307 lines
6.7 KiB
C
307 lines
6.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
// Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd.
|
|
|
|
#include <linux/extable.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/mmu_context.h>
|
|
#include <linux/perf_event.h>
|
|
|
|
int fixup_exception(struct pt_regs *regs)
|
|
{
|
|
const struct exception_table_entry *fixup;
|
|
|
|
fixup = search_exception_tables(instruction_pointer(regs));
|
|
if (fixup) {
|
|
regs->pc = fixup->fixup;
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool is_write(struct pt_regs *regs)
|
|
{
|
|
switch (trap_no(regs)) {
|
|
case VEC_TLBINVALIDS:
|
|
return true;
|
|
case VEC_TLBMODIFIED:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_HAS_LDSTEX
|
|
static inline void csky_cmpxchg_fixup(struct pt_regs *regs)
|
|
{
|
|
return;
|
|
}
|
|
#else
|
|
extern unsigned long csky_cmpxchg_ldw;
|
|
extern unsigned long csky_cmpxchg_stw;
|
|
static inline void csky_cmpxchg_fixup(struct pt_regs *regs)
|
|
{
|
|
if (trap_no(regs) != VEC_TLBMODIFIED)
|
|
return;
|
|
|
|
if (instruction_pointer(regs) == csky_cmpxchg_stw)
|
|
instruction_pointer_set(regs, csky_cmpxchg_ldw);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
static inline void no_context(struct pt_regs *regs, unsigned long addr)
|
|
{
|
|
current->thread.trap_no = trap_no(regs);
|
|
|
|
/* Are we prepared to handle this kernel fault? */
|
|
if (fixup_exception(regs))
|
|
return;
|
|
|
|
/*
|
|
* Oops. The kernel tried to access some bad page. We'll have to
|
|
* terminate things with extreme prejudice.
|
|
*/
|
|
bust_spinlocks(1);
|
|
pr_alert("Unable to handle kernel paging request at virtual "
|
|
"addr 0x%08lx, pc: 0x%08lx\n", addr, regs->pc);
|
|
die(regs, "Oops");
|
|
do_exit(SIGKILL);
|
|
}
|
|
|
|
static inline void mm_fault_error(struct pt_regs *regs, unsigned long addr, vm_fault_t fault)
|
|
{
|
|
current->thread.trap_no = trap_no(regs);
|
|
|
|
if (fault & VM_FAULT_OOM) {
|
|
/*
|
|
* We ran out of memory, call the OOM killer, and return the userspace
|
|
* (which will retry the fault, or kill us if we got oom-killed).
|
|
*/
|
|
if (!user_mode(regs)) {
|
|
no_context(regs, addr);
|
|
return;
|
|
}
|
|
pagefault_out_of_memory();
|
|
return;
|
|
} else if (fault & VM_FAULT_SIGBUS) {
|
|
/* Kernel mode? Handle exceptions or die */
|
|
if (!user_mode(regs)) {
|
|
no_context(regs, addr);
|
|
return;
|
|
}
|
|
do_trap(regs, SIGBUS, BUS_ADRERR, addr);
|
|
return;
|
|
}
|
|
BUG();
|
|
}
|
|
|
|
static inline void bad_area(struct pt_regs *regs, struct mm_struct *mm, int code, unsigned long addr)
|
|
{
|
|
/*
|
|
* Something tried to access memory that isn't in our memory map.
|
|
* Fix it, but check if it's kernel or user first.
|
|
*/
|
|
mmap_read_unlock(mm);
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
if (user_mode(regs)) {
|
|
do_trap(regs, SIGSEGV, code, addr);
|
|
return;
|
|
}
|
|
|
|
no_context(regs, addr);
|
|
}
|
|
|
|
static inline void vmalloc_fault(struct pt_regs *regs, int code, unsigned long addr)
|
|
{
|
|
pgd_t *pgd, *pgd_k;
|
|
pud_t *pud, *pud_k;
|
|
pmd_t *pmd, *pmd_k;
|
|
pte_t *pte_k;
|
|
int offset;
|
|
|
|
/* User mode accesses just cause a SIGSEGV */
|
|
if (user_mode(regs)) {
|
|
do_trap(regs, SIGSEGV, code, addr);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Synchronize this task's top level page-table
|
|
* with the 'reference' page table.
|
|
*
|
|
* Do _not_ use "tsk" here. We might be inside
|
|
* an interrupt in the middle of a task switch..
|
|
*/
|
|
offset = pgd_index(addr);
|
|
|
|
pgd = get_pgd() + offset;
|
|
pgd_k = init_mm.pgd + offset;
|
|
|
|
if (!pgd_present(*pgd_k)) {
|
|
no_context(regs, addr);
|
|
return;
|
|
}
|
|
set_pgd(pgd, *pgd_k);
|
|
|
|
pud = (pud_t *)pgd;
|
|
pud_k = (pud_t *)pgd_k;
|
|
if (!pud_present(*pud_k)) {
|
|
no_context(regs, addr);
|
|
return;
|
|
}
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
pmd_k = pmd_offset(pud_k, addr);
|
|
if (!pmd_present(*pmd_k)) {
|
|
no_context(regs, addr);
|
|
return;
|
|
}
|
|
set_pmd(pmd, *pmd_k);
|
|
|
|
pte_k = pte_offset_kernel(pmd_k, addr);
|
|
if (!pte_present(*pte_k)) {
|
|
no_context(regs, addr);
|
|
return;
|
|
}
|
|
|
|
flush_tlb_one(addr);
|
|
}
|
|
|
|
static inline bool access_error(struct pt_regs *regs, struct vm_area_struct *vma)
|
|
{
|
|
if (is_write(regs)) {
|
|
if (!(vma->vm_flags & VM_WRITE))
|
|
return true;
|
|
} else {
|
|
if (unlikely(!vma_is_accessible(vma)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* This routine handles page faults. It determines the address and the
|
|
* problem, and then passes it off to one of the appropriate routines.
|
|
*/
|
|
asmlinkage void do_page_fault(struct pt_regs *regs)
|
|
{
|
|
struct task_struct *tsk;
|
|
struct vm_area_struct *vma;
|
|
struct mm_struct *mm;
|
|
unsigned long addr = read_mmu_entryhi() & PAGE_MASK;
|
|
unsigned int flags = FAULT_FLAG_DEFAULT;
|
|
int code = SEGV_MAPERR;
|
|
vm_fault_t fault;
|
|
|
|
tsk = current;
|
|
mm = tsk->mm;
|
|
|
|
csky_cmpxchg_fixup(regs);
|
|
|
|
if (kprobe_page_fault(regs, tsk->thread.trap_no))
|
|
return;
|
|
|
|
/*
|
|
* Fault-in kernel-space virtual memory on-demand.
|
|
* The 'reference' page table is init_mm.pgd.
|
|
*
|
|
* NOTE! We MUST NOT take any locks for this case. We may
|
|
* be in an interrupt or a critical region, and should
|
|
* only copy the information from the master page table,
|
|
* nothing more.
|
|
*/
|
|
if (unlikely((addr >= VMALLOC_START) && (addr <= VMALLOC_END))) {
|
|
vmalloc_fault(regs, code, addr);
|
|
return;
|
|
}
|
|
|
|
/* Enable interrupts if they were enabled in the parent context. */
|
|
if (likely(regs->sr & BIT(6)))
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* If we're in an interrupt, have no user context, or are running
|
|
* in an atomic region, then we must not take the fault.
|
|
*/
|
|
if (unlikely(faulthandler_disabled() || !mm)) {
|
|
no_context(regs, addr);
|
|
return;
|
|
}
|
|
|
|
if (user_mode(regs))
|
|
flags |= FAULT_FLAG_USER;
|
|
|
|
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
|
|
|
|
if (is_write(regs))
|
|
flags |= FAULT_FLAG_WRITE;
|
|
retry:
|
|
mmap_read_lock(mm);
|
|
vma = find_vma(mm, addr);
|
|
if (unlikely(!vma)) {
|
|
bad_area(regs, mm, code, addr);
|
|
return;
|
|
}
|
|
if (likely(vma->vm_start <= addr))
|
|
goto good_area;
|
|
if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
|
|
bad_area(regs, mm, code, addr);
|
|
return;
|
|
}
|
|
if (unlikely(expand_stack(vma, addr))) {
|
|
bad_area(regs, mm, code, addr);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ok, we have a good vm_area for this memory access, so
|
|
* we can handle it.
|
|
*/
|
|
good_area:
|
|
code = SEGV_ACCERR;
|
|
|
|
if (unlikely(access_error(regs, vma))) {
|
|
bad_area(regs, mm, code, addr);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If for any reason at all we could not handle the fault,
|
|
* make sure we exit gracefully rather than endlessly redo
|
|
* the fault.
|
|
*/
|
|
fault = handle_mm_fault(vma, addr, flags, regs);
|
|
|
|
/*
|
|
* If we need to retry but a fatal signal is pending, handle the
|
|
* signal first. We do not need to release the mmap_lock because it
|
|
* would already be released in __lock_page_or_retry in mm/filemap.c.
|
|
*/
|
|
if (fault_signal_pending(fault, regs)) {
|
|
if (!user_mode(regs))
|
|
no_context(regs, addr);
|
|
return;
|
|
}
|
|
|
|
if (unlikely((fault & VM_FAULT_RETRY) && (flags & FAULT_FLAG_ALLOW_RETRY))) {
|
|
flags |= FAULT_FLAG_TRIED;
|
|
|
|
/*
|
|
* No need to mmap_read_unlock(mm) as we would
|
|
* have already released it in __lock_page_or_retry
|
|
* in mm/filemap.c.
|
|
*/
|
|
goto retry;
|
|
}
|
|
|
|
mmap_read_unlock(mm);
|
|
|
|
if (unlikely(fault & VM_FAULT_ERROR)) {
|
|
mm_fault_error(regs, addr, fault);
|
|
return;
|
|
}
|
|
return;
|
|
}
|