316 lines
8.2 KiB
C
316 lines
8.2 KiB
C
#ifndef _ASM_X86_BITOPS_H
|
|
#define _ASM_X86_BITOPS_H
|
|
|
|
/*
|
|
* Copyright 1992, Linus Torvalds.
|
|
*/
|
|
|
|
#ifndef _LINUX_BITOPS_H
|
|
#error only <linux/bitops.h> can be included directly
|
|
#endif
|
|
|
|
#include <linux/compiler.h>
|
|
#include <asm/alternative.h>
|
|
|
|
/*
|
|
* These have to be done with inline assembly: that way the bit-setting
|
|
* is guaranteed to be atomic. All bit operations return 0 if the bit
|
|
* was cleared before the operation and != 0 if it was not.
|
|
*
|
|
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
|
|
*/
|
|
|
|
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
|
|
/* Technically wrong, but this avoids compilation errors on some gcc
|
|
versions. */
|
|
#define ADDR "=m" (*(volatile long *)addr)
|
|
#define BIT_ADDR "=m" (((volatile int *)addr)[nr >> 5])
|
|
#else
|
|
#define ADDR "+m" (*(volatile long *) addr)
|
|
#define BIT_ADDR "+m" (((volatile int *)addr)[nr >> 5])
|
|
#endif
|
|
#define BASE_ADDR "m" (*(volatile int *)addr)
|
|
|
|
/**
|
|
* set_bit - Atomically set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* This function is atomic and may not be reordered. See __set_bit()
|
|
* if you do not require the atomic guarantees.
|
|
*
|
|
* Note: there are no guarantees that this function will not be reordered
|
|
* on non x86 architectures, so if you are writing portable code,
|
|
* make sure not to rely on its reordering guarantees.
|
|
*
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static inline void set_bit(int nr, volatile void *addr)
|
|
{
|
|
asm volatile(LOCK_PREFIX "bts %1,%0" : ADDR : "Ir" (nr) : "memory");
|
|
}
|
|
|
|
/**
|
|
* __set_bit - Set a bit in memory
|
|
* @nr: the bit to set
|
|
* @addr: the address to start counting from
|
|
*
|
|
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
* may be that only one operation succeeds.
|
|
*/
|
|
static inline void __set_bit(int nr, volatile void *addr)
|
|
{
|
|
asm volatile("bts %1,%0"
|
|
: ADDR
|
|
: "Ir" (nr) : "memory");
|
|
}
|
|
|
|
|
|
/**
|
|
* clear_bit - Clears a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* clear_bit() is atomic and may not be reordered. However, it does
|
|
* not contain a memory barrier, so if it is used for locking purposes,
|
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
|
* in order to ensure changes are visible on other processors.
|
|
*/
|
|
static inline void clear_bit(int nr, volatile void *addr)
|
|
{
|
|
asm volatile(LOCK_PREFIX "btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
|
|
}
|
|
|
|
/*
|
|
* clear_bit_unlock - Clears a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* clear_bit() is atomic and implies release semantics before the memory
|
|
* operation. It can be used for an unlock.
|
|
*/
|
|
static inline void clear_bit_unlock(unsigned nr, volatile void *addr)
|
|
{
|
|
barrier();
|
|
clear_bit(nr, addr);
|
|
}
|
|
|
|
static inline void __clear_bit(int nr, volatile void *addr)
|
|
{
|
|
asm volatile("btr %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
|
|
}
|
|
|
|
/*
|
|
* __clear_bit_unlock - Clears a bit in memory
|
|
* @nr: Bit to clear
|
|
* @addr: Address to start counting from
|
|
*
|
|
* __clear_bit() is non-atomic and implies release semantics before the memory
|
|
* operation. It can be used for an unlock if no other CPUs can concurrently
|
|
* modify other bits in the word.
|
|
*
|
|
* No memory barrier is required here, because x86 cannot reorder stores past
|
|
* older loads. Same principle as spin_unlock.
|
|
*/
|
|
static inline void __clear_bit_unlock(unsigned nr, volatile void *addr)
|
|
{
|
|
barrier();
|
|
__clear_bit(nr, addr);
|
|
}
|
|
|
|
#define smp_mb__before_clear_bit() barrier()
|
|
#define smp_mb__after_clear_bit() barrier()
|
|
|
|
/**
|
|
* __change_bit - Toggle a bit in memory
|
|
* @nr: the bit to change
|
|
* @addr: the address to start counting from
|
|
*
|
|
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
|
* If it's called on the same region of memory simultaneously, the effect
|
|
* may be that only one operation succeeds.
|
|
*/
|
|
static inline void __change_bit(int nr, volatile void *addr)
|
|
{
|
|
asm volatile("btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
|
|
}
|
|
|
|
/**
|
|
* change_bit - Toggle a bit in memory
|
|
* @nr: Bit to change
|
|
* @addr: Address to start counting from
|
|
*
|
|
* change_bit() is atomic and may not be reordered.
|
|
* Note that @nr may be almost arbitrarily large; this function is not
|
|
* restricted to acting on a single-word quantity.
|
|
*/
|
|
static inline void change_bit(int nr, volatile void *addr)
|
|
{
|
|
asm volatile(LOCK_PREFIX "btc %1,%2" : BIT_ADDR : "Ir" (nr), BASE_ADDR);
|
|
}
|
|
|
|
/**
|
|
* test_and_set_bit - Set a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static inline int test_and_set_bit(int nr, volatile void *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
|
|
"sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
|
|
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* test_and_set_bit_lock - Set a bit and return its old value for lock
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This is the same as test_and_set_bit on x86.
|
|
*/
|
|
static inline int test_and_set_bit_lock(int nr, volatile void *addr)
|
|
{
|
|
return test_and_set_bit(nr, addr);
|
|
}
|
|
|
|
/**
|
|
* __test_and_set_bit - Set a bit and return its old value
|
|
* @nr: Bit to set
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is non-atomic and can be reordered.
|
|
* If two examples of this operation race, one can appear to succeed
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
*/
|
|
static inline int __test_and_set_bit(int nr, volatile void *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile("bts %2,%3\n\t"
|
|
"sbb %0,%0"
|
|
: "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to clear
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static inline int test_and_clear_bit(int nr, volatile void *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
|
|
"sbb %0,%0"
|
|
: "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
|
|
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* __test_and_clear_bit - Clear a bit and return its old value
|
|
* @nr: Bit to clear
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is non-atomic and can be reordered.
|
|
* If two examples of this operation race, one can appear to succeed
|
|
* but actually fail. You must protect multiple accesses with a lock.
|
|
*/
|
|
static inline int __test_and_clear_bit(int nr, volatile void *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile("btr %2,%3\n\t"
|
|
"sbb %0,%0"
|
|
: "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
|
|
return oldbit;
|
|
}
|
|
|
|
/* WARNING: non atomic and it can be reordered! */
|
|
static inline int __test_and_change_bit(int nr, volatile void *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile("btc %2,%3\n\t"
|
|
"sbb %0,%0"
|
|
: "=r" (oldbit), BIT_ADDR : "Ir" (nr), BASE_ADDR);
|
|
|
|
return oldbit;
|
|
}
|
|
|
|
/**
|
|
* test_and_change_bit - Change a bit and return its old value
|
|
* @nr: Bit to change
|
|
* @addr: Address to count from
|
|
*
|
|
* This operation is atomic and cannot be reordered.
|
|
* It also implies a memory barrier.
|
|
*/
|
|
static inline int test_and_change_bit(int nr, volatile void *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
|
|
"sbb %0,%0"
|
|
: "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
|
|
|
|
return oldbit;
|
|
}
|
|
|
|
static inline int constant_test_bit(int nr, const volatile void *addr)
|
|
{
|
|
return ((1UL << (nr % BITS_PER_LONG)) &
|
|
(((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
|
|
}
|
|
|
|
static inline int variable_test_bit(int nr, volatile const void *addr)
|
|
{
|
|
int oldbit;
|
|
|
|
asm volatile("bt %2,%3\n\t"
|
|
"sbb %0,%0"
|
|
: "=r" (oldbit)
|
|
: "m" (((volatile const int *)addr)[nr >> 5]),
|
|
"Ir" (nr), BASE_ADDR);
|
|
|
|
return oldbit;
|
|
}
|
|
|
|
#if 0 /* Fool kernel-doc since it doesn't do macros yet */
|
|
/**
|
|
* test_bit - Determine whether a bit is set
|
|
* @nr: bit number to test
|
|
* @addr: Address to start counting from
|
|
*/
|
|
static int test_bit(int nr, const volatile unsigned long *addr);
|
|
#endif
|
|
|
|
#define test_bit(nr,addr) \
|
|
(__builtin_constant_p(nr) ? \
|
|
constant_test_bit((nr),(addr)) : \
|
|
variable_test_bit((nr),(addr)))
|
|
|
|
#undef BASE_ADDR
|
|
#undef BIT_ADDR
|
|
#undef ADDR
|
|
|
|
#ifdef CONFIG_X86_32
|
|
# include "bitops_32.h"
|
|
#else
|
|
# include "bitops_64.h"
|
|
#endif
|
|
|
|
#endif /* _ASM_X86_BITOPS_H */
|