OpenCloudOS-Kernel/drivers/net/wireless/ath/ath9k/ar9002_phy.c

578 lines
17 KiB
C

/*
* Copyright (c) 2008-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: Programming Atheros 802.11n analog front end radios
*
* AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
* devices have either an external AR2133 analog front end radio for single
* band 2.4 GHz communication or an AR5133 analog front end radio for dual
* band 2.4 GHz / 5 GHz communication.
*
* All devices after the AR5416 and AR5418 family starting with the AR9280
* have their analog front radios, MAC/BB and host PCIe/USB interface embedded
* into a single-chip and require less programming.
*
* The following single-chips exist with a respective embedded radio:
*
* AR9280 - 11n dual-band 2x2 MIMO for PCIe
* AR9281 - 11n single-band 1x2 MIMO for PCIe
* AR9285 - 11n single-band 1x1 for PCIe
* AR9287 - 11n single-band 2x2 MIMO for PCIe
*
* AR9220 - 11n dual-band 2x2 MIMO for PCI
* AR9223 - 11n single-band 2x2 MIMO for PCI
*
* AR9287 - 11n single-band 1x1 MIMO for USB
*/
#include "hw.h"
#include "ar9002_phy.h"
/**
* ar9002_hw_set_channel - set channel on single-chip device
* @ah: atheros hardware structure
* @chan:
*
* This is the function to change channel on single-chip devices, that is
* all devices after ar9280.
*
* This function takes the channel value in MHz and sets
* hardware channel value. Assumes writes have been enabled to analog bus.
*
* Actual Expression,
*
* For 2GHz channel,
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*
* For 5GHz channel,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
* (freq_ref = 40MHz/(24>>amodeRefSel))
*/
static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
{
u16 bMode, fracMode, aModeRefSel = 0;
u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
struct chan_centers centers;
u32 refDivA = 24;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
reg32 &= 0xc0000000;
if (freq < 4800) { /* 2 GHz, fractional mode */
u32 txctl;
int regWrites = 0;
bMode = 1;
fracMode = 1;
aModeRefSel = 0;
channelSel = CHANSEL_2G(freq);
if (AR_SREV_9287_11_OR_LATER(ah)) {
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
1, regWrites);
} else {
REG_WRITE_ARRAY(&ah->iniCckfirNormal,
1, regWrites);
}
} else {
txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
}
}
} else {
bMode = 0;
fracMode = 0;
switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
case 0:
if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan))
aModeRefSel = 0;
else if ((freq % 20) == 0)
aModeRefSel = 3;
else if ((freq % 10) == 0)
aModeRefSel = 2;
if (aModeRefSel)
break;
case 1:
default:
aModeRefSel = 0;
/*
* Enable 2G (fractional) mode for channels
* which are 5MHz spaced.
*/
fracMode = 1;
refDivA = 1;
channelSel = CHANSEL_5G(freq);
/* RefDivA setting */
ath9k_hw_analog_shift_rmw(ah, AR_AN_SYNTH9,
AR_AN_SYNTH9_REFDIVA,
AR_AN_SYNTH9_REFDIVA_S, refDivA);
}
if (!fracMode) {
ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
channelSel = ndiv & 0x1ff;
channelFrac = (ndiv & 0xfffffe00) * 2;
channelSel = (channelSel << 17) | channelFrac;
}
}
reg32 = reg32 |
(bMode << 29) |
(fracMode << 28) | (aModeRefSel << 26) | (channelSel);
REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
ah->curchan = chan;
ah->curchan_rad_index = -1;
return 0;
}
/**
* ar9002_hw_spur_mitigate - convert baseband spur frequency
* @ah: atheros hardware structure
* @chan:
*
* For single-chip solutions. Converts to baseband spur frequency given the
* input channel frequency and compute register settings below.
*/
static void ar9002_hw_spur_mitigate(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int bb_spur = AR_NO_SPUR;
int freq;
int bin, cur_bin;
int bb_spur_off, spur_subchannel_sd;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, newVal;
int i;
static const int pilot_mask_reg[4] = {
AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
};
static const int chan_mask_reg[4] = {
AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
};
static const int inc[4] = { 0, 100, 0, 0 };
struct chan_centers centers;
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
bool is2GHz = IS_CHAN_2GHZ(chan);
memset(&mask_m, 0, sizeof(int8_t) * 123);
memset(&mask_p, 0, sizeof(int8_t) * 123);
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
ah->config.spurmode = SPUR_ENABLE_EEPROM;
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
if (AR_NO_SPUR == cur_bb_spur)
break;
if (is2GHz)
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
else
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
cur_bb_spur = cur_bb_spur - freq;
if (IS_CHAN_HT40(chan)) {
if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
bb_spur = cur_bb_spur;
break;
}
} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur) {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
return;
} else {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
}
bin = bb_spur * 320;
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
ENABLE_REGWRITE_BUFFER(ah);
newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
if (IS_CHAN_HT40(chan)) {
if (bb_spur < 0) {
spur_subchannel_sd = 1;
bb_spur_off = bb_spur + 10;
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur - 10;
}
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur;
}
if (IS_CHAN_HT40(chan))
spur_delta_phase =
((bb_spur * 262144) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
else
spur_delta_phase =
((bb_spur * 524288) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
REG_WRITE(ah, AR_PHY_TIMING11, newVal);
newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
/* workaround for gcc bug #37014 */
volatile int tmp_v = abs(cur_vit_mask - bin);
if (tmp_v < 75)
mask_amt = 1;
else
mask_amt = 0;
if (cur_vit_mask < 0)
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
else
mask_p[cur_vit_mask / 100] = mask_amt;
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
| (mask_m[2] << 26) | (mask_m[3] << 24)
| (mask_m[4] << 22) | (mask_m[5] << 20)
| (mask_m[6] << 18) | (mask_m[7] << 16)
| (mask_m[8] << 14) | (mask_m[9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[9] << 16)
| (mask_p[8] << 14) | (mask_p[7] << 12)
| (mask_p[6] << 10) | (mask_p[5] << 8)
| (mask_p[4] << 6) | (mask_p[3] << 4)
| (mask_p[2] << 2) | (mask_p[1] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
REGWRITE_BUFFER_FLUSH(ah);
}
static void ar9002_olc_init(struct ath_hw *ah)
{
u32 i;
if (!OLC_FOR_AR9280_20_LATER)
return;
if (OLC_FOR_AR9287_10_LATER) {
REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
AR9287_AN_TXPC0_TXPCMODE,
AR9287_AN_TXPC0_TXPCMODE_S,
AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
udelay(100);
} else {
for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
ah->originalGain[i] =
MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
AR_PHY_TX_GAIN);
ah->PDADCdelta = 0;
}
}
static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int ref_div = 5;
int pll_div = 0x2c;
u32 pll;
if (chan && IS_CHAN_5GHZ(chan) && !IS_CHAN_A_FAST_CLOCK(ah, chan)) {
if (AR_SREV_9280_20(ah)) {
ref_div = 10;
pll_div = 0x50;
} else {
pll_div = 0x28;
}
}
pll = SM(ref_div, AR_RTC_9160_PLL_REFDIV);
pll |= SM(pll_div, AR_RTC_9160_PLL_DIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
return pll;
}
static void ar9002_hw_do_getnf(struct ath_hw *ah,
int16_t nfarray[NUM_NF_READINGS])
{
int16_t nf;
nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
nfarray[0] = sign_extend32(nf, 8);
nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
if (IS_CHAN_HT40(ah->curchan))
nfarray[3] = sign_extend32(nf, 8);
if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
return;
nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
nfarray[1] = sign_extend32(nf, 8);
nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
if (IS_CHAN_HT40(ah->curchan))
nfarray[4] = sign_extend32(nf, 8);
}
static void ar9002_hw_set_nf_limits(struct ath_hw *ah)
{
if (AR_SREV_9285(ah)) {
ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
} else if (AR_SREV_9287(ah)) {
ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
} else if (AR_SREV_9271(ah)) {
ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ;
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ;
} else {
ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ;
ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ;
ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ;
ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ;
ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ;
ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ;
}
}
static void ar9002_hw_antdiv_comb_conf_get(struct ath_hw *ah,
struct ath_hw_antcomb_conf *antconf)
{
u32 regval;
regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
antconf->main_lna_conf = (regval & AR_PHY_9285_ANT_DIV_MAIN_LNACONF) >>
AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S;
antconf->alt_lna_conf = (regval & AR_PHY_9285_ANT_DIV_ALT_LNACONF) >>
AR_PHY_9285_ANT_DIV_ALT_LNACONF_S;
antconf->fast_div_bias = (regval & AR_PHY_9285_FAST_DIV_BIAS) >>
AR_PHY_9285_FAST_DIV_BIAS_S;
antconf->lna1_lna2_delta = -3;
antconf->div_group = 0;
}
static void ar9002_hw_antdiv_comb_conf_set(struct ath_hw *ah,
struct ath_hw_antcomb_conf *antconf)
{
u32 regval;
regval = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
regval &= ~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
AR_PHY_9285_ANT_DIV_ALT_LNACONF |
AR_PHY_9285_FAST_DIV_BIAS);
regval |= ((antconf->main_lna_conf << AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S)
& AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
regval |= ((antconf->alt_lna_conf << AR_PHY_9285_ANT_DIV_ALT_LNACONF_S)
& AR_PHY_9285_ANT_DIV_ALT_LNACONF);
regval |= ((antconf->fast_div_bias << AR_PHY_9285_FAST_DIV_BIAS_S)
& AR_PHY_9285_FAST_DIV_BIAS);
REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regval);
}
void ar9002_hw_attach_phy_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
struct ath_hw_ops *ops = ath9k_hw_ops(ah);
priv_ops->set_rf_regs = NULL;
priv_ops->rf_alloc_ext_banks = NULL;
priv_ops->rf_free_ext_banks = NULL;
priv_ops->rf_set_freq = ar9002_hw_set_channel;
priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate;
priv_ops->olc_init = ar9002_olc_init;
priv_ops->compute_pll_control = ar9002_hw_compute_pll_control;
priv_ops->do_getnf = ar9002_hw_do_getnf;
ops->antdiv_comb_conf_get = ar9002_hw_antdiv_comb_conf_get;
ops->antdiv_comb_conf_set = ar9002_hw_antdiv_comb_conf_set;
ar9002_hw_set_nf_limits(ah);
}