL_GUC_ACTION_AUTHENTICATE_HUC = 0x4000,
INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER = 0x4505,
INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER = 0x4506,
INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING = 0x0E000,
INTEL_GUC_ACTION_LIMIT
};
enum intel_guc_preempt_options {
INTEL_GUC_PREEMPT_OPTION_DROP_WORK_Q = 0x4,
INTEL_GUC_PREEMPT_OPTION_DROP_SUBMIT_Q = 0x8,
};
enum intel_guc_report_status {
INTEL_GUC_REPORT_STATUS_UNKNOWN = 0x0,
INTEL_GUC_REPORT_STATUS_ACKED = 0x1,
INTEL_GUC_REPORT_STATUS_ERROR = 0x2,
INTEL_GUC_REPORT_STATUS_COMPLETE = 0x4,
};
enum intel_guc_sleep_state_status {
INTEL_GUC_SLEEP_STATE_SUCCESS = 0x0,
INTEL_GUC_SLEEP_STATE_PREEMPT_TO_IDLE_FAILED = 0x1,
INTEL_GUC_SLEEP_STATE_ENGINE_RESET_FAILED = 0x2
#define INTEL_GUC_SLEEP_STATE_INVALID_MASK 0x80000000
};
#define GUC_LOG_CONTROL_LOGGING_ENABLED (1 << 0)
#define GUC_LOG_CONTROL_VERBOSITY_SHIFT 4
#define GUC_LOG_CONTROL_VERBOSITY_MASK (0xF << GUC_LOG_CONTROL_VERBOSITY_SHIFT)
#define GUC_LOG_CONTROL_DEFAULT_LOGGING (1 << 8)
enum intel_guc_response_status {
INTEL_GUC_RESPONSE_STATUS_SUCCESS = 0x0,
INTEL_GUC_RESPONSE_STATUS_GENERIC_FAIL = 0xF000,
};
#define INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(m) \
(typecheck(u32, (m)) && \
((m) & (INTEL_GUC_MSG_TYPE_MASK | INTEL_GUC_MSG_CODE_MASK)) == \
((INTEL_GUC_MSG_TYPE_RESPONSE << INTEL_GUC_MSG_TYPE_SHIFT) | \
(INTEL_GUC_RESPONSE_STATUS_SUCCESS << INTEL_GUC_MSG_CODE_SHIFT)))
/* This action will be programmed in C1BC - SOFT_SCRATCH_15_REG */
enum intel_guc_recv_message {
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED = BIT(1),
INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER = BIT(3)
};
#endif