OpenCloudOS-Kernel/drivers/ieee1394/ieee1394_core.c

1387 lines
37 KiB
C

/*
* IEEE 1394 for Linux
*
* Core support: hpsb_packet management, packet handling and forwarding to
* highlevel or lowlevel code
*
* Copyright (C) 1999, 2000 Andreas E. Bombe
* 2002 Manfred Weihs <weihs@ict.tuwien.ac.at>
*
* This code is licensed under the GPL. See the file COPYING in the root
* directory of the kernel sources for details.
*
*
* Contributions:
*
* Manfred Weihs <weihs@ict.tuwien.ac.at>
* loopback functionality in hpsb_send_packet
* allow highlevel drivers to disable automatic response generation
* and to generate responses themselves (deferred)
*
*/
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/bitops.h>
#include <linux/kdev_t.h>
#include <linux/suspend.h>
#include <linux/kthread.h>
#include <linux/preempt.h>
#include <linux/time.h>
#include <asm/system.h>
#include <asm/byteorder.h>
#include "ieee1394_types.h"
#include "ieee1394.h"
#include "hosts.h"
#include "ieee1394_core.h"
#include "highlevel.h"
#include "ieee1394_transactions.h"
#include "csr.h"
#include "nodemgr.h"
#include "dma.h"
#include "iso.h"
#include "config_roms.h"
/*
* Disable the nodemgr detection and config rom reading functionality.
*/
static int disable_nodemgr;
module_param(disable_nodemgr, int, 0444);
MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality.");
/* Disable Isochronous Resource Manager functionality */
int hpsb_disable_irm = 0;
module_param_named(disable_irm, hpsb_disable_irm, bool, 0444);
MODULE_PARM_DESC(disable_irm,
"Disable Isochronous Resource Manager functionality.");
/* We are GPL, so treat us special */
MODULE_LICENSE("GPL");
/* Some globals used */
const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" };
struct class *hpsb_protocol_class;
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
{
int i;
size /= 4;
size = (size > 4 ? 4 : size);
printk(KERN_DEBUG "ieee1394: %s", text);
if (speed > -1 && speed < 6)
printk(" at %s", hpsb_speedto_str[speed]);
printk(":");
for (i = 0; i < size; i++)
printk(" %08x", data[i]);
printk("\n");
}
#else
#define dump_packet(a,b,c,d) do {} while (0)
#endif
static void abort_requests(struct hpsb_host *host);
static void queue_packet_complete(struct hpsb_packet *packet);
/**
* hpsb_set_packet_complete_task - set task that runs when a packet completes
* @packet: the packet whose completion we want the task added to
* @routine: function to call
* @data: data (if any) to pass to the above function
*
* Set the task that runs when a packet completes. You cannot call this more
* than once on a single packet before it is sent.
*
* Typically, the complete @routine is responsible to call hpsb_free_packet().
*/
void hpsb_set_packet_complete_task(struct hpsb_packet *packet,
void (*routine)(void *), void *data)
{
WARN_ON(packet->complete_routine != NULL);
packet->complete_routine = routine;
packet->complete_data = data;
return;
}
/**
* hpsb_alloc_packet - allocate new packet structure
* @data_size: size of the data block to be allocated, in bytes
*
* This function allocates, initializes and returns a new &struct hpsb_packet.
* It can be used in interrupt context. A header block is always included and
* initialized with zeros. Its size is big enough to contain all possible 1394
* headers. The data block is only allocated if @data_size is not zero.
*
* For packets for which responses will be received the @data_size has to be big
* enough to contain the response's data block since no further allocation
* occurs at response matching time.
*
* The packet's generation value will be set to the current generation number
* for ease of use. Remember to overwrite it with your own recorded generation
* number if you can not be sure that your code will not race with a bus reset.
*
* Return value: A pointer to a &struct hpsb_packet or NULL on allocation
* failure.
*/
struct hpsb_packet *hpsb_alloc_packet(size_t data_size)
{
struct hpsb_packet *packet;
data_size = ((data_size + 3) & ~3);
packet = kzalloc(sizeof(*packet) + data_size, GFP_ATOMIC);
if (!packet)
return NULL;
packet->state = hpsb_unused;
packet->generation = -1;
INIT_LIST_HEAD(&packet->driver_list);
INIT_LIST_HEAD(&packet->queue);
atomic_set(&packet->refcnt, 1);
if (data_size) {
packet->data = packet->embedded_data;
packet->allocated_data_size = data_size;
}
return packet;
}
/**
* hpsb_free_packet - free packet and data associated with it
* @packet: packet to free (is NULL safe)
*
* Frees @packet->data only if it was allocated through hpsb_alloc_packet().
*/
void hpsb_free_packet(struct hpsb_packet *packet)
{
if (packet && atomic_dec_and_test(&packet->refcnt)) {
BUG_ON(!list_empty(&packet->driver_list) ||
!list_empty(&packet->queue));
kfree(packet);
}
}
/**
* hpsb_reset_bus - initiate bus reset on the given host
* @host: host controller whose bus to reset
* @type: one of enum reset_types
*
* Returns 1 if bus reset already in progress, 0 otherwise.
*/
int hpsb_reset_bus(struct hpsb_host *host, int type)
{
if (!host->in_bus_reset) {
host->driver->devctl(host, RESET_BUS, type);
return 0;
} else {
return 1;
}
}
/**
* hpsb_read_cycle_timer - read cycle timer register and system time
* @host: host whose isochronous cycle timer register is read
* @cycle_timer: address of bitfield to return the register contents
* @local_time: address to return the system time
*
* The format of * @cycle_timer, is described in OHCI 1.1 clause 5.13. This
* format is also read from non-OHCI controllers. * @local_time contains the
* system time in microseconds since the Epoch, read at the moment when the
* cycle timer was read.
*
* Return value: 0 for success or error number otherwise.
*/
int hpsb_read_cycle_timer(struct hpsb_host *host, u32 *cycle_timer,
u64 *local_time)
{
int ctr;
struct timeval tv;
unsigned long flags;
if (!host || !cycle_timer || !local_time)
return -EINVAL;
preempt_disable();
local_irq_save(flags);
ctr = host->driver->devctl(host, GET_CYCLE_COUNTER, 0);
if (ctr)
do_gettimeofday(&tv);
local_irq_restore(flags);
preempt_enable();
if (!ctr)
return -EIO;
*cycle_timer = ctr;
*local_time = tv.tv_sec * 1000000ULL + tv.tv_usec;
return 0;
}
/**
* hpsb_bus_reset - notify a bus reset to the core
*
* For host driver module usage. Safe to use in interrupt context, although
* quite complex; so you may want to run it in the bottom rather than top half.
*
* Returns 1 if bus reset already in progress, 0 otherwise.
*/
int hpsb_bus_reset(struct hpsb_host *host)
{
if (host->in_bus_reset) {
HPSB_NOTICE("%s called while bus reset already in progress",
__FUNCTION__);
return 1;
}
abort_requests(host);
host->in_bus_reset = 1;
host->irm_id = -1;
host->is_irm = 0;
host->busmgr_id = -1;
host->is_busmgr = 0;
host->is_cycmst = 0;
host->node_count = 0;
host->selfid_count = 0;
return 0;
}
/*
* Verify num_of_selfids SelfIDs and return number of nodes. Return zero in
* case verification failed.
*/
static int check_selfids(struct hpsb_host *host)
{
int nodeid = -1;
int rest_of_selfids = host->selfid_count;
struct selfid *sid = (struct selfid *)host->topology_map;
struct ext_selfid *esid;
int esid_seq = 23;
host->nodes_active = 0;
while (rest_of_selfids--) {
if (!sid->extended) {
nodeid++;
esid_seq = 0;
if (sid->phy_id != nodeid) {
HPSB_INFO("SelfIDs failed monotony check with "
"%d", sid->phy_id);
return 0;
}
if (sid->link_active) {
host->nodes_active++;
if (sid->contender)
host->irm_id = LOCAL_BUS | sid->phy_id;
}
} else {
esid = (struct ext_selfid *)sid;
if ((esid->phy_id != nodeid)
|| (esid->seq_nr != esid_seq)) {
HPSB_INFO("SelfIDs failed monotony check with "
"%d/%d", esid->phy_id, esid->seq_nr);
return 0;
}
esid_seq++;
}
sid++;
}
esid = (struct ext_selfid *)(sid - 1);
while (esid->extended) {
if ((esid->porta == SELFID_PORT_PARENT) ||
(esid->portb == SELFID_PORT_PARENT) ||
(esid->portc == SELFID_PORT_PARENT) ||
(esid->portd == SELFID_PORT_PARENT) ||
(esid->porte == SELFID_PORT_PARENT) ||
(esid->portf == SELFID_PORT_PARENT) ||
(esid->portg == SELFID_PORT_PARENT) ||
(esid->porth == SELFID_PORT_PARENT)) {
HPSB_INFO("SelfIDs failed root check on "
"extended SelfID");
return 0;
}
esid--;
}
sid = (struct selfid *)esid;
if ((sid->port0 == SELFID_PORT_PARENT) ||
(sid->port1 == SELFID_PORT_PARENT) ||
(sid->port2 == SELFID_PORT_PARENT)) {
HPSB_INFO("SelfIDs failed root check");
return 0;
}
host->node_count = nodeid + 1;
return 1;
}
static void build_speed_map(struct hpsb_host *host, int nodecount)
{
u8 cldcnt[nodecount];
u8 *map = host->speed_map;
u8 *speedcap = host->speed;
struct selfid *sid;
struct ext_selfid *esid;
int i, j, n;
for (i = 0; i < (nodecount * 64); i += 64) {
for (j = 0; j < nodecount; j++) {
map[i+j] = IEEE1394_SPEED_MAX;
}
}
for (i = 0; i < nodecount; i++) {
cldcnt[i] = 0;
}
/* find direct children count and speed */
for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1],
n = nodecount - 1;
(void *)sid >= (void *)host->topology_map; sid--) {
if (sid->extended) {
esid = (struct ext_selfid *)sid;
if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++;
if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++;
} else {
if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++;
if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++;
if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++;
speedcap[n] = sid->speed;
n--;
}
}
/* set self mapping */
for (i = 0; i < nodecount; i++) {
map[64*i + i] = speedcap[i];
}
/* fix up direct children count to total children count;
* also fix up speedcaps for sibling and parent communication */
for (i = 1; i < nodecount; i++) {
for (j = cldcnt[i], n = i - 1; j > 0; j--) {
cldcnt[i] += cldcnt[n];
speedcap[n] = min(speedcap[n], speedcap[i]);
n -= cldcnt[n] + 1;
}
}
for (n = 0; n < nodecount; n++) {
for (i = n - cldcnt[n]; i <= n; i++) {
for (j = 0; j < (n - cldcnt[n]); j++) {
map[j*64 + i] = map[i*64 + j] =
min(map[i*64 + j], speedcap[n]);
}
for (j = n + 1; j < nodecount; j++) {
map[j*64 + i] = map[i*64 + j] =
min(map[i*64 + j], speedcap[n]);
}
}
}
#if SELFID_SPEED_UNKNOWN != IEEE1394_SPEED_MAX
/* assume maximum speed for 1394b PHYs, nodemgr will correct it */
for (n = 0; n < nodecount; n++)
if (speedcap[n] == SELFID_SPEED_UNKNOWN)
speedcap[n] = IEEE1394_SPEED_MAX;
#endif
}
/**
* hpsb_selfid_received - hand over received selfid packet to the core
*
* For host driver module usage. Safe to use in interrupt context.
*
* The host driver should have done a successful complement check (second
* quadlet is complement of first) beforehand.
*/
void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid)
{
if (host->in_bus_reset) {
HPSB_VERBOSE("Including SelfID 0x%x", sid);
host->topology_map[host->selfid_count++] = sid;
} else {
HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d",
sid, NODEID_TO_BUS(host->node_id));
}
}
/**
* hpsb_selfid_complete - notify completion of SelfID stage to the core
*
* For host driver module usage. Safe to use in interrupt context, although
* quite complex; so you may want to run it in the bottom rather than top half.
*
* Notify completion of SelfID stage to the core and report new physical ID
* and whether host is root now.
*/
void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot)
{
if (!host->in_bus_reset)
HPSB_NOTICE("SelfID completion called outside of bus reset!");
host->node_id = LOCAL_BUS | phyid;
host->is_root = isroot;
if (!check_selfids(host)) {
if (host->reset_retries++ < 20) {
/* selfid stage did not complete without error */
HPSB_NOTICE("Error in SelfID stage, resetting");
host->in_bus_reset = 0;
/* this should work from ohci1394 now... */
hpsb_reset_bus(host, LONG_RESET);
return;
} else {
HPSB_NOTICE("Stopping out-of-control reset loop");
HPSB_NOTICE("Warning - topology map and speed map will not be valid");
host->reset_retries = 0;
}
} else {
host->reset_retries = 0;
build_speed_map(host, host->node_count);
}
HPSB_VERBOSE("selfid_complete called with successful SelfID stage "
"... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id);
/* irm_id is kept up to date by check_selfids() */
if (host->irm_id == host->node_id) {
host->is_irm = 1;
} else {
host->is_busmgr = 0;
host->is_irm = 0;
}
if (isroot) {
host->driver->devctl(host, ACT_CYCLE_MASTER, 1);
host->is_cycmst = 1;
}
atomic_inc(&host->generation);
host->in_bus_reset = 0;
highlevel_host_reset(host);
}
static spinlock_t pending_packets_lock = SPIN_LOCK_UNLOCKED;
/**
* hpsb_packet_sent - notify core of sending a packet
*
* For host driver module usage. Safe to call from within a transmit packet
* routine.
*
* Notify core of sending a packet. Ackcode is the ack code returned for async
* transmits or ACKX_SEND_ERROR if the transmission failed completely; ACKX_NONE
* for other cases (internal errors that don't justify a panic).
*/
void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet,
int ackcode)
{
unsigned long flags;
spin_lock_irqsave(&pending_packets_lock, flags);
packet->ack_code = ackcode;
if (packet->no_waiter || packet->state == hpsb_complete) {
/* if packet->no_waiter, must not have a tlabel allocated */
spin_unlock_irqrestore(&pending_packets_lock, flags);
hpsb_free_packet(packet);
return;
}
atomic_dec(&packet->refcnt); /* drop HC's reference */
/* here the packet must be on the host->pending_packets queue */
if (ackcode != ACK_PENDING || !packet->expect_response) {
packet->state = hpsb_complete;
list_del_init(&packet->queue);
spin_unlock_irqrestore(&pending_packets_lock, flags);
queue_packet_complete(packet);
return;
}
packet->state = hpsb_pending;
packet->sendtime = jiffies;
spin_unlock_irqrestore(&pending_packets_lock, flags);
mod_timer(&host->timeout, jiffies + host->timeout_interval);
}
/**
* hpsb_send_phy_config - transmit a PHY configuration packet on the bus
* @host: host that PHY config packet gets sent through
* @rootid: root whose force_root bit should get set (-1 = don't set force_root)
* @gapcnt: gap count value to set (-1 = don't set gap count)
*
* This function sends a PHY config packet on the bus through the specified
* host.
*
* Return value: 0 for success or negative error number otherwise.
*/
int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt)
{
struct hpsb_packet *packet;
quadlet_t d = 0;
int retval = 0;
if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 ||
(rootid == -1 && gapcnt == -1)) {
HPSB_DEBUG("Invalid Parameter: rootid = %d gapcnt = %d",
rootid, gapcnt);
return -EINVAL;
}
if (rootid != -1)
d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT;
if (gapcnt != -1)
d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT;
packet = hpsb_make_phypacket(host, d);
if (!packet)
return -ENOMEM;
packet->generation = get_hpsb_generation(host);
retval = hpsb_send_packet_and_wait(packet);
hpsb_free_packet(packet);
return retval;
}
/**
* hpsb_send_packet - transmit a packet on the bus
* @packet: packet to send
*
* The packet is sent through the host specified in the packet->host field.
* Before sending, the packet's transmit speed is automatically determined
* using the local speed map when it is an async, non-broadcast packet.
*
* Possibilities for failure are that host is either not initialized, in bus
* reset, the packet's generation number doesn't match the current generation
* number or the host reports a transmit error.
*
* Return value: 0 on success, negative errno on failure.
*/
int hpsb_send_packet(struct hpsb_packet *packet)
{
struct hpsb_host *host = packet->host;
if (host->is_shutdown)
return -EINVAL;
if (host->in_bus_reset ||
(packet->generation != get_hpsb_generation(host)))
return -EAGAIN;
packet->state = hpsb_queued;
/* This just seems silly to me */
WARN_ON(packet->no_waiter && packet->expect_response);
if (!packet->no_waiter || packet->expect_response) {
unsigned long flags;
atomic_inc(&packet->refcnt);
/* Set the initial "sendtime" to 10 seconds from now, to
prevent premature expiry. If a packet takes more than
10 seconds to hit the wire, we have bigger problems :) */
packet->sendtime = jiffies + 10 * HZ;
spin_lock_irqsave(&pending_packets_lock, flags);
list_add_tail(&packet->queue, &host->pending_packets);
spin_unlock_irqrestore(&pending_packets_lock, flags);
}
if (packet->node_id == host->node_id) {
/* it is a local request, so handle it locally */
quadlet_t *data;
size_t size = packet->data_size + packet->header_size;
data = kmalloc(size, GFP_ATOMIC);
if (!data) {
HPSB_ERR("unable to allocate memory for concatenating header and data");
return -ENOMEM;
}
memcpy(data, packet->header, packet->header_size);
if (packet->data_size)
memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);
dump_packet("send packet local", packet->header, packet->header_size, -1);
hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
hpsb_packet_received(host, data, size, 0);
kfree(data);
return 0;
}
if (packet->type == hpsb_async &&
NODEID_TO_NODE(packet->node_id) != ALL_NODES)
packet->speed_code =
host->speed[NODEID_TO_NODE(packet->node_id)];
dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);
return host->driver->transmit_packet(host, packet);
}
/* We could just use complete() directly as the packet complete
* callback, but this is more typesafe, in the sense that we get a
* compiler error if the prototype for complete() changes. */
static void complete_packet(void *data)
{
complete((struct completion *) data);
}
/**
* hpsb_send_packet_and_wait - enqueue packet, block until transaction completes
* @packet: packet to send
*
* Return value: 0 on success, negative errno on failure.
*/
int hpsb_send_packet_and_wait(struct hpsb_packet *packet)
{
struct completion done;
int retval;
init_completion(&done);
hpsb_set_packet_complete_task(packet, complete_packet, &done);
retval = hpsb_send_packet(packet);
if (retval == 0)
wait_for_completion(&done);
return retval;
}
static void send_packet_nocare(struct hpsb_packet *packet)
{
if (hpsb_send_packet(packet) < 0) {
hpsb_free_packet(packet);
}
}
static size_t packet_size_to_data_size(size_t packet_size, size_t header_size,
size_t buffer_size, int tcode)
{
size_t ret = packet_size <= header_size ? 0 : packet_size - header_size;
if (unlikely(ret > buffer_size))
ret = buffer_size;
if (unlikely(ret + header_size != packet_size))
HPSB_ERR("unexpected packet size %zd (tcode %d), bug?",
packet_size, tcode);
return ret;
}
static void handle_packet_response(struct hpsb_host *host, int tcode,
quadlet_t *data, size_t size)
{
struct hpsb_packet *packet;
int tlabel = (data[0] >> 10) & 0x3f;
size_t header_size;
unsigned long flags;
spin_lock_irqsave(&pending_packets_lock, flags);
list_for_each_entry(packet, &host->pending_packets, queue)
if (packet->tlabel == tlabel &&
packet->node_id == (data[1] >> 16))
goto found;
spin_unlock_irqrestore(&pending_packets_lock, flags);
HPSB_DEBUG("unsolicited response packet received - %s",
"no tlabel match");
dump_packet("contents", data, 16, -1);
return;
found:
switch (packet->tcode) {
case TCODE_WRITEQ:
case TCODE_WRITEB:
if (unlikely(tcode != TCODE_WRITE_RESPONSE))
break;
header_size = 12;
size = 0;
goto dequeue;
case TCODE_READQ:
if (unlikely(tcode != TCODE_READQ_RESPONSE))
break;
header_size = 16;
size = 0;
goto dequeue;
case TCODE_READB:
if (unlikely(tcode != TCODE_READB_RESPONSE))
break;
header_size = 16;
size = packet_size_to_data_size(size, header_size,
packet->allocated_data_size,
tcode);
goto dequeue;
case TCODE_LOCK_REQUEST:
if (unlikely(tcode != TCODE_LOCK_RESPONSE))
break;
header_size = 16;
size = packet_size_to_data_size(min(size, (size_t)(16 + 8)),
header_size,
packet->allocated_data_size,
tcode);
goto dequeue;
}
spin_unlock_irqrestore(&pending_packets_lock, flags);
HPSB_DEBUG("unsolicited response packet received - %s",
"tcode mismatch");
dump_packet("contents", data, 16, -1);
return;
dequeue:
list_del_init(&packet->queue);
spin_unlock_irqrestore(&pending_packets_lock, flags);
if (packet->state == hpsb_queued) {
packet->sendtime = jiffies;
packet->ack_code = ACK_PENDING;
}
packet->state = hpsb_complete;
memcpy(packet->header, data, header_size);
if (size)
memcpy(packet->data, data + 4, size);
queue_packet_complete(packet);
}
static struct hpsb_packet *create_reply_packet(struct hpsb_host *host,
quadlet_t *data, size_t dsize)
{
struct hpsb_packet *p;
p = hpsb_alloc_packet(dsize);
if (unlikely(p == NULL)) {
/* FIXME - send data_error response */
HPSB_ERR("out of memory, cannot send response packet");
return NULL;
}
p->type = hpsb_async;
p->state = hpsb_unused;
p->host = host;
p->node_id = data[1] >> 16;
p->tlabel = (data[0] >> 10) & 0x3f;
p->no_waiter = 1;
p->generation = get_hpsb_generation(host);
if (dsize % 4)
p->data[dsize / 4] = 0;
return p;
}
#define PREP_ASYNC_HEAD_RCODE(tc) \
packet->tcode = tc; \
packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
| (1 << 8) | (tc << 4); \
packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
packet->header[2] = 0
static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
quadlet_t data)
{
PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
packet->header[3] = data;
packet->header_size = 16;
packet->data_size = 0;
}
static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
int length)
{
if (rcode != RCODE_COMPLETE)
length = 0;
PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
packet->header[3] = length << 16;
packet->header_size = 16;
packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
}
static void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
{
PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
packet->header_size = 12;
packet->data_size = 0;
}
static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
int length)
{
if (rcode != RCODE_COMPLETE)
length = 0;
PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
packet->header[3] = (length << 16) | extcode;
packet->header_size = 16;
packet->data_size = length;
}
static void handle_incoming_packet(struct hpsb_host *host, int tcode,
quadlet_t *data, size_t size,
int write_acked)
{
struct hpsb_packet *packet;
int length, rcode, extcode;
quadlet_t buffer;
nodeid_t source = data[1] >> 16;
nodeid_t dest = data[0] >> 16;
u16 flags = (u16) data[0];
u64 addr;
/* FIXME?
* Out-of-bounds lengths are left for highlevel_read|write to cap. */
switch (tcode) {
case TCODE_WRITEQ:
addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
rcode = highlevel_write(host, source, dest, data + 3,
addr, 4, flags);
goto handle_write_request;
case TCODE_WRITEB:
addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
rcode = highlevel_write(host, source, dest, data + 4,
addr, data[3] >> 16, flags);
handle_write_request:
if (rcode < 0 || write_acked ||
NODEID_TO_NODE(data[0] >> 16) == NODE_MASK)
return;
/* not a broadcast write, reply */
packet = create_reply_packet(host, data, 0);
if (packet) {
fill_async_write_resp(packet, rcode);
send_packet_nocare(packet);
}
return;
case TCODE_READQ:
addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
rcode = highlevel_read(host, source, &buffer, addr, 4, flags);
if (rcode < 0)
return;
packet = create_reply_packet(host, data, 0);
if (packet) {
fill_async_readquad_resp(packet, rcode, buffer);
send_packet_nocare(packet);
}
return;
case TCODE_READB:
length = data[3] >> 16;
packet = create_reply_packet(host, data, length);
if (!packet)
return;
addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
rcode = highlevel_read(host, source, packet->data, addr,
length, flags);
if (rcode < 0) {
hpsb_free_packet(packet);
return;
}
fill_async_readblock_resp(packet, rcode, length);
send_packet_nocare(packet);
return;
case TCODE_LOCK_REQUEST:
length = data[3] >> 16;
extcode = data[3] & 0xffff;
addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
packet = create_reply_packet(host, data, 8);
if (!packet)
return;
if (extcode == 0 || extcode >= 7) {
/* let switch default handle error */
length = 0;
}
switch (length) {
case 4:
rcode = highlevel_lock(host, source, packet->data, addr,
data[4], 0, extcode, flags);
fill_async_lock_resp(packet, rcode, extcode, 4);
break;
case 8:
if (extcode != EXTCODE_FETCH_ADD &&
extcode != EXTCODE_LITTLE_ADD) {
rcode = highlevel_lock(host, source,
packet->data, addr,
data[5], data[4],
extcode, flags);
fill_async_lock_resp(packet, rcode, extcode, 4);
} else {
rcode = highlevel_lock64(host, source,
(octlet_t *)packet->data, addr,
*(octlet_t *)(data + 4), 0ULL,
extcode, flags);
fill_async_lock_resp(packet, rcode, extcode, 8);
}
break;
case 16:
rcode = highlevel_lock64(host, source,
(octlet_t *)packet->data, addr,
*(octlet_t *)(data + 6),
*(octlet_t *)(data + 4),
extcode, flags);
fill_async_lock_resp(packet, rcode, extcode, 8);
break;
default:
rcode = RCODE_TYPE_ERROR;
fill_async_lock_resp(packet, rcode, extcode, 0);
}
if (rcode < 0)
hpsb_free_packet(packet);
else
send_packet_nocare(packet);
return;
}
}
/**
* hpsb_packet_received - hand over received packet to the core
*
* For host driver module usage.
*
* The contents of data are expected to be the full packet but with the CRCs
* left out (data block follows header immediately), with the header (i.e. the
* first four quadlets) in machine byte order and the data block in big endian.
* *@data can be safely overwritten after this call.
*
* If the packet is a write request, @write_acked is to be set to true if it was
* ack_complete'd already, false otherwise. This argument is ignored for any
* other packet type.
*/
void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
int write_acked)
{
int tcode;
if (unlikely(host->in_bus_reset)) {
HPSB_DEBUG("received packet during reset; ignoring");
return;
}
dump_packet("received packet", data, size, -1);
tcode = (data[0] >> 4) & 0xf;
switch (tcode) {
case TCODE_WRITE_RESPONSE:
case TCODE_READQ_RESPONSE:
case TCODE_READB_RESPONSE:
case TCODE_LOCK_RESPONSE:
handle_packet_response(host, tcode, data, size);
break;
case TCODE_WRITEQ:
case TCODE_WRITEB:
case TCODE_READQ:
case TCODE_READB:
case TCODE_LOCK_REQUEST:
handle_incoming_packet(host, tcode, data, size, write_acked);
break;
case TCODE_ISO_DATA:
highlevel_iso_receive(host, data, size);
break;
case TCODE_CYCLE_START:
/* simply ignore this packet if it is passed on */
break;
default:
HPSB_DEBUG("received packet with bogus transaction code %d",
tcode);
break;
}
}
static void abort_requests(struct hpsb_host *host)
{
struct hpsb_packet *packet, *p;
struct list_head tmp;
unsigned long flags;
host->driver->devctl(host, CANCEL_REQUESTS, 0);
INIT_LIST_HEAD(&tmp);
spin_lock_irqsave(&pending_packets_lock, flags);
list_splice_init(&host->pending_packets, &tmp);
spin_unlock_irqrestore(&pending_packets_lock, flags);
list_for_each_entry_safe(packet, p, &tmp, queue) {
list_del_init(&packet->queue);
packet->state = hpsb_complete;
packet->ack_code = ACKX_ABORTED;
queue_packet_complete(packet);
}
}
void abort_timedouts(unsigned long __opaque)
{
struct hpsb_host *host = (struct hpsb_host *)__opaque;
struct hpsb_packet *packet, *p;
struct list_head tmp;
unsigned long flags, expire, j;
spin_lock_irqsave(&host->csr.lock, flags);
expire = host->csr.expire;
spin_unlock_irqrestore(&host->csr.lock, flags);
j = jiffies;
INIT_LIST_HEAD(&tmp);
spin_lock_irqsave(&pending_packets_lock, flags);
list_for_each_entry_safe(packet, p, &host->pending_packets, queue) {
if (time_before(packet->sendtime + expire, j))
list_move_tail(&packet->queue, &tmp);
else
/* Since packets are added to the tail, the oldest
* ones are first, always. When we get to one that
* isn't timed out, the rest aren't either. */
break;
}
if (!list_empty(&host->pending_packets))
mod_timer(&host->timeout, j + host->timeout_interval);
spin_unlock_irqrestore(&pending_packets_lock, flags);
list_for_each_entry_safe(packet, p, &tmp, queue) {
list_del_init(&packet->queue);
packet->state = hpsb_complete;
packet->ack_code = ACKX_TIMEOUT;
queue_packet_complete(packet);
}
}
static struct task_struct *khpsbpkt_thread;
static LIST_HEAD(hpsbpkt_queue);
static void queue_packet_complete(struct hpsb_packet *packet)
{
unsigned long flags;
if (packet->no_waiter) {
hpsb_free_packet(packet);
return;
}
if (packet->complete_routine != NULL) {
spin_lock_irqsave(&pending_packets_lock, flags);
list_add_tail(&packet->queue, &hpsbpkt_queue);
spin_unlock_irqrestore(&pending_packets_lock, flags);
wake_up_process(khpsbpkt_thread);
}
return;
}
/*
* Kernel thread which handles packets that are completed. This way the
* packet's "complete" function is asynchronously run in process context.
* Only packets which have a "complete" function may be sent here.
*/
static int hpsbpkt_thread(void *__hi)
{
struct hpsb_packet *packet, *p;
struct list_head tmp;
int may_schedule;
current->flags |= PF_NOFREEZE;
while (!kthread_should_stop()) {
INIT_LIST_HEAD(&tmp);
spin_lock_irq(&pending_packets_lock);
list_splice_init(&hpsbpkt_queue, &tmp);
spin_unlock_irq(&pending_packets_lock);
list_for_each_entry_safe(packet, p, &tmp, queue) {
list_del_init(&packet->queue);
packet->complete_routine(packet->complete_data);
}
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irq(&pending_packets_lock);
may_schedule = list_empty(&hpsbpkt_queue);
spin_unlock_irq(&pending_packets_lock);
if (may_schedule)
schedule();
__set_current_state(TASK_RUNNING);
}
return 0;
}
static int __init ieee1394_init(void)
{
int i, ret;
/* non-fatal error */
if (hpsb_init_config_roms()) {
HPSB_ERR("Failed to initialize some config rom entries.\n");
HPSB_ERR("Some features may not be available\n");
}
khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt");
if (IS_ERR(khpsbpkt_thread)) {
HPSB_ERR("Failed to start hpsbpkt thread!\n");
ret = PTR_ERR(khpsbpkt_thread);
goto exit_cleanup_config_roms;
}
if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) {
HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR);
ret = -ENODEV;
goto exit_release_kernel_thread;
}
ret = bus_register(&ieee1394_bus_type);
if (ret < 0) {
HPSB_INFO("bus register failed");
goto release_chrdev;
}
for (i = 0; fw_bus_attrs[i]; i++) {
ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]);
if (ret < 0) {
while (i >= 0) {
bus_remove_file(&ieee1394_bus_type,
fw_bus_attrs[i--]);
}
bus_unregister(&ieee1394_bus_type);
goto release_chrdev;
}
}
ret = class_register(&hpsb_host_class);
if (ret < 0)
goto release_all_bus;
hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol");
if (IS_ERR(hpsb_protocol_class)) {
ret = PTR_ERR(hpsb_protocol_class);
goto release_class_host;
}
ret = init_csr();
if (ret) {
HPSB_INFO("init csr failed");
ret = -ENOMEM;
goto release_class_protocol;
}
if (disable_nodemgr) {
HPSB_INFO("nodemgr and IRM functionality disabled");
/* We shouldn't contend for IRM with nodemgr disabled, since
nodemgr implements functionality required of ieee1394a-2000
IRMs */
hpsb_disable_irm = 1;
return 0;
}
if (hpsb_disable_irm) {
HPSB_INFO("IRM functionality disabled");
}
ret = init_ieee1394_nodemgr();
if (ret < 0) {
HPSB_INFO("init nodemgr failed");
goto cleanup_csr;
}
return 0;
cleanup_csr:
cleanup_csr();
release_class_protocol:
class_destroy(hpsb_protocol_class);
release_class_host:
class_unregister(&hpsb_host_class);
release_all_bus:
for (i = 0; fw_bus_attrs[i]; i++)
bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
bus_unregister(&ieee1394_bus_type);
release_chrdev:
unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
exit_release_kernel_thread:
kthread_stop(khpsbpkt_thread);
exit_cleanup_config_roms:
hpsb_cleanup_config_roms();
return ret;
}
static void __exit ieee1394_cleanup(void)
{
int i;
if (!disable_nodemgr)
cleanup_ieee1394_nodemgr();
cleanup_csr();
class_destroy(hpsb_protocol_class);
class_unregister(&hpsb_host_class);
for (i = 0; fw_bus_attrs[i]; i++)
bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
bus_unregister(&ieee1394_bus_type);
kthread_stop(khpsbpkt_thread);
hpsb_cleanup_config_roms();
unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
}
fs_initcall(ieee1394_init); /* same as ohci1394 */
module_exit(ieee1394_cleanup);
/* Exported symbols */
/** hosts.c **/
EXPORT_SYMBOL(hpsb_alloc_host);
EXPORT_SYMBOL(hpsb_add_host);
EXPORT_SYMBOL(hpsb_resume_host);
EXPORT_SYMBOL(hpsb_remove_host);
EXPORT_SYMBOL(hpsb_update_config_rom_image);
/** ieee1394_core.c **/
EXPORT_SYMBOL(hpsb_speedto_str);
EXPORT_SYMBOL(hpsb_protocol_class);
EXPORT_SYMBOL(hpsb_set_packet_complete_task);
EXPORT_SYMBOL(hpsb_alloc_packet);
EXPORT_SYMBOL(hpsb_free_packet);
EXPORT_SYMBOL(hpsb_send_packet);
EXPORT_SYMBOL(hpsb_reset_bus);
EXPORT_SYMBOL(hpsb_read_cycle_timer);
EXPORT_SYMBOL(hpsb_bus_reset);
EXPORT_SYMBOL(hpsb_selfid_received);
EXPORT_SYMBOL(hpsb_selfid_complete);
EXPORT_SYMBOL(hpsb_packet_sent);
EXPORT_SYMBOL(hpsb_packet_received);
EXPORT_SYMBOL_GPL(hpsb_disable_irm);
/** ieee1394_transactions.c **/
EXPORT_SYMBOL(hpsb_get_tlabel);
EXPORT_SYMBOL(hpsb_free_tlabel);
EXPORT_SYMBOL(hpsb_make_readpacket);
EXPORT_SYMBOL(hpsb_make_writepacket);
EXPORT_SYMBOL(hpsb_make_streampacket);
EXPORT_SYMBOL(hpsb_make_lockpacket);
EXPORT_SYMBOL(hpsb_make_lock64packet);
EXPORT_SYMBOL(hpsb_make_phypacket);
EXPORT_SYMBOL(hpsb_make_isopacket);
EXPORT_SYMBOL(hpsb_read);
EXPORT_SYMBOL(hpsb_write);
EXPORT_SYMBOL(hpsb_packet_success);
/** highlevel.c **/
EXPORT_SYMBOL(hpsb_register_highlevel);
EXPORT_SYMBOL(hpsb_unregister_highlevel);
EXPORT_SYMBOL(hpsb_register_addrspace);
EXPORT_SYMBOL(hpsb_unregister_addrspace);
EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace);
EXPORT_SYMBOL(hpsb_listen_channel);
EXPORT_SYMBOL(hpsb_unlisten_channel);
EXPORT_SYMBOL(hpsb_get_hostinfo);
EXPORT_SYMBOL(hpsb_create_hostinfo);
EXPORT_SYMBOL(hpsb_destroy_hostinfo);
EXPORT_SYMBOL(hpsb_set_hostinfo_key);
EXPORT_SYMBOL(hpsb_get_hostinfo_bykey);
EXPORT_SYMBOL(hpsb_set_hostinfo);
/** nodemgr.c **/
EXPORT_SYMBOL(hpsb_node_fill_packet);
EXPORT_SYMBOL(hpsb_node_write);
EXPORT_SYMBOL(__hpsb_register_protocol);
EXPORT_SYMBOL(hpsb_unregister_protocol);
/** csr.c **/
EXPORT_SYMBOL(hpsb_update_config_rom);
/** dma.c **/
EXPORT_SYMBOL(dma_prog_region_init);
EXPORT_SYMBOL(dma_prog_region_alloc);
EXPORT_SYMBOL(dma_prog_region_free);
EXPORT_SYMBOL(dma_region_init);
EXPORT_SYMBOL(dma_region_alloc);
EXPORT_SYMBOL(dma_region_free);
EXPORT_SYMBOL(dma_region_sync_for_cpu);
EXPORT_SYMBOL(dma_region_sync_for_device);
EXPORT_SYMBOL(dma_region_mmap);
EXPORT_SYMBOL(dma_region_offset_to_bus);
/** iso.c **/
EXPORT_SYMBOL(hpsb_iso_xmit_init);
EXPORT_SYMBOL(hpsb_iso_recv_init);
EXPORT_SYMBOL(hpsb_iso_xmit_start);
EXPORT_SYMBOL(hpsb_iso_recv_start);
EXPORT_SYMBOL(hpsb_iso_recv_listen_channel);
EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel);
EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask);
EXPORT_SYMBOL(hpsb_iso_stop);
EXPORT_SYMBOL(hpsb_iso_shutdown);
EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet);
EXPORT_SYMBOL(hpsb_iso_xmit_sync);
EXPORT_SYMBOL(hpsb_iso_recv_release_packets);
EXPORT_SYMBOL(hpsb_iso_n_ready);
EXPORT_SYMBOL(hpsb_iso_packet_sent);
EXPORT_SYMBOL(hpsb_iso_packet_received);
EXPORT_SYMBOL(hpsb_iso_wake);
EXPORT_SYMBOL(hpsb_iso_recv_flush);
/** csr1212.c **/
EXPORT_SYMBOL(csr1212_attach_keyval_to_directory);
EXPORT_SYMBOL(csr1212_detach_keyval_from_directory);
EXPORT_SYMBOL(csr1212_get_keyval);
EXPORT_SYMBOL(csr1212_new_directory);
EXPORT_SYMBOL(csr1212_parse_keyval);
EXPORT_SYMBOL(csr1212_read);
EXPORT_SYMBOL(csr1212_release_keyval);