OpenCloudOS-Kernel/arch/powerpc/kernel/process.c

1335 lines
33 KiB
C

/*
* Derived from "arch/i386/kernel/process.c"
* Copyright (C) 1995 Linus Torvalds
*
* Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
* Paul Mackerras (paulus@cs.anu.edu.au)
*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/export.h>
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
#include <linux/utsname.h>
#include <linux/ftrace.h>
#include <linux/kernel_stat.h>
#include <linux/personality.h>
#include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/time.h>
#include <asm/syscalls.h>
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
#include <linux/kprobes.h>
#include <linux/kdebug.h>
extern unsigned long _get_SP(void);
#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
struct task_struct *last_task_used_vsx = NULL;
struct task_struct *last_task_used_spe = NULL;
#endif
/*
* Make sure the floating-point register state in the
* the thread_struct is up to date for task tsk.
*/
void flush_fp_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
/*
* We need to disable preemption here because if we didn't,
* another process could get scheduled after the regs->msr
* test but before we have finished saving the FP registers
* to the thread_struct. That process could take over the
* FPU, and then when we get scheduled again we would store
* bogus values for the remaining FP registers.
*/
preempt_disable();
if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
/*
* This should only ever be called for current or
* for a stopped child process. Since we save away
* the FP register state on context switch on SMP,
* there is something wrong if a stopped child appears
* to still have its FP state in the CPU registers.
*/
BUG_ON(tsk != current);
#endif
giveup_fpu(tsk);
}
preempt_enable();
}
}
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
void enable_kernel_fp(void)
{
WARN_ON(preemptible());
#ifdef CONFIG_SMP
if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
giveup_fpu(current);
else
giveup_fpu(NULL); /* just enables FP for kernel */
#else
giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);
#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
WARN_ON(preemptible());
#ifdef CONFIG_SMP
if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
giveup_altivec(current);
else
giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
#else
giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);
/*
* Make sure the VMX/Altivec register state in the
* the thread_struct is up to date for task tsk.
*/
void flush_altivec_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
BUG_ON(tsk != current);
#endif
giveup_altivec(tsk);
}
preempt_enable();
}
}
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
WARN_ON(preemptible());
#ifdef CONFIG_SMP
if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
giveup_vsx(current);
else
giveup_vsx(NULL); /* just enable vsx for kernel - force */
#else
giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif
void giveup_vsx(struct task_struct *tsk)
{
giveup_fpu(tsk);
giveup_altivec(tsk);
__giveup_vsx(tsk);
}
void flush_vsx_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
BUG_ON(tsk != current);
#endif
giveup_vsx(tsk);
}
preempt_enable();
}
}
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
#endif /* CONFIG_VSX */
#ifdef CONFIG_SPE
void enable_kernel_spe(void)
{
WARN_ON(preemptible());
#ifdef CONFIG_SMP
if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
giveup_spe(current);
else
giveup_spe(NULL); /* just enable SPE for kernel - force */
#else
giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);
void flush_spe_to_thread(struct task_struct *tsk)
{
if (tsk->thread.regs) {
preempt_disable();
if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
BUG_ON(tsk != current);
#endif
tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
giveup_spe(tsk);
}
preempt_enable();
}
}
#endif /* CONFIG_SPE */
#ifndef CONFIG_SMP
/*
* If we are doing lazy switching of CPU state (FP, altivec or SPE),
* and the current task has some state, discard it.
*/
void discard_lazy_cpu_state(void)
{
preempt_disable();
if (last_task_used_math == current)
last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
if (last_task_used_altivec == current)
last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
if (last_task_used_vsx == current)
last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
#ifdef CONFIG_SPE
if (last_task_used_spe == current)
last_task_used_spe = NULL;
#endif
preempt_enable();
}
#endif /* CONFIG_SMP */
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
unsigned long error_code, int signal_code, int breakpt)
{
siginfo_t info;
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
11, SIGSEGV) == NOTIFY_STOP)
return;
/* Deliver the signal to userspace */
info.si_signo = SIGTRAP;
info.si_errno = breakpt; /* breakpoint or watchpoint id */
info.si_code = signal_code;
info.si_addr = (void __user *)address;
force_sig_info(SIGTRAP, &info, current);
}
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
void do_dabr(struct pt_regs *regs, unsigned long address,
unsigned long error_code)
{
siginfo_t info;
if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
11, SIGSEGV) == NOTIFY_STOP)
return;
if (debugger_dabr_match(regs))
return;
/* Clear the DABR */
set_dabr(0);
/* Deliver the signal to userspace */
info.si_signo = SIGTRAP;
info.si_errno = 0;
info.si_code = TRAP_HWBKPT;
info.si_addr = (void __user *)address;
force_sig_info(SIGTRAP, &info, current);
}
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
static DEFINE_PER_CPU(unsigned long, current_dabr);
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
* Set the debug registers back to their default "safe" values.
*/
static void set_debug_reg_defaults(struct thread_struct *thread)
{
thread->iac1 = thread->iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
thread->iac3 = thread->iac4 = 0;
#endif
thread->dac1 = thread->dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
thread->dvc1 = thread->dvc2 = 0;
#endif
thread->dbcr0 = 0;
#ifdef CONFIG_BOOKE
/*
* Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
*/
thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
DBCR1_IAC3US | DBCR1_IAC4US;
/*
* Force Data Address Compare User/Supervisor bits to be User-only
* (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
*/
thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
thread->dbcr1 = 0;
#endif
}
static void prime_debug_regs(struct thread_struct *thread)
{
mtspr(SPRN_IAC1, thread->iac1);
mtspr(SPRN_IAC2, thread->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
mtspr(SPRN_IAC3, thread->iac3);
mtspr(SPRN_IAC4, thread->iac4);
#endif
mtspr(SPRN_DAC1, thread->dac1);
mtspr(SPRN_DAC2, thread->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
mtspr(SPRN_DVC1, thread->dvc1);
mtspr(SPRN_DVC2, thread->dvc2);
#endif
mtspr(SPRN_DBCR0, thread->dbcr0);
mtspr(SPRN_DBCR1, thread->dbcr1);
#ifdef CONFIG_BOOKE
mtspr(SPRN_DBCR2, thread->dbcr2);
#endif
}
/*
* Unless neither the old or new thread are making use of the
* debug registers, set the debug registers from the values
* stored in the new thread.
*/
static void switch_booke_debug_regs(struct thread_struct *new_thread)
{
if ((current->thread.dbcr0 & DBCR0_IDM)
|| (new_thread->dbcr0 & DBCR0_IDM))
prime_debug_regs(new_thread);
}
#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
static void set_debug_reg_defaults(struct thread_struct *thread)
{
if (thread->dabr) {
thread->dabr = 0;
set_dabr(0);
}
}
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
int set_dabr(unsigned long dabr)
{
__get_cpu_var(current_dabr) = dabr;
if (ppc_md.set_dabr)
return ppc_md.set_dabr(dabr);
/* XXX should we have a CPU_FTR_HAS_DABR ? */
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
mtspr(SPRN_DAC1, dabr);
#ifdef CONFIG_PPC_47x
isync();
#endif
#elif defined(CONFIG_PPC_BOOK3S)
mtspr(SPRN_DABR, dabr);
#endif
return 0;
}
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
struct task_struct *__switch_to(struct task_struct *prev,
struct task_struct *new)
{
struct thread_struct *new_thread, *old_thread;
unsigned long flags;
struct task_struct *last;
#ifdef CONFIG_PPC_BOOK3S_64
struct ppc64_tlb_batch *batch;
#endif
#ifdef CONFIG_SMP
/* avoid complexity of lazy save/restore of fpu
* by just saving it every time we switch out if
* this task used the fpu during the last quantum.
*
* If it tries to use the fpu again, it'll trap and
* reload its fp regs. So we don't have to do a restore
* every switch, just a save.
* -- Cort
*/
if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
/*
* If the previous thread used altivec in the last quantum
* (thus changing altivec regs) then save them.
* We used to check the VRSAVE register but not all apps
* set it, so we don't rely on it now (and in fact we need
* to save & restore VSCR even if VRSAVE == 0). -- paulus
*
* On SMP we always save/restore altivec regs just to avoid the
* complexity of changing processors.
* -- Cort
*/
if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
/* VMX and FPU registers are already save here */
__giveup_vsx(prev);
#endif /* CONFIG_VSX */
#ifdef CONFIG_SPE
/*
* If the previous thread used spe in the last quantum
* (thus changing spe regs) then save them.
*
* On SMP we always save/restore spe regs just to avoid the
* complexity of changing processors.
*/
if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
giveup_spe(prev);
#endif /* CONFIG_SPE */
#else /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
/* Avoid the trap. On smp this this never happens since
* we don't set last_task_used_altivec -- Cort
*/
if (new->thread.regs && last_task_used_altivec == new)
new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
if (new->thread.regs && last_task_used_vsx == new)
new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
#ifdef CONFIG_SPE
/* Avoid the trap. On smp this this never happens since
* we don't set last_task_used_spe
*/
if (new->thread.regs && last_task_used_spe == new)
new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
#endif /* CONFIG_SMP */
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
switch_booke_debug_regs(&new->thread);
#else
/*
* For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
* schedule DABR
*/
#ifndef CONFIG_HAVE_HW_BREAKPOINT
if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
set_dabr(new->thread.dabr);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif
new_thread = &new->thread;
old_thread = &current->thread;
#ifdef CONFIG_PPC64
/*
* Collect processor utilization data per process
*/
if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
long unsigned start_tb, current_tb;
start_tb = old_thread->start_tb;
cu->current_tb = current_tb = mfspr(SPRN_PURR);
old_thread->accum_tb += (current_tb - start_tb);
new_thread->start_tb = current_tb;
}
#endif /* CONFIG_PPC64 */
#ifdef CONFIG_PPC_BOOK3S_64
batch = &__get_cpu_var(ppc64_tlb_batch);
if (batch->active) {
current_thread_info()->local_flags |= _TLF_LAZY_MMU;
if (batch->index)
__flush_tlb_pending(batch);
batch->active = 0;
}
#endif /* CONFIG_PPC_BOOK3S_64 */
local_irq_save(flags);
account_system_vtime(current);
account_process_vtime(current);
/*
* We can't take a PMU exception inside _switch() since there is a
* window where the kernel stack SLB and the kernel stack are out
* of sync. Hard disable here.
*/
hard_irq_disable();
last = _switch(old_thread, new_thread);
#ifdef CONFIG_PPC_BOOK3S_64
if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
batch = &__get_cpu_var(ppc64_tlb_batch);
batch->active = 1;
}
#endif /* CONFIG_PPC_BOOK3S_64 */
local_irq_restore(flags);
return last;
}
static int instructions_to_print = 16;
static void show_instructions(struct pt_regs *regs)
{
int i;
unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
sizeof(int));
printk("Instruction dump:");
for (i = 0; i < instructions_to_print; i++) {
int instr;
if (!(i % 8))
printk("\n");
#if !defined(CONFIG_BOOKE)
/* If executing with the IMMU off, adjust pc rather
* than print XXXXXXXX.
*/
if (!(regs->msr & MSR_IR))
pc = (unsigned long)phys_to_virt(pc);
#endif
/* We use __get_user here *only* to avoid an OOPS on a
* bad address because the pc *should* only be a
* kernel address.
*/
if (!__kernel_text_address(pc) ||
__get_user(instr, (unsigned int __user *)pc)) {
printk(KERN_CONT "XXXXXXXX ");
} else {
if (regs->nip == pc)
printk(KERN_CONT "<%08x> ", instr);
else
printk(KERN_CONT "%08x ", instr);
}
pc += sizeof(int);
}
printk("\n");
}
static struct regbit {
unsigned long bit;
const char *name;
} msr_bits[] = {
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
{MSR_SF, "SF"},
{MSR_HV, "HV"},
#endif
{MSR_VEC, "VEC"},
{MSR_VSX, "VSX"},
#ifdef CONFIG_BOOKE
{MSR_CE, "CE"},
#endif
{MSR_EE, "EE"},
{MSR_PR, "PR"},
{MSR_FP, "FP"},
{MSR_ME, "ME"},
#ifdef CONFIG_BOOKE
{MSR_DE, "DE"},
#else
{MSR_SE, "SE"},
{MSR_BE, "BE"},
#endif
{MSR_IR, "IR"},
{MSR_DR, "DR"},
{MSR_PMM, "PMM"},
#ifndef CONFIG_BOOKE
{MSR_RI, "RI"},
{MSR_LE, "LE"},
#endif
{0, NULL}
};
static void printbits(unsigned long val, struct regbit *bits)
{
const char *sep = "";
printk("<");
for (; bits->bit; ++bits)
if (val & bits->bit) {
printk("%s%s", sep, bits->name);
sep = ",";
}
printk(">");
}
#ifdef CONFIG_PPC64
#define REG "%016lx"
#define REGS_PER_LINE 4
#define LAST_VOLATILE 13
#else
#define REG "%08lx"
#define REGS_PER_LINE 8
#define LAST_VOLATILE 12
#endif
void show_regs(struct pt_regs * regs)
{
int i, trap;
printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
regs->nip, regs->link, regs->ctr);
printk("REGS: %p TRAP: %04lx %s (%s)\n",
regs, regs->trap, print_tainted(), init_utsname()->release);
printk("MSR: "REG" ", regs->msr);
printbits(regs->msr, msr_bits);
printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
trap = TRAP(regs);
if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
printk("CFAR: "REG"\n", regs->orig_gpr3);
if (trap == 0x300 || trap == 0x600)
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
#else
printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
#endif
printk("TASK = %p[%d] '%s' THREAD: %p",
current, task_pid_nr(current), current->comm, task_thread_info(current));
#ifdef CONFIG_SMP
printk(" CPU: %d", raw_smp_processor_id());
#endif /* CONFIG_SMP */
for (i = 0; i < 32; i++) {
if ((i % REGS_PER_LINE) == 0)
printk("\nGPR%02d: ", i);
printk(REG " ", regs->gpr[i]);
if (i == LAST_VOLATILE && !FULL_REGS(regs))
break;
}
printk("\n");
#ifdef CONFIG_KALLSYMS
/*
* Lookup NIP late so we have the best change of getting the
* above info out without failing
*/
printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
#endif
show_stack(current, (unsigned long *) regs->gpr[1]);
if (!user_mode(regs))
show_instructions(regs);
}
void exit_thread(void)
{
discard_lazy_cpu_state();
}
void flush_thread(void)
{
discard_lazy_cpu_state();
#ifdef CONFIG_HAVE_HW_BREAKPOINT
flush_ptrace_hw_breakpoint(current);
#else /* CONFIG_HAVE_HW_BREAKPOINT */
set_debug_reg_defaults(&current->thread);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
}
void
release_thread(struct task_struct *t)
{
}
/*
* This gets called before we allocate a new thread and copy
* the current task into it.
*/
void prepare_to_copy(struct task_struct *tsk)
{
flush_fp_to_thread(current);
flush_altivec_to_thread(current);
flush_vsx_to_thread(current);
flush_spe_to_thread(current);
#ifdef CONFIG_HAVE_HW_BREAKPOINT
flush_ptrace_hw_breakpoint(tsk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
}
/*
* Copy a thread..
*/
extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
int copy_thread(unsigned long clone_flags, unsigned long usp,
unsigned long unused, struct task_struct *p,
struct pt_regs *regs)
{
struct pt_regs *childregs, *kregs;
extern void ret_from_fork(void);
unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
CHECK_FULL_REGS(regs);
/* Copy registers */
sp -= sizeof(struct pt_regs);
childregs = (struct pt_regs *) sp;
*childregs = *regs;
if ((childregs->msr & MSR_PR) == 0) {
/* for kernel thread, set `current' and stackptr in new task */
childregs->gpr[1] = sp + sizeof(struct pt_regs);
#ifdef CONFIG_PPC32
childregs->gpr[2] = (unsigned long) p;
#else
clear_tsk_thread_flag(p, TIF_32BIT);
#endif
p->thread.regs = NULL; /* no user register state */
} else {
childregs->gpr[1] = usp;
p->thread.regs = childregs;
if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
if (!is_32bit_task())
childregs->gpr[13] = childregs->gpr[6];
else
#endif
childregs->gpr[2] = childregs->gpr[6];
}
}
childregs->gpr[3] = 0; /* Result from fork() */
sp -= STACK_FRAME_OVERHEAD;
/*
* The way this works is that at some point in the future
* some task will call _switch to switch to the new task.
* That will pop off the stack frame created below and start
* the new task running at ret_from_fork. The new task will
* do some house keeping and then return from the fork or clone
* system call, using the stack frame created above.
*/
sp -= sizeof(struct pt_regs);
kregs = (struct pt_regs *) sp;
sp -= STACK_FRAME_OVERHEAD;
p->thread.ksp = sp;
p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
_ALIGN_UP(sizeof(struct thread_info), 16);
#ifdef CONFIG_PPC_STD_MMU_64
if (mmu_has_feature(MMU_FTR_SLB)) {
unsigned long sp_vsid;
unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
<< SLB_VSID_SHIFT_1T;
else
sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
<< SLB_VSID_SHIFT;
sp_vsid |= SLB_VSID_KERNEL | llp;
p->thread.ksp_vsid = sp_vsid;
}
#endif /* CONFIG_PPC_STD_MMU_64 */
#ifdef CONFIG_PPC64
if (cpu_has_feature(CPU_FTR_DSCR)) {
if (current->thread.dscr_inherit) {
p->thread.dscr_inherit = 1;
p->thread.dscr = current->thread.dscr;
} else if (0 != dscr_default) {
p->thread.dscr_inherit = 1;
p->thread.dscr = dscr_default;
} else {
p->thread.dscr_inherit = 0;
p->thread.dscr = 0;
}
}
#endif
/*
* The PPC64 ABI makes use of a TOC to contain function
* pointers. The function (ret_from_except) is actually a pointer
* to the TOC entry. The first entry is a pointer to the actual
* function.
*/
#ifdef CONFIG_PPC64
kregs->nip = *((unsigned long *)ret_from_fork);
#else
kregs->nip = (unsigned long)ret_from_fork;
#endif
return 0;
}
/*
* Set up a thread for executing a new program
*/
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
{
#ifdef CONFIG_PPC64
unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
#endif
/*
* If we exec out of a kernel thread then thread.regs will not be
* set. Do it now.
*/
if (!current->thread.regs) {
struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
current->thread.regs = regs - 1;
}
memset(regs->gpr, 0, sizeof(regs->gpr));
regs->ctr = 0;
regs->link = 0;
regs->xer = 0;
regs->ccr = 0;
regs->gpr[1] = sp;
/*
* We have just cleared all the nonvolatile GPRs, so make
* FULL_REGS(regs) return true. This is necessary to allow
* ptrace to examine the thread immediately after exec.
*/
regs->trap &= ~1UL;
#ifdef CONFIG_PPC32
regs->mq = 0;
regs->nip = start;
regs->msr = MSR_USER;
#else
if (!is_32bit_task()) {
unsigned long entry, toc;
/* start is a relocated pointer to the function descriptor for
* the elf _start routine. The first entry in the function
* descriptor is the entry address of _start and the second
* entry is the TOC value we need to use.
*/
__get_user(entry, (unsigned long __user *)start);
__get_user(toc, (unsigned long __user *)start+1);
/* Check whether the e_entry function descriptor entries
* need to be relocated before we can use them.
*/
if (load_addr != 0) {
entry += load_addr;
toc += load_addr;
}
regs->nip = entry;
regs->gpr[2] = toc;
regs->msr = MSR_USER64;
} else {
regs->nip = start;
regs->gpr[2] = 0;
regs->msr = MSR_USER32;
}
#endif
discard_lazy_cpu_state();
#ifdef CONFIG_VSX
current->thread.used_vsr = 0;
#endif
memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
current->thread.fpscr.val = 0;
#ifdef CONFIG_ALTIVEC
memset(current->thread.vr, 0, sizeof(current->thread.vr));
memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
current->thread.vrsave = 0;
current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
memset(current->thread.evr, 0, sizeof(current->thread.evr));
current->thread.acc = 0;
current->thread.spefscr = 0;
current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
}
#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
| PR_FP_EXC_RES | PR_FP_EXC_INV)
int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
struct pt_regs *regs = tsk->thread.regs;
/* This is a bit hairy. If we are an SPE enabled processor
* (have embedded fp) we store the IEEE exception enable flags in
* fpexc_mode. fpexc_mode is also used for setting FP exception
* mode (asyn, precise, disabled) for 'Classic' FP. */
if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
if (cpu_has_feature(CPU_FTR_SPE)) {
tsk->thread.fpexc_mode = val &
(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
return 0;
} else {
return -EINVAL;
}
#else
return -EINVAL;
#endif
}
/* on a CONFIG_SPE this does not hurt us. The bits that
* __pack_fe01 use do not overlap with bits used for
* PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
* on CONFIG_SPE implementations are reserved so writing to
* them does not change anything */
if (val > PR_FP_EXC_PRECISE)
return -EINVAL;
tsk->thread.fpexc_mode = __pack_fe01(val);
if (regs != NULL && (regs->msr & MSR_FP) != 0)
regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
| tsk->thread.fpexc_mode;
return 0;
}
int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
unsigned int val;
if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
if (cpu_has_feature(CPU_FTR_SPE))
val = tsk->thread.fpexc_mode;
else
return -EINVAL;
#else
return -EINVAL;
#endif
else
val = __unpack_fe01(tsk->thread.fpexc_mode);
return put_user(val, (unsigned int __user *) adr);
}
int set_endian(struct task_struct *tsk, unsigned int val)
{
struct pt_regs *regs = tsk->thread.regs;
if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
(val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
return -EINVAL;
if (regs == NULL)
return -EINVAL;
if (val == PR_ENDIAN_BIG)
regs->msr &= ~MSR_LE;
else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
regs->msr |= MSR_LE;
else
return -EINVAL;
return 0;
}
int get_endian(struct task_struct *tsk, unsigned long adr)
{
struct pt_regs *regs = tsk->thread.regs;
unsigned int val;
if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
!cpu_has_feature(CPU_FTR_REAL_LE))
return -EINVAL;
if (regs == NULL)
return -EINVAL;
if (regs->msr & MSR_LE) {
if (cpu_has_feature(CPU_FTR_REAL_LE))
val = PR_ENDIAN_LITTLE;
else
val = PR_ENDIAN_PPC_LITTLE;
} else
val = PR_ENDIAN_BIG;
return put_user(val, (unsigned int __user *)adr);
}
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
tsk->thread.align_ctl = val;
return 0;
}
int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}
#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
int sys_clone(unsigned long clone_flags, unsigned long usp,
int __user *parent_tidp, void __user *child_threadptr,
int __user *child_tidp, int p6,
struct pt_regs *regs)
{
CHECK_FULL_REGS(regs);
if (usp == 0)
usp = regs->gpr[1]; /* stack pointer for child */
#ifdef CONFIG_PPC64
if (is_32bit_task()) {
parent_tidp = TRUNC_PTR(parent_tidp);
child_tidp = TRUNC_PTR(child_tidp);
}
#endif
return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
}
int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
unsigned long p4, unsigned long p5, unsigned long p6,
struct pt_regs *regs)
{
CHECK_FULL_REGS(regs);
return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
}
int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
unsigned long p4, unsigned long p5, unsigned long p6,
struct pt_regs *regs)
{
CHECK_FULL_REGS(regs);
return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
regs, 0, NULL, NULL);
}
int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
unsigned long a3, unsigned long a4, unsigned long a5,
struct pt_regs *regs)
{
int error;
char *filename;
filename = getname((const char __user *) a0);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
flush_fp_to_thread(current);
flush_altivec_to_thread(current);
flush_spe_to_thread(current);
error = do_execve(filename,
(const char __user *const __user *) a1,
(const char __user *const __user *) a2, regs);
putname(filename);
out:
return error;
}
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
unsigned long nbytes)
{
unsigned long stack_page;
unsigned long cpu = task_cpu(p);
/*
* Avoid crashing if the stack has overflowed and corrupted
* task_cpu(p), which is in the thread_info struct.
*/
if (cpu < NR_CPUS && cpu_possible(cpu)) {
stack_page = (unsigned long) hardirq_ctx[cpu];
if (sp >= stack_page + sizeof(struct thread_struct)
&& sp <= stack_page + THREAD_SIZE - nbytes)
return 1;
stack_page = (unsigned long) softirq_ctx[cpu];
if (sp >= stack_page + sizeof(struct thread_struct)
&& sp <= stack_page + THREAD_SIZE - nbytes)
return 1;
}
return 0;
}
int validate_sp(unsigned long sp, struct task_struct *p,
unsigned long nbytes)
{
unsigned long stack_page = (unsigned long)task_stack_page(p);
if (sp >= stack_page + sizeof(struct thread_struct)
&& sp <= stack_page + THREAD_SIZE - nbytes)
return 1;
return valid_irq_stack(sp, p, nbytes);
}
EXPORT_SYMBOL(validate_sp);
unsigned long get_wchan(struct task_struct *p)
{
unsigned long ip, sp;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
sp = p->thread.ksp;
if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
return 0;
do {
sp = *(unsigned long *)sp;
if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
return 0;
if (count > 0) {
ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
if (!in_sched_functions(ip))
return ip;
}
} while (count++ < 16);
return 0;
}
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
void show_stack(struct task_struct *tsk, unsigned long *stack)
{
unsigned long sp, ip, lr, newsp;
int count = 0;
int firstframe = 1;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
int curr_frame = current->curr_ret_stack;
extern void return_to_handler(void);
unsigned long rth = (unsigned long)return_to_handler;
unsigned long mrth = -1;
#ifdef CONFIG_PPC64
extern void mod_return_to_handler(void);
rth = *(unsigned long *)rth;
mrth = (unsigned long)mod_return_to_handler;
mrth = *(unsigned long *)mrth;
#endif
#endif
sp = (unsigned long) stack;
if (tsk == NULL)
tsk = current;
if (sp == 0) {
if (tsk == current)
asm("mr %0,1" : "=r" (sp));
else
sp = tsk->thread.ksp;
}
lr = 0;
printk("Call Trace:\n");
do {
if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
return;
stack = (unsigned long *) sp;
newsp = stack[0];
ip = stack[STACK_FRAME_LR_SAVE];
if (!firstframe || ip != lr) {
printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
if ((ip == rth || ip == mrth) && curr_frame >= 0) {
printk(" (%pS)",
(void *)current->ret_stack[curr_frame].ret);
curr_frame--;
}
#endif
if (firstframe)
printk(" (unreliable)");
printk("\n");
}
firstframe = 0;
/*
* See if this is an exception frame.
* We look for the "regshere" marker in the current frame.
*/
if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
&& stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
struct pt_regs *regs = (struct pt_regs *)
(sp + STACK_FRAME_OVERHEAD);
lr = regs->link;
printk("--- Exception: %lx at %pS\n LR = %pS\n",
regs->trap, (void *)regs->nip, (void *)lr);
firstframe = 1;
}
sp = newsp;
} while (count++ < kstack_depth_to_print);
}
void dump_stack(void)
{
show_stack(current, NULL);
}
EXPORT_SYMBOL(dump_stack);
#ifdef CONFIG_PPC64
/* Called with hard IRQs off */
void __ppc64_runlatch_on(void)
{
struct thread_info *ti = current_thread_info();
unsigned long ctrl;
ctrl = mfspr(SPRN_CTRLF);
ctrl |= CTRL_RUNLATCH;
mtspr(SPRN_CTRLT, ctrl);
ti->local_flags |= TLF_RUNLATCH;
}
/* Called with hard IRQs off */
void __ppc64_runlatch_off(void)
{
struct thread_info *ti = current_thread_info();
unsigned long ctrl;
ti->local_flags &= ~TLF_RUNLATCH;
ctrl = mfspr(SPRN_CTRLF);
ctrl &= ~CTRL_RUNLATCH;
mtspr(SPRN_CTRLT, ctrl);
}
#endif /* CONFIG_PPC64 */
#if THREAD_SHIFT < PAGE_SHIFT
static struct kmem_cache *thread_info_cache;
struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node)
{
struct thread_info *ti;
ti = kmem_cache_alloc_node(thread_info_cache, GFP_KERNEL, node);
if (unlikely(ti == NULL))
return NULL;
#ifdef CONFIG_DEBUG_STACK_USAGE
memset(ti, 0, THREAD_SIZE);
#endif
return ti;
}
void free_thread_info(struct thread_info *ti)
{
kmem_cache_free(thread_info_cache, ti);
}
void thread_info_cache_init(void)
{
thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
THREAD_SIZE, 0, NULL);
BUG_ON(thread_info_cache == NULL);
}
#endif /* THREAD_SHIFT < PAGE_SHIFT */
unsigned long arch_align_stack(unsigned long sp)
{
if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
sp -= get_random_int() & ~PAGE_MASK;
return sp & ~0xf;
}
static inline unsigned long brk_rnd(void)
{
unsigned long rnd = 0;
/* 8MB for 32bit, 1GB for 64bit */
if (is_32bit_task())
rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
else
rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
return rnd << PAGE_SHIFT;
}
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
unsigned long base = mm->brk;
unsigned long ret;
#ifdef CONFIG_PPC_STD_MMU_64
/*
* If we are using 1TB segments and we are allowed to randomise
* the heap, we can put it above 1TB so it is backed by a 1TB
* segment. Otherwise the heap will be in the bottom 1TB
* which always uses 256MB segments and this may result in a
* performance penalty.
*/
if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif
ret = PAGE_ALIGN(base + brk_rnd());
if (ret < mm->brk)
return mm->brk;
return ret;
}
unsigned long randomize_et_dyn(unsigned long base)
{
unsigned long ret = PAGE_ALIGN(base + brk_rnd());
if (ret < base)
return base;
return ret;
}