3363 lines
91 KiB
C
3363 lines
91 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* raid1.c : Multiple Devices driver for Linux
|
|
*
|
|
* Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
|
|
*
|
|
* Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
|
|
*
|
|
* RAID-1 management functions.
|
|
*
|
|
* Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
|
|
*
|
|
* Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
|
|
* Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
|
|
*
|
|
* Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
|
|
* bitmapped intelligence in resync:
|
|
*
|
|
* - bitmap marked during normal i/o
|
|
* - bitmap used to skip nondirty blocks during sync
|
|
*
|
|
* Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
|
|
* - persistent bitmap code
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/module.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/ratelimit.h>
|
|
|
|
#include <trace/events/block.h>
|
|
|
|
#include "md.h"
|
|
#include "raid1.h"
|
|
#include "md-bitmap.h"
|
|
|
|
#define UNSUPPORTED_MDDEV_FLAGS \
|
|
((1L << MD_HAS_JOURNAL) | \
|
|
(1L << MD_JOURNAL_CLEAN) | \
|
|
(1L << MD_HAS_PPL) | \
|
|
(1L << MD_HAS_MULTIPLE_PPLS))
|
|
|
|
/*
|
|
* Number of guaranteed r1bios in case of extreme VM load:
|
|
*/
|
|
#define NR_RAID1_BIOS 256
|
|
|
|
/* when we get a read error on a read-only array, we redirect to another
|
|
* device without failing the first device, or trying to over-write to
|
|
* correct the read error. To keep track of bad blocks on a per-bio
|
|
* level, we store IO_BLOCKED in the appropriate 'bios' pointer
|
|
*/
|
|
#define IO_BLOCKED ((struct bio *)1)
|
|
/* When we successfully write to a known bad-block, we need to remove the
|
|
* bad-block marking which must be done from process context. So we record
|
|
* the success by setting devs[n].bio to IO_MADE_GOOD
|
|
*/
|
|
#define IO_MADE_GOOD ((struct bio *)2)
|
|
|
|
#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
|
|
|
|
/* When there are this many requests queue to be written by
|
|
* the raid1 thread, we become 'congested' to provide back-pressure
|
|
* for writeback.
|
|
*/
|
|
static int max_queued_requests = 1024;
|
|
|
|
static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
|
|
static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
|
|
|
|
#define raid1_log(md, fmt, args...) \
|
|
do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
|
|
|
|
#include "raid1-10.c"
|
|
|
|
/*
|
|
* for resync bio, r1bio pointer can be retrieved from the per-bio
|
|
* 'struct resync_pages'.
|
|
*/
|
|
static inline struct r1bio *get_resync_r1bio(struct bio *bio)
|
|
{
|
|
return get_resync_pages(bio)->raid_bio;
|
|
}
|
|
|
|
static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
|
|
{
|
|
struct pool_info *pi = data;
|
|
int size = offsetof(struct r1bio, bios[pi->raid_disks]);
|
|
|
|
/* allocate a r1bio with room for raid_disks entries in the bios array */
|
|
return kzalloc(size, gfp_flags);
|
|
}
|
|
|
|
static void r1bio_pool_free(void *r1_bio, void *data)
|
|
{
|
|
kfree(r1_bio);
|
|
}
|
|
|
|
#define RESYNC_DEPTH 32
|
|
#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
|
|
#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
|
|
#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
|
|
#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
|
|
#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
|
|
|
|
static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
|
|
{
|
|
struct pool_info *pi = data;
|
|
struct r1bio *r1_bio;
|
|
struct bio *bio;
|
|
int need_pages;
|
|
int j;
|
|
struct resync_pages *rps;
|
|
|
|
r1_bio = r1bio_pool_alloc(gfp_flags, pi);
|
|
if (!r1_bio)
|
|
return NULL;
|
|
|
|
rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
|
|
gfp_flags);
|
|
if (!rps)
|
|
goto out_free_r1bio;
|
|
|
|
/*
|
|
* Allocate bios : 1 for reading, n-1 for writing
|
|
*/
|
|
for (j = pi->raid_disks ; j-- ; ) {
|
|
bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
|
|
if (!bio)
|
|
goto out_free_bio;
|
|
r1_bio->bios[j] = bio;
|
|
}
|
|
/*
|
|
* Allocate RESYNC_PAGES data pages and attach them to
|
|
* the first bio.
|
|
* If this is a user-requested check/repair, allocate
|
|
* RESYNC_PAGES for each bio.
|
|
*/
|
|
if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
|
|
need_pages = pi->raid_disks;
|
|
else
|
|
need_pages = 1;
|
|
for (j = 0; j < pi->raid_disks; j++) {
|
|
struct resync_pages *rp = &rps[j];
|
|
|
|
bio = r1_bio->bios[j];
|
|
|
|
if (j < need_pages) {
|
|
if (resync_alloc_pages(rp, gfp_flags))
|
|
goto out_free_pages;
|
|
} else {
|
|
memcpy(rp, &rps[0], sizeof(*rp));
|
|
resync_get_all_pages(rp);
|
|
}
|
|
|
|
rp->raid_bio = r1_bio;
|
|
bio->bi_private = rp;
|
|
}
|
|
|
|
r1_bio->master_bio = NULL;
|
|
|
|
return r1_bio;
|
|
|
|
out_free_pages:
|
|
while (--j >= 0)
|
|
resync_free_pages(&rps[j]);
|
|
|
|
out_free_bio:
|
|
while (++j < pi->raid_disks)
|
|
bio_put(r1_bio->bios[j]);
|
|
kfree(rps);
|
|
|
|
out_free_r1bio:
|
|
r1bio_pool_free(r1_bio, data);
|
|
return NULL;
|
|
}
|
|
|
|
static void r1buf_pool_free(void *__r1_bio, void *data)
|
|
{
|
|
struct pool_info *pi = data;
|
|
int i;
|
|
struct r1bio *r1bio = __r1_bio;
|
|
struct resync_pages *rp = NULL;
|
|
|
|
for (i = pi->raid_disks; i--; ) {
|
|
rp = get_resync_pages(r1bio->bios[i]);
|
|
resync_free_pages(rp);
|
|
bio_put(r1bio->bios[i]);
|
|
}
|
|
|
|
/* resync pages array stored in the 1st bio's .bi_private */
|
|
kfree(rp);
|
|
|
|
r1bio_pool_free(r1bio, data);
|
|
}
|
|
|
|
static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < conf->raid_disks * 2; i++) {
|
|
struct bio **bio = r1_bio->bios + i;
|
|
if (!BIO_SPECIAL(*bio))
|
|
bio_put(*bio);
|
|
*bio = NULL;
|
|
}
|
|
}
|
|
|
|
static void free_r1bio(struct r1bio *r1_bio)
|
|
{
|
|
struct r1conf *conf = r1_bio->mddev->private;
|
|
|
|
put_all_bios(conf, r1_bio);
|
|
mempool_free(r1_bio, &conf->r1bio_pool);
|
|
}
|
|
|
|
static void put_buf(struct r1bio *r1_bio)
|
|
{
|
|
struct r1conf *conf = r1_bio->mddev->private;
|
|
sector_t sect = r1_bio->sector;
|
|
int i;
|
|
|
|
for (i = 0; i < conf->raid_disks * 2; i++) {
|
|
struct bio *bio = r1_bio->bios[i];
|
|
if (bio->bi_end_io)
|
|
rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
|
|
}
|
|
|
|
mempool_free(r1_bio, &conf->r1buf_pool);
|
|
|
|
lower_barrier(conf, sect);
|
|
}
|
|
|
|
static void reschedule_retry(struct r1bio *r1_bio)
|
|
{
|
|
unsigned long flags;
|
|
struct mddev *mddev = r1_bio->mddev;
|
|
struct r1conf *conf = mddev->private;
|
|
int idx;
|
|
|
|
idx = sector_to_idx(r1_bio->sector);
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
list_add(&r1_bio->retry_list, &conf->retry_list);
|
|
atomic_inc(&conf->nr_queued[idx]);
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
|
|
wake_up(&conf->wait_barrier);
|
|
md_wakeup_thread(mddev->thread);
|
|
}
|
|
|
|
/*
|
|
* raid_end_bio_io() is called when we have finished servicing a mirrored
|
|
* operation and are ready to return a success/failure code to the buffer
|
|
* cache layer.
|
|
*/
|
|
static void call_bio_endio(struct r1bio *r1_bio)
|
|
{
|
|
struct bio *bio = r1_bio->master_bio;
|
|
struct r1conf *conf = r1_bio->mddev->private;
|
|
|
|
if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
|
|
bio->bi_status = BLK_STS_IOERR;
|
|
|
|
bio_endio(bio);
|
|
/*
|
|
* Wake up any possible resync thread that waits for the device
|
|
* to go idle.
|
|
*/
|
|
allow_barrier(conf, r1_bio->sector);
|
|
}
|
|
|
|
static void raid_end_bio_io(struct r1bio *r1_bio)
|
|
{
|
|
struct bio *bio = r1_bio->master_bio;
|
|
|
|
/* if nobody has done the final endio yet, do it now */
|
|
if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
|
|
pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
|
|
(bio_data_dir(bio) == WRITE) ? "write" : "read",
|
|
(unsigned long long) bio->bi_iter.bi_sector,
|
|
(unsigned long long) bio_end_sector(bio) - 1);
|
|
|
|
call_bio_endio(r1_bio);
|
|
}
|
|
free_r1bio(r1_bio);
|
|
}
|
|
|
|
/*
|
|
* Update disk head position estimator based on IRQ completion info.
|
|
*/
|
|
static inline void update_head_pos(int disk, struct r1bio *r1_bio)
|
|
{
|
|
struct r1conf *conf = r1_bio->mddev->private;
|
|
|
|
conf->mirrors[disk].head_position =
|
|
r1_bio->sector + (r1_bio->sectors);
|
|
}
|
|
|
|
/*
|
|
* Find the disk number which triggered given bio
|
|
*/
|
|
static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
|
|
{
|
|
int mirror;
|
|
struct r1conf *conf = r1_bio->mddev->private;
|
|
int raid_disks = conf->raid_disks;
|
|
|
|
for (mirror = 0; mirror < raid_disks * 2; mirror++)
|
|
if (r1_bio->bios[mirror] == bio)
|
|
break;
|
|
|
|
BUG_ON(mirror == raid_disks * 2);
|
|
update_head_pos(mirror, r1_bio);
|
|
|
|
return mirror;
|
|
}
|
|
|
|
static void raid1_end_read_request(struct bio *bio)
|
|
{
|
|
int uptodate = !bio->bi_status;
|
|
struct r1bio *r1_bio = bio->bi_private;
|
|
struct r1conf *conf = r1_bio->mddev->private;
|
|
struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
|
|
|
|
/*
|
|
* this branch is our 'one mirror IO has finished' event handler:
|
|
*/
|
|
update_head_pos(r1_bio->read_disk, r1_bio);
|
|
|
|
if (uptodate)
|
|
set_bit(R1BIO_Uptodate, &r1_bio->state);
|
|
else if (test_bit(FailFast, &rdev->flags) &&
|
|
test_bit(R1BIO_FailFast, &r1_bio->state))
|
|
/* This was a fail-fast read so we definitely
|
|
* want to retry */
|
|
;
|
|
else {
|
|
/* If all other devices have failed, we want to return
|
|
* the error upwards rather than fail the last device.
|
|
* Here we redefine "uptodate" to mean "Don't want to retry"
|
|
*/
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
if (r1_bio->mddev->degraded == conf->raid_disks ||
|
|
(r1_bio->mddev->degraded == conf->raid_disks-1 &&
|
|
test_bit(In_sync, &rdev->flags)))
|
|
uptodate = 1;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
}
|
|
|
|
if (uptodate) {
|
|
raid_end_bio_io(r1_bio);
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
} else {
|
|
/*
|
|
* oops, read error:
|
|
*/
|
|
char b[BDEVNAME_SIZE];
|
|
pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
|
|
mdname(conf->mddev),
|
|
bdevname(rdev->bdev, b),
|
|
(unsigned long long)r1_bio->sector);
|
|
set_bit(R1BIO_ReadError, &r1_bio->state);
|
|
reschedule_retry(r1_bio);
|
|
/* don't drop the reference on read_disk yet */
|
|
}
|
|
}
|
|
|
|
static void close_write(struct r1bio *r1_bio)
|
|
{
|
|
/* it really is the end of this request */
|
|
if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
|
|
bio_free_pages(r1_bio->behind_master_bio);
|
|
bio_put(r1_bio->behind_master_bio);
|
|
r1_bio->behind_master_bio = NULL;
|
|
}
|
|
/* clear the bitmap if all writes complete successfully */
|
|
md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
|
|
r1_bio->sectors,
|
|
!test_bit(R1BIO_Degraded, &r1_bio->state),
|
|
test_bit(R1BIO_BehindIO, &r1_bio->state));
|
|
md_write_end(r1_bio->mddev);
|
|
}
|
|
|
|
static void r1_bio_write_done(struct r1bio *r1_bio)
|
|
{
|
|
if (!atomic_dec_and_test(&r1_bio->remaining))
|
|
return;
|
|
|
|
if (test_bit(R1BIO_WriteError, &r1_bio->state))
|
|
reschedule_retry(r1_bio);
|
|
else {
|
|
close_write(r1_bio);
|
|
if (test_bit(R1BIO_MadeGood, &r1_bio->state))
|
|
reschedule_retry(r1_bio);
|
|
else
|
|
raid_end_bio_io(r1_bio);
|
|
}
|
|
}
|
|
|
|
static void raid1_end_write_request(struct bio *bio)
|
|
{
|
|
struct r1bio *r1_bio = bio->bi_private;
|
|
int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
|
|
struct r1conf *conf = r1_bio->mddev->private;
|
|
struct bio *to_put = NULL;
|
|
int mirror = find_bio_disk(r1_bio, bio);
|
|
struct md_rdev *rdev = conf->mirrors[mirror].rdev;
|
|
bool discard_error;
|
|
|
|
discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
|
|
|
|
/*
|
|
* 'one mirror IO has finished' event handler:
|
|
*/
|
|
if (bio->bi_status && !discard_error) {
|
|
set_bit(WriteErrorSeen, &rdev->flags);
|
|
if (!test_and_set_bit(WantReplacement, &rdev->flags))
|
|
set_bit(MD_RECOVERY_NEEDED, &
|
|
conf->mddev->recovery);
|
|
|
|
if (test_bit(FailFast, &rdev->flags) &&
|
|
(bio->bi_opf & MD_FAILFAST) &&
|
|
/* We never try FailFast to WriteMostly devices */
|
|
!test_bit(WriteMostly, &rdev->flags)) {
|
|
md_error(r1_bio->mddev, rdev);
|
|
if (!test_bit(Faulty, &rdev->flags))
|
|
/* This is the only remaining device,
|
|
* We need to retry the write without
|
|
* FailFast
|
|
*/
|
|
set_bit(R1BIO_WriteError, &r1_bio->state);
|
|
else {
|
|
/* Finished with this branch */
|
|
r1_bio->bios[mirror] = NULL;
|
|
to_put = bio;
|
|
}
|
|
} else
|
|
set_bit(R1BIO_WriteError, &r1_bio->state);
|
|
} else {
|
|
/*
|
|
* Set R1BIO_Uptodate in our master bio, so that we
|
|
* will return a good error code for to the higher
|
|
* levels even if IO on some other mirrored buffer
|
|
* fails.
|
|
*
|
|
* The 'master' represents the composite IO operation
|
|
* to user-side. So if something waits for IO, then it
|
|
* will wait for the 'master' bio.
|
|
*/
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
|
|
r1_bio->bios[mirror] = NULL;
|
|
to_put = bio;
|
|
/*
|
|
* Do not set R1BIO_Uptodate if the current device is
|
|
* rebuilding or Faulty. This is because we cannot use
|
|
* such device for properly reading the data back (we could
|
|
* potentially use it, if the current write would have felt
|
|
* before rdev->recovery_offset, but for simplicity we don't
|
|
* check this here.
|
|
*/
|
|
if (test_bit(In_sync, &rdev->flags) &&
|
|
!test_bit(Faulty, &rdev->flags))
|
|
set_bit(R1BIO_Uptodate, &r1_bio->state);
|
|
|
|
/* Maybe we can clear some bad blocks. */
|
|
if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
|
|
&first_bad, &bad_sectors) && !discard_error) {
|
|
r1_bio->bios[mirror] = IO_MADE_GOOD;
|
|
set_bit(R1BIO_MadeGood, &r1_bio->state);
|
|
}
|
|
}
|
|
|
|
if (behind) {
|
|
if (test_bit(WriteMostly, &rdev->flags))
|
|
atomic_dec(&r1_bio->behind_remaining);
|
|
|
|
/*
|
|
* In behind mode, we ACK the master bio once the I/O
|
|
* has safely reached all non-writemostly
|
|
* disks. Setting the Returned bit ensures that this
|
|
* gets done only once -- we don't ever want to return
|
|
* -EIO here, instead we'll wait
|
|
*/
|
|
if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
|
|
test_bit(R1BIO_Uptodate, &r1_bio->state)) {
|
|
/* Maybe we can return now */
|
|
if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
|
|
struct bio *mbio = r1_bio->master_bio;
|
|
pr_debug("raid1: behind end write sectors"
|
|
" %llu-%llu\n",
|
|
(unsigned long long) mbio->bi_iter.bi_sector,
|
|
(unsigned long long) bio_end_sector(mbio) - 1);
|
|
call_bio_endio(r1_bio);
|
|
}
|
|
}
|
|
}
|
|
if (r1_bio->bios[mirror] == NULL)
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
|
|
/*
|
|
* Let's see if all mirrored write operations have finished
|
|
* already.
|
|
*/
|
|
r1_bio_write_done(r1_bio);
|
|
|
|
if (to_put)
|
|
bio_put(to_put);
|
|
}
|
|
|
|
static sector_t align_to_barrier_unit_end(sector_t start_sector,
|
|
sector_t sectors)
|
|
{
|
|
sector_t len;
|
|
|
|
WARN_ON(sectors == 0);
|
|
/*
|
|
* len is the number of sectors from start_sector to end of the
|
|
* barrier unit which start_sector belongs to.
|
|
*/
|
|
len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
|
|
start_sector;
|
|
|
|
if (len > sectors)
|
|
len = sectors;
|
|
|
|
return len;
|
|
}
|
|
|
|
/*
|
|
* This routine returns the disk from which the requested read should
|
|
* be done. There is a per-array 'next expected sequential IO' sector
|
|
* number - if this matches on the next IO then we use the last disk.
|
|
* There is also a per-disk 'last know head position' sector that is
|
|
* maintained from IRQ contexts, both the normal and the resync IO
|
|
* completion handlers update this position correctly. If there is no
|
|
* perfect sequential match then we pick the disk whose head is closest.
|
|
*
|
|
* If there are 2 mirrors in the same 2 devices, performance degrades
|
|
* because position is mirror, not device based.
|
|
*
|
|
* The rdev for the device selected will have nr_pending incremented.
|
|
*/
|
|
static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
|
|
{
|
|
const sector_t this_sector = r1_bio->sector;
|
|
int sectors;
|
|
int best_good_sectors;
|
|
int best_disk, best_dist_disk, best_pending_disk;
|
|
int has_nonrot_disk;
|
|
int disk;
|
|
sector_t best_dist;
|
|
unsigned int min_pending;
|
|
struct md_rdev *rdev;
|
|
int choose_first;
|
|
int choose_next_idle;
|
|
|
|
rcu_read_lock();
|
|
/*
|
|
* Check if we can balance. We can balance on the whole
|
|
* device if no resync is going on, or below the resync window.
|
|
* We take the first readable disk when above the resync window.
|
|
*/
|
|
retry:
|
|
sectors = r1_bio->sectors;
|
|
best_disk = -1;
|
|
best_dist_disk = -1;
|
|
best_dist = MaxSector;
|
|
best_pending_disk = -1;
|
|
min_pending = UINT_MAX;
|
|
best_good_sectors = 0;
|
|
has_nonrot_disk = 0;
|
|
choose_next_idle = 0;
|
|
clear_bit(R1BIO_FailFast, &r1_bio->state);
|
|
|
|
if ((conf->mddev->recovery_cp < this_sector + sectors) ||
|
|
(mddev_is_clustered(conf->mddev) &&
|
|
md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
|
|
this_sector + sectors)))
|
|
choose_first = 1;
|
|
else
|
|
choose_first = 0;
|
|
|
|
for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
|
|
sector_t dist;
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
unsigned int pending;
|
|
bool nonrot;
|
|
|
|
rdev = rcu_dereference(conf->mirrors[disk].rdev);
|
|
if (r1_bio->bios[disk] == IO_BLOCKED
|
|
|| rdev == NULL
|
|
|| test_bit(Faulty, &rdev->flags))
|
|
continue;
|
|
if (!test_bit(In_sync, &rdev->flags) &&
|
|
rdev->recovery_offset < this_sector + sectors)
|
|
continue;
|
|
if (test_bit(WriteMostly, &rdev->flags)) {
|
|
/* Don't balance among write-mostly, just
|
|
* use the first as a last resort */
|
|
if (best_dist_disk < 0) {
|
|
if (is_badblock(rdev, this_sector, sectors,
|
|
&first_bad, &bad_sectors)) {
|
|
if (first_bad <= this_sector)
|
|
/* Cannot use this */
|
|
continue;
|
|
best_good_sectors = first_bad - this_sector;
|
|
} else
|
|
best_good_sectors = sectors;
|
|
best_dist_disk = disk;
|
|
best_pending_disk = disk;
|
|
}
|
|
continue;
|
|
}
|
|
/* This is a reasonable device to use. It might
|
|
* even be best.
|
|
*/
|
|
if (is_badblock(rdev, this_sector, sectors,
|
|
&first_bad, &bad_sectors)) {
|
|
if (best_dist < MaxSector)
|
|
/* already have a better device */
|
|
continue;
|
|
if (first_bad <= this_sector) {
|
|
/* cannot read here. If this is the 'primary'
|
|
* device, then we must not read beyond
|
|
* bad_sectors from another device..
|
|
*/
|
|
bad_sectors -= (this_sector - first_bad);
|
|
if (choose_first && sectors > bad_sectors)
|
|
sectors = bad_sectors;
|
|
if (best_good_sectors > sectors)
|
|
best_good_sectors = sectors;
|
|
|
|
} else {
|
|
sector_t good_sectors = first_bad - this_sector;
|
|
if (good_sectors > best_good_sectors) {
|
|
best_good_sectors = good_sectors;
|
|
best_disk = disk;
|
|
}
|
|
if (choose_first)
|
|
break;
|
|
}
|
|
continue;
|
|
} else {
|
|
if ((sectors > best_good_sectors) && (best_disk >= 0))
|
|
best_disk = -1;
|
|
best_good_sectors = sectors;
|
|
}
|
|
|
|
if (best_disk >= 0)
|
|
/* At least two disks to choose from so failfast is OK */
|
|
set_bit(R1BIO_FailFast, &r1_bio->state);
|
|
|
|
nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
|
|
has_nonrot_disk |= nonrot;
|
|
pending = atomic_read(&rdev->nr_pending);
|
|
dist = abs(this_sector - conf->mirrors[disk].head_position);
|
|
if (choose_first) {
|
|
best_disk = disk;
|
|
break;
|
|
}
|
|
/* Don't change to another disk for sequential reads */
|
|
if (conf->mirrors[disk].next_seq_sect == this_sector
|
|
|| dist == 0) {
|
|
int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
|
|
struct raid1_info *mirror = &conf->mirrors[disk];
|
|
|
|
best_disk = disk;
|
|
/*
|
|
* If buffered sequential IO size exceeds optimal
|
|
* iosize, check if there is idle disk. If yes, choose
|
|
* the idle disk. read_balance could already choose an
|
|
* idle disk before noticing it's a sequential IO in
|
|
* this disk. This doesn't matter because this disk
|
|
* will idle, next time it will be utilized after the
|
|
* first disk has IO size exceeds optimal iosize. In
|
|
* this way, iosize of the first disk will be optimal
|
|
* iosize at least. iosize of the second disk might be
|
|
* small, but not a big deal since when the second disk
|
|
* starts IO, the first disk is likely still busy.
|
|
*/
|
|
if (nonrot && opt_iosize > 0 &&
|
|
mirror->seq_start != MaxSector &&
|
|
mirror->next_seq_sect > opt_iosize &&
|
|
mirror->next_seq_sect - opt_iosize >=
|
|
mirror->seq_start) {
|
|
choose_next_idle = 1;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (choose_next_idle)
|
|
continue;
|
|
|
|
if (min_pending > pending) {
|
|
min_pending = pending;
|
|
best_pending_disk = disk;
|
|
}
|
|
|
|
if (dist < best_dist) {
|
|
best_dist = dist;
|
|
best_dist_disk = disk;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If all disks are rotational, choose the closest disk. If any disk is
|
|
* non-rotational, choose the disk with less pending request even the
|
|
* disk is rotational, which might/might not be optimal for raids with
|
|
* mixed ratation/non-rotational disks depending on workload.
|
|
*/
|
|
if (best_disk == -1) {
|
|
if (has_nonrot_disk || min_pending == 0)
|
|
best_disk = best_pending_disk;
|
|
else
|
|
best_disk = best_dist_disk;
|
|
}
|
|
|
|
if (best_disk >= 0) {
|
|
rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
|
|
if (!rdev)
|
|
goto retry;
|
|
atomic_inc(&rdev->nr_pending);
|
|
sectors = best_good_sectors;
|
|
|
|
if (conf->mirrors[best_disk].next_seq_sect != this_sector)
|
|
conf->mirrors[best_disk].seq_start = this_sector;
|
|
|
|
conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
|
|
}
|
|
rcu_read_unlock();
|
|
*max_sectors = sectors;
|
|
|
|
return best_disk;
|
|
}
|
|
|
|
static int raid1_congested(struct mddev *mddev, int bits)
|
|
{
|
|
struct r1conf *conf = mddev->private;
|
|
int i, ret = 0;
|
|
|
|
if ((bits & (1 << WB_async_congested)) &&
|
|
conf->pending_count >= max_queued_requests)
|
|
return 1;
|
|
|
|
rcu_read_lock();
|
|
for (i = 0; i < conf->raid_disks * 2; i++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
if (rdev && !test_bit(Faulty, &rdev->flags)) {
|
|
struct request_queue *q = bdev_get_queue(rdev->bdev);
|
|
|
|
BUG_ON(!q);
|
|
|
|
/* Note the '|| 1' - when read_balance prefers
|
|
* non-congested targets, it can be removed
|
|
*/
|
|
if ((bits & (1 << WB_async_congested)) || 1)
|
|
ret |= bdi_congested(q->backing_dev_info, bits);
|
|
else
|
|
ret &= bdi_congested(q->backing_dev_info, bits);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static void flush_bio_list(struct r1conf *conf, struct bio *bio)
|
|
{
|
|
/* flush any pending bitmap writes to disk before proceeding w/ I/O */
|
|
md_bitmap_unplug(conf->mddev->bitmap);
|
|
wake_up(&conf->wait_barrier);
|
|
|
|
while (bio) { /* submit pending writes */
|
|
struct bio *next = bio->bi_next;
|
|
struct md_rdev *rdev = (void *)bio->bi_disk;
|
|
bio->bi_next = NULL;
|
|
bio_set_dev(bio, rdev->bdev);
|
|
if (test_bit(Faulty, &rdev->flags)) {
|
|
bio_io_error(bio);
|
|
} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
|
|
!blk_queue_discard(bio->bi_disk->queue)))
|
|
/* Just ignore it */
|
|
bio_endio(bio);
|
|
else
|
|
generic_make_request(bio);
|
|
bio = next;
|
|
}
|
|
}
|
|
|
|
static void flush_pending_writes(struct r1conf *conf)
|
|
{
|
|
/* Any writes that have been queued but are awaiting
|
|
* bitmap updates get flushed here.
|
|
*/
|
|
spin_lock_irq(&conf->device_lock);
|
|
|
|
if (conf->pending_bio_list.head) {
|
|
struct blk_plug plug;
|
|
struct bio *bio;
|
|
|
|
bio = bio_list_get(&conf->pending_bio_list);
|
|
conf->pending_count = 0;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
|
|
/*
|
|
* As this is called in a wait_event() loop (see freeze_array),
|
|
* current->state might be TASK_UNINTERRUPTIBLE which will
|
|
* cause a warning when we prepare to wait again. As it is
|
|
* rare that this path is taken, it is perfectly safe to force
|
|
* us to go around the wait_event() loop again, so the warning
|
|
* is a false-positive. Silence the warning by resetting
|
|
* thread state
|
|
*/
|
|
__set_current_state(TASK_RUNNING);
|
|
blk_start_plug(&plug);
|
|
flush_bio_list(conf, bio);
|
|
blk_finish_plug(&plug);
|
|
} else
|
|
spin_unlock_irq(&conf->device_lock);
|
|
}
|
|
|
|
/* Barriers....
|
|
* Sometimes we need to suspend IO while we do something else,
|
|
* either some resync/recovery, or reconfigure the array.
|
|
* To do this we raise a 'barrier'.
|
|
* The 'barrier' is a counter that can be raised multiple times
|
|
* to count how many activities are happening which preclude
|
|
* normal IO.
|
|
* We can only raise the barrier if there is no pending IO.
|
|
* i.e. if nr_pending == 0.
|
|
* We choose only to raise the barrier if no-one is waiting for the
|
|
* barrier to go down. This means that as soon as an IO request
|
|
* is ready, no other operations which require a barrier will start
|
|
* until the IO request has had a chance.
|
|
*
|
|
* So: regular IO calls 'wait_barrier'. When that returns there
|
|
* is no backgroup IO happening, It must arrange to call
|
|
* allow_barrier when it has finished its IO.
|
|
* backgroup IO calls must call raise_barrier. Once that returns
|
|
* there is no normal IO happeing. It must arrange to call
|
|
* lower_barrier when the particular background IO completes.
|
|
*/
|
|
static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
|
|
{
|
|
int idx = sector_to_idx(sector_nr);
|
|
|
|
spin_lock_irq(&conf->resync_lock);
|
|
|
|
/* Wait until no block IO is waiting */
|
|
wait_event_lock_irq(conf->wait_barrier,
|
|
!atomic_read(&conf->nr_waiting[idx]),
|
|
conf->resync_lock);
|
|
|
|
/* block any new IO from starting */
|
|
atomic_inc(&conf->barrier[idx]);
|
|
/*
|
|
* In raise_barrier() we firstly increase conf->barrier[idx] then
|
|
* check conf->nr_pending[idx]. In _wait_barrier() we firstly
|
|
* increase conf->nr_pending[idx] then check conf->barrier[idx].
|
|
* A memory barrier here to make sure conf->nr_pending[idx] won't
|
|
* be fetched before conf->barrier[idx] is increased. Otherwise
|
|
* there will be a race between raise_barrier() and _wait_barrier().
|
|
*/
|
|
smp_mb__after_atomic();
|
|
|
|
/* For these conditions we must wait:
|
|
* A: while the array is in frozen state
|
|
* B: while conf->nr_pending[idx] is not 0, meaning regular I/O
|
|
* existing in corresponding I/O barrier bucket.
|
|
* C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
|
|
* max resync count which allowed on current I/O barrier bucket.
|
|
*/
|
|
wait_event_lock_irq(conf->wait_barrier,
|
|
(!conf->array_frozen &&
|
|
!atomic_read(&conf->nr_pending[idx]) &&
|
|
atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
|
|
test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
|
|
conf->resync_lock);
|
|
|
|
if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
|
|
atomic_dec(&conf->barrier[idx]);
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
wake_up(&conf->wait_barrier);
|
|
return -EINTR;
|
|
}
|
|
|
|
atomic_inc(&conf->nr_sync_pending);
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
|
|
{
|
|
int idx = sector_to_idx(sector_nr);
|
|
|
|
BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
|
|
|
|
atomic_dec(&conf->barrier[idx]);
|
|
atomic_dec(&conf->nr_sync_pending);
|
|
wake_up(&conf->wait_barrier);
|
|
}
|
|
|
|
static void _wait_barrier(struct r1conf *conf, int idx)
|
|
{
|
|
/*
|
|
* We need to increase conf->nr_pending[idx] very early here,
|
|
* then raise_barrier() can be blocked when it waits for
|
|
* conf->nr_pending[idx] to be 0. Then we can avoid holding
|
|
* conf->resync_lock when there is no barrier raised in same
|
|
* barrier unit bucket. Also if the array is frozen, I/O
|
|
* should be blocked until array is unfrozen.
|
|
*/
|
|
atomic_inc(&conf->nr_pending[idx]);
|
|
/*
|
|
* In _wait_barrier() we firstly increase conf->nr_pending[idx], then
|
|
* check conf->barrier[idx]. In raise_barrier() we firstly increase
|
|
* conf->barrier[idx], then check conf->nr_pending[idx]. A memory
|
|
* barrier is necessary here to make sure conf->barrier[idx] won't be
|
|
* fetched before conf->nr_pending[idx] is increased. Otherwise there
|
|
* will be a race between _wait_barrier() and raise_barrier().
|
|
*/
|
|
smp_mb__after_atomic();
|
|
|
|
/*
|
|
* Don't worry about checking two atomic_t variables at same time
|
|
* here. If during we check conf->barrier[idx], the array is
|
|
* frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
|
|
* 0, it is safe to return and make the I/O continue. Because the
|
|
* array is frozen, all I/O returned here will eventually complete
|
|
* or be queued, no race will happen. See code comment in
|
|
* frozen_array().
|
|
*/
|
|
if (!READ_ONCE(conf->array_frozen) &&
|
|
!atomic_read(&conf->barrier[idx]))
|
|
return;
|
|
|
|
/*
|
|
* After holding conf->resync_lock, conf->nr_pending[idx]
|
|
* should be decreased before waiting for barrier to drop.
|
|
* Otherwise, we may encounter a race condition because
|
|
* raise_barrer() might be waiting for conf->nr_pending[idx]
|
|
* to be 0 at same time.
|
|
*/
|
|
spin_lock_irq(&conf->resync_lock);
|
|
atomic_inc(&conf->nr_waiting[idx]);
|
|
atomic_dec(&conf->nr_pending[idx]);
|
|
/*
|
|
* In case freeze_array() is waiting for
|
|
* get_unqueued_pending() == extra
|
|
*/
|
|
wake_up(&conf->wait_barrier);
|
|
/* Wait for the barrier in same barrier unit bucket to drop. */
|
|
wait_event_lock_irq(conf->wait_barrier,
|
|
!conf->array_frozen &&
|
|
!atomic_read(&conf->barrier[idx]),
|
|
conf->resync_lock);
|
|
atomic_inc(&conf->nr_pending[idx]);
|
|
atomic_dec(&conf->nr_waiting[idx]);
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
}
|
|
|
|
static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
|
|
{
|
|
int idx = sector_to_idx(sector_nr);
|
|
|
|
/*
|
|
* Very similar to _wait_barrier(). The difference is, for read
|
|
* I/O we don't need wait for sync I/O, but if the whole array
|
|
* is frozen, the read I/O still has to wait until the array is
|
|
* unfrozen. Since there is no ordering requirement with
|
|
* conf->barrier[idx] here, memory barrier is unnecessary as well.
|
|
*/
|
|
atomic_inc(&conf->nr_pending[idx]);
|
|
|
|
if (!READ_ONCE(conf->array_frozen))
|
|
return;
|
|
|
|
spin_lock_irq(&conf->resync_lock);
|
|
atomic_inc(&conf->nr_waiting[idx]);
|
|
atomic_dec(&conf->nr_pending[idx]);
|
|
/*
|
|
* In case freeze_array() is waiting for
|
|
* get_unqueued_pending() == extra
|
|
*/
|
|
wake_up(&conf->wait_barrier);
|
|
/* Wait for array to be unfrozen */
|
|
wait_event_lock_irq(conf->wait_barrier,
|
|
!conf->array_frozen,
|
|
conf->resync_lock);
|
|
atomic_inc(&conf->nr_pending[idx]);
|
|
atomic_dec(&conf->nr_waiting[idx]);
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
}
|
|
|
|
static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
|
|
{
|
|
int idx = sector_to_idx(sector_nr);
|
|
|
|
_wait_barrier(conf, idx);
|
|
}
|
|
|
|
static void _allow_barrier(struct r1conf *conf, int idx)
|
|
{
|
|
atomic_dec(&conf->nr_pending[idx]);
|
|
wake_up(&conf->wait_barrier);
|
|
}
|
|
|
|
static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
|
|
{
|
|
int idx = sector_to_idx(sector_nr);
|
|
|
|
_allow_barrier(conf, idx);
|
|
}
|
|
|
|
/* conf->resync_lock should be held */
|
|
static int get_unqueued_pending(struct r1conf *conf)
|
|
{
|
|
int idx, ret;
|
|
|
|
ret = atomic_read(&conf->nr_sync_pending);
|
|
for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
|
|
ret += atomic_read(&conf->nr_pending[idx]) -
|
|
atomic_read(&conf->nr_queued[idx]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void freeze_array(struct r1conf *conf, int extra)
|
|
{
|
|
/* Stop sync I/O and normal I/O and wait for everything to
|
|
* go quiet.
|
|
* This is called in two situations:
|
|
* 1) management command handlers (reshape, remove disk, quiesce).
|
|
* 2) one normal I/O request failed.
|
|
|
|
* After array_frozen is set to 1, new sync IO will be blocked at
|
|
* raise_barrier(), and new normal I/O will blocked at _wait_barrier()
|
|
* or wait_read_barrier(). The flying I/Os will either complete or be
|
|
* queued. When everything goes quite, there are only queued I/Os left.
|
|
|
|
* Every flying I/O contributes to a conf->nr_pending[idx], idx is the
|
|
* barrier bucket index which this I/O request hits. When all sync and
|
|
* normal I/O are queued, sum of all conf->nr_pending[] will match sum
|
|
* of all conf->nr_queued[]. But normal I/O failure is an exception,
|
|
* in handle_read_error(), we may call freeze_array() before trying to
|
|
* fix the read error. In this case, the error read I/O is not queued,
|
|
* so get_unqueued_pending() == 1.
|
|
*
|
|
* Therefore before this function returns, we need to wait until
|
|
* get_unqueued_pendings(conf) gets equal to extra. For
|
|
* normal I/O context, extra is 1, in rested situations extra is 0.
|
|
*/
|
|
spin_lock_irq(&conf->resync_lock);
|
|
conf->array_frozen = 1;
|
|
raid1_log(conf->mddev, "wait freeze");
|
|
wait_event_lock_irq_cmd(
|
|
conf->wait_barrier,
|
|
get_unqueued_pending(conf) == extra,
|
|
conf->resync_lock,
|
|
flush_pending_writes(conf));
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
}
|
|
static void unfreeze_array(struct r1conf *conf)
|
|
{
|
|
/* reverse the effect of the freeze */
|
|
spin_lock_irq(&conf->resync_lock);
|
|
conf->array_frozen = 0;
|
|
spin_unlock_irq(&conf->resync_lock);
|
|
wake_up(&conf->wait_barrier);
|
|
}
|
|
|
|
static void alloc_behind_master_bio(struct r1bio *r1_bio,
|
|
struct bio *bio)
|
|
{
|
|
int size = bio->bi_iter.bi_size;
|
|
unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
int i = 0;
|
|
struct bio *behind_bio = NULL;
|
|
|
|
behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
|
|
if (!behind_bio)
|
|
return;
|
|
|
|
/* discard op, we don't support writezero/writesame yet */
|
|
if (!bio_has_data(bio)) {
|
|
behind_bio->bi_iter.bi_size = size;
|
|
goto skip_copy;
|
|
}
|
|
|
|
behind_bio->bi_write_hint = bio->bi_write_hint;
|
|
|
|
while (i < vcnt && size) {
|
|
struct page *page;
|
|
int len = min_t(int, PAGE_SIZE, size);
|
|
|
|
page = alloc_page(GFP_NOIO);
|
|
if (unlikely(!page))
|
|
goto free_pages;
|
|
|
|
bio_add_page(behind_bio, page, len, 0);
|
|
|
|
size -= len;
|
|
i++;
|
|
}
|
|
|
|
bio_copy_data(behind_bio, bio);
|
|
skip_copy:
|
|
r1_bio->behind_master_bio = behind_bio;
|
|
set_bit(R1BIO_BehindIO, &r1_bio->state);
|
|
|
|
return;
|
|
|
|
free_pages:
|
|
pr_debug("%dB behind alloc failed, doing sync I/O\n",
|
|
bio->bi_iter.bi_size);
|
|
bio_free_pages(behind_bio);
|
|
bio_put(behind_bio);
|
|
}
|
|
|
|
struct raid1_plug_cb {
|
|
struct blk_plug_cb cb;
|
|
struct bio_list pending;
|
|
int pending_cnt;
|
|
};
|
|
|
|
static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
|
|
{
|
|
struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
|
|
cb);
|
|
struct mddev *mddev = plug->cb.data;
|
|
struct r1conf *conf = mddev->private;
|
|
struct bio *bio;
|
|
|
|
if (from_schedule || current->bio_list) {
|
|
spin_lock_irq(&conf->device_lock);
|
|
bio_list_merge(&conf->pending_bio_list, &plug->pending);
|
|
conf->pending_count += plug->pending_cnt;
|
|
spin_unlock_irq(&conf->device_lock);
|
|
wake_up(&conf->wait_barrier);
|
|
md_wakeup_thread(mddev->thread);
|
|
kfree(plug);
|
|
return;
|
|
}
|
|
|
|
/* we aren't scheduling, so we can do the write-out directly. */
|
|
bio = bio_list_get(&plug->pending);
|
|
flush_bio_list(conf, bio);
|
|
kfree(plug);
|
|
}
|
|
|
|
static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
|
|
{
|
|
r1_bio->master_bio = bio;
|
|
r1_bio->sectors = bio_sectors(bio);
|
|
r1_bio->state = 0;
|
|
r1_bio->mddev = mddev;
|
|
r1_bio->sector = bio->bi_iter.bi_sector;
|
|
}
|
|
|
|
static inline struct r1bio *
|
|
alloc_r1bio(struct mddev *mddev, struct bio *bio)
|
|
{
|
|
struct r1conf *conf = mddev->private;
|
|
struct r1bio *r1_bio;
|
|
|
|
r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
|
|
/* Ensure no bio records IO_BLOCKED */
|
|
memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
|
|
init_r1bio(r1_bio, mddev, bio);
|
|
return r1_bio;
|
|
}
|
|
|
|
static void raid1_read_request(struct mddev *mddev, struct bio *bio,
|
|
int max_read_sectors, struct r1bio *r1_bio)
|
|
{
|
|
struct r1conf *conf = mddev->private;
|
|
struct raid1_info *mirror;
|
|
struct bio *read_bio;
|
|
struct bitmap *bitmap = mddev->bitmap;
|
|
const int op = bio_op(bio);
|
|
const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
|
|
int max_sectors;
|
|
int rdisk;
|
|
bool print_msg = !!r1_bio;
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
/*
|
|
* If r1_bio is set, we are blocking the raid1d thread
|
|
* so there is a tiny risk of deadlock. So ask for
|
|
* emergency memory if needed.
|
|
*/
|
|
gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
|
|
|
|
if (print_msg) {
|
|
/* Need to get the block device name carefully */
|
|
struct md_rdev *rdev;
|
|
rcu_read_lock();
|
|
rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
|
|
if (rdev)
|
|
bdevname(rdev->bdev, b);
|
|
else
|
|
strcpy(b, "???");
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* Still need barrier for READ in case that whole
|
|
* array is frozen.
|
|
*/
|
|
wait_read_barrier(conf, bio->bi_iter.bi_sector);
|
|
|
|
if (!r1_bio)
|
|
r1_bio = alloc_r1bio(mddev, bio);
|
|
else
|
|
init_r1bio(r1_bio, mddev, bio);
|
|
r1_bio->sectors = max_read_sectors;
|
|
|
|
/*
|
|
* make_request() can abort the operation when read-ahead is being
|
|
* used and no empty request is available.
|
|
*/
|
|
rdisk = read_balance(conf, r1_bio, &max_sectors);
|
|
|
|
if (rdisk < 0) {
|
|
/* couldn't find anywhere to read from */
|
|
if (print_msg) {
|
|
pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
|
|
mdname(mddev),
|
|
b,
|
|
(unsigned long long)r1_bio->sector);
|
|
}
|
|
raid_end_bio_io(r1_bio);
|
|
return;
|
|
}
|
|
mirror = conf->mirrors + rdisk;
|
|
|
|
if (print_msg)
|
|
pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
|
|
mdname(mddev),
|
|
(unsigned long long)r1_bio->sector,
|
|
bdevname(mirror->rdev->bdev, b));
|
|
|
|
if (test_bit(WriteMostly, &mirror->rdev->flags) &&
|
|
bitmap) {
|
|
/*
|
|
* Reading from a write-mostly device must take care not to
|
|
* over-take any writes that are 'behind'
|
|
*/
|
|
raid1_log(mddev, "wait behind writes");
|
|
wait_event(bitmap->behind_wait,
|
|
atomic_read(&bitmap->behind_writes) == 0);
|
|
}
|
|
|
|
if (max_sectors < bio_sectors(bio)) {
|
|
struct bio *split = bio_split(bio, max_sectors,
|
|
gfp, &conf->bio_split);
|
|
bio_chain(split, bio);
|
|
generic_make_request(bio);
|
|
bio = split;
|
|
r1_bio->master_bio = bio;
|
|
r1_bio->sectors = max_sectors;
|
|
}
|
|
|
|
r1_bio->read_disk = rdisk;
|
|
|
|
read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
|
|
|
|
r1_bio->bios[rdisk] = read_bio;
|
|
|
|
read_bio->bi_iter.bi_sector = r1_bio->sector +
|
|
mirror->rdev->data_offset;
|
|
bio_set_dev(read_bio, mirror->rdev->bdev);
|
|
read_bio->bi_end_io = raid1_end_read_request;
|
|
bio_set_op_attrs(read_bio, op, do_sync);
|
|
if (test_bit(FailFast, &mirror->rdev->flags) &&
|
|
test_bit(R1BIO_FailFast, &r1_bio->state))
|
|
read_bio->bi_opf |= MD_FAILFAST;
|
|
read_bio->bi_private = r1_bio;
|
|
|
|
if (mddev->gendisk)
|
|
trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
|
|
disk_devt(mddev->gendisk), r1_bio->sector);
|
|
|
|
generic_make_request(read_bio);
|
|
}
|
|
|
|
static void raid1_write_request(struct mddev *mddev, struct bio *bio,
|
|
int max_write_sectors)
|
|
{
|
|
struct r1conf *conf = mddev->private;
|
|
struct r1bio *r1_bio;
|
|
int i, disks;
|
|
struct bitmap *bitmap = mddev->bitmap;
|
|
unsigned long flags;
|
|
struct md_rdev *blocked_rdev;
|
|
struct blk_plug_cb *cb;
|
|
struct raid1_plug_cb *plug = NULL;
|
|
int first_clone;
|
|
int max_sectors;
|
|
|
|
if (mddev_is_clustered(mddev) &&
|
|
md_cluster_ops->area_resyncing(mddev, WRITE,
|
|
bio->bi_iter.bi_sector, bio_end_sector(bio))) {
|
|
|
|
DEFINE_WAIT(w);
|
|
for (;;) {
|
|
prepare_to_wait(&conf->wait_barrier,
|
|
&w, TASK_IDLE);
|
|
if (!md_cluster_ops->area_resyncing(mddev, WRITE,
|
|
bio->bi_iter.bi_sector,
|
|
bio_end_sector(bio)))
|
|
break;
|
|
schedule();
|
|
}
|
|
finish_wait(&conf->wait_barrier, &w);
|
|
}
|
|
|
|
/*
|
|
* Register the new request and wait if the reconstruction
|
|
* thread has put up a bar for new requests.
|
|
* Continue immediately if no resync is active currently.
|
|
*/
|
|
wait_barrier(conf, bio->bi_iter.bi_sector);
|
|
|
|
r1_bio = alloc_r1bio(mddev, bio);
|
|
r1_bio->sectors = max_write_sectors;
|
|
|
|
if (conf->pending_count >= max_queued_requests) {
|
|
md_wakeup_thread(mddev->thread);
|
|
raid1_log(mddev, "wait queued");
|
|
wait_event(conf->wait_barrier,
|
|
conf->pending_count < max_queued_requests);
|
|
}
|
|
/* first select target devices under rcu_lock and
|
|
* inc refcount on their rdev. Record them by setting
|
|
* bios[x] to bio
|
|
* If there are known/acknowledged bad blocks on any device on
|
|
* which we have seen a write error, we want to avoid writing those
|
|
* blocks.
|
|
* This potentially requires several writes to write around
|
|
* the bad blocks. Each set of writes gets it's own r1bio
|
|
* with a set of bios attached.
|
|
*/
|
|
|
|
disks = conf->raid_disks * 2;
|
|
retry_write:
|
|
blocked_rdev = NULL;
|
|
rcu_read_lock();
|
|
max_sectors = r1_bio->sectors;
|
|
for (i = 0; i < disks; i++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
blocked_rdev = rdev;
|
|
break;
|
|
}
|
|
r1_bio->bios[i] = NULL;
|
|
if (!rdev || test_bit(Faulty, &rdev->flags)) {
|
|
if (i < conf->raid_disks)
|
|
set_bit(R1BIO_Degraded, &r1_bio->state);
|
|
continue;
|
|
}
|
|
|
|
atomic_inc(&rdev->nr_pending);
|
|
if (test_bit(WriteErrorSeen, &rdev->flags)) {
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
int is_bad;
|
|
|
|
is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
|
|
&first_bad, &bad_sectors);
|
|
if (is_bad < 0) {
|
|
/* mustn't write here until the bad block is
|
|
* acknowledged*/
|
|
set_bit(BlockedBadBlocks, &rdev->flags);
|
|
blocked_rdev = rdev;
|
|
break;
|
|
}
|
|
if (is_bad && first_bad <= r1_bio->sector) {
|
|
/* Cannot write here at all */
|
|
bad_sectors -= (r1_bio->sector - first_bad);
|
|
if (bad_sectors < max_sectors)
|
|
/* mustn't write more than bad_sectors
|
|
* to other devices yet
|
|
*/
|
|
max_sectors = bad_sectors;
|
|
rdev_dec_pending(rdev, mddev);
|
|
/* We don't set R1BIO_Degraded as that
|
|
* only applies if the disk is
|
|
* missing, so it might be re-added,
|
|
* and we want to know to recover this
|
|
* chunk.
|
|
* In this case the device is here,
|
|
* and the fact that this chunk is not
|
|
* in-sync is recorded in the bad
|
|
* block log
|
|
*/
|
|
continue;
|
|
}
|
|
if (is_bad) {
|
|
int good_sectors = first_bad - r1_bio->sector;
|
|
if (good_sectors < max_sectors)
|
|
max_sectors = good_sectors;
|
|
}
|
|
}
|
|
r1_bio->bios[i] = bio;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (unlikely(blocked_rdev)) {
|
|
/* Wait for this device to become unblocked */
|
|
int j;
|
|
|
|
for (j = 0; j < i; j++)
|
|
if (r1_bio->bios[j])
|
|
rdev_dec_pending(conf->mirrors[j].rdev, mddev);
|
|
r1_bio->state = 0;
|
|
allow_barrier(conf, bio->bi_iter.bi_sector);
|
|
raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
|
|
md_wait_for_blocked_rdev(blocked_rdev, mddev);
|
|
wait_barrier(conf, bio->bi_iter.bi_sector);
|
|
goto retry_write;
|
|
}
|
|
|
|
if (max_sectors < bio_sectors(bio)) {
|
|
struct bio *split = bio_split(bio, max_sectors,
|
|
GFP_NOIO, &conf->bio_split);
|
|
bio_chain(split, bio);
|
|
generic_make_request(bio);
|
|
bio = split;
|
|
r1_bio->master_bio = bio;
|
|
r1_bio->sectors = max_sectors;
|
|
}
|
|
|
|
atomic_set(&r1_bio->remaining, 1);
|
|
atomic_set(&r1_bio->behind_remaining, 0);
|
|
|
|
first_clone = 1;
|
|
|
|
for (i = 0; i < disks; i++) {
|
|
struct bio *mbio = NULL;
|
|
if (!r1_bio->bios[i])
|
|
continue;
|
|
|
|
|
|
if (first_clone) {
|
|
/* do behind I/O ?
|
|
* Not if there are too many, or cannot
|
|
* allocate memory, or a reader on WriteMostly
|
|
* is waiting for behind writes to flush */
|
|
if (bitmap &&
|
|
(atomic_read(&bitmap->behind_writes)
|
|
< mddev->bitmap_info.max_write_behind) &&
|
|
!waitqueue_active(&bitmap->behind_wait)) {
|
|
alloc_behind_master_bio(r1_bio, bio);
|
|
}
|
|
|
|
md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
|
|
test_bit(R1BIO_BehindIO, &r1_bio->state));
|
|
first_clone = 0;
|
|
}
|
|
|
|
if (r1_bio->behind_master_bio)
|
|
mbio = bio_clone_fast(r1_bio->behind_master_bio,
|
|
GFP_NOIO, &mddev->bio_set);
|
|
else
|
|
mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
|
|
|
|
if (r1_bio->behind_master_bio) {
|
|
if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
|
|
atomic_inc(&r1_bio->behind_remaining);
|
|
}
|
|
|
|
r1_bio->bios[i] = mbio;
|
|
|
|
mbio->bi_iter.bi_sector = (r1_bio->sector +
|
|
conf->mirrors[i].rdev->data_offset);
|
|
bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
|
|
mbio->bi_end_io = raid1_end_write_request;
|
|
mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
|
|
if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
|
|
!test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
|
|
conf->raid_disks - mddev->degraded > 1)
|
|
mbio->bi_opf |= MD_FAILFAST;
|
|
mbio->bi_private = r1_bio;
|
|
|
|
atomic_inc(&r1_bio->remaining);
|
|
|
|
if (mddev->gendisk)
|
|
trace_block_bio_remap(mbio->bi_disk->queue,
|
|
mbio, disk_devt(mddev->gendisk),
|
|
r1_bio->sector);
|
|
/* flush_pending_writes() needs access to the rdev so...*/
|
|
mbio->bi_disk = (void *)conf->mirrors[i].rdev;
|
|
|
|
cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
|
|
if (cb)
|
|
plug = container_of(cb, struct raid1_plug_cb, cb);
|
|
else
|
|
plug = NULL;
|
|
if (plug) {
|
|
bio_list_add(&plug->pending, mbio);
|
|
plug->pending_cnt++;
|
|
} else {
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
bio_list_add(&conf->pending_bio_list, mbio);
|
|
conf->pending_count++;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
md_wakeup_thread(mddev->thread);
|
|
}
|
|
}
|
|
|
|
r1_bio_write_done(r1_bio);
|
|
|
|
/* In case raid1d snuck in to freeze_array */
|
|
wake_up(&conf->wait_barrier);
|
|
}
|
|
|
|
static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
|
|
{
|
|
sector_t sectors;
|
|
|
|
if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
|
|
md_flush_request(mddev, bio);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* There is a limit to the maximum size, but
|
|
* the read/write handler might find a lower limit
|
|
* due to bad blocks. To avoid multiple splits,
|
|
* we pass the maximum number of sectors down
|
|
* and let the lower level perform the split.
|
|
*/
|
|
sectors = align_to_barrier_unit_end(
|
|
bio->bi_iter.bi_sector, bio_sectors(bio));
|
|
|
|
if (bio_data_dir(bio) == READ)
|
|
raid1_read_request(mddev, bio, sectors, NULL);
|
|
else {
|
|
if (!md_write_start(mddev,bio))
|
|
return false;
|
|
raid1_write_request(mddev, bio, sectors);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void raid1_status(struct seq_file *seq, struct mddev *mddev)
|
|
{
|
|
struct r1conf *conf = mddev->private;
|
|
int i;
|
|
|
|
seq_printf(seq, " [%d/%d] [", conf->raid_disks,
|
|
conf->raid_disks - mddev->degraded);
|
|
rcu_read_lock();
|
|
for (i = 0; i < conf->raid_disks; i++) {
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
seq_printf(seq, "%s",
|
|
rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
|
|
}
|
|
rcu_read_unlock();
|
|
seq_printf(seq, "]");
|
|
}
|
|
|
|
static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
char b[BDEVNAME_SIZE];
|
|
struct r1conf *conf = mddev->private;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* If it is not operational, then we have already marked it as dead
|
|
* else if it is the last working disks, ignore the error, let the
|
|
* next level up know.
|
|
* else mark the drive as failed
|
|
*/
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
if (test_bit(In_sync, &rdev->flags)
|
|
&& (conf->raid_disks - mddev->degraded) == 1) {
|
|
/*
|
|
* Don't fail the drive, act as though we were just a
|
|
* normal single drive.
|
|
* However don't try a recovery from this drive as
|
|
* it is very likely to fail.
|
|
*/
|
|
conf->recovery_disabled = mddev->recovery_disabled;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
return;
|
|
}
|
|
set_bit(Blocked, &rdev->flags);
|
|
if (test_and_clear_bit(In_sync, &rdev->flags))
|
|
mddev->degraded++;
|
|
set_bit(Faulty, &rdev->flags);
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
/*
|
|
* if recovery is running, make sure it aborts.
|
|
*/
|
|
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
|
|
set_mask_bits(&mddev->sb_flags, 0,
|
|
BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
|
|
pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
|
|
"md/raid1:%s: Operation continuing on %d devices.\n",
|
|
mdname(mddev), bdevname(rdev->bdev, b),
|
|
mdname(mddev), conf->raid_disks - mddev->degraded);
|
|
}
|
|
|
|
static void print_conf(struct r1conf *conf)
|
|
{
|
|
int i;
|
|
|
|
pr_debug("RAID1 conf printout:\n");
|
|
if (!conf) {
|
|
pr_debug("(!conf)\n");
|
|
return;
|
|
}
|
|
pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
|
|
conf->raid_disks);
|
|
|
|
rcu_read_lock();
|
|
for (i = 0; i < conf->raid_disks; i++) {
|
|
char b[BDEVNAME_SIZE];
|
|
struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
if (rdev)
|
|
pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
|
|
i, !test_bit(In_sync, &rdev->flags),
|
|
!test_bit(Faulty, &rdev->flags),
|
|
bdevname(rdev->bdev,b));
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void close_sync(struct r1conf *conf)
|
|
{
|
|
int idx;
|
|
|
|
for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
|
|
_wait_barrier(conf, idx);
|
|
_allow_barrier(conf, idx);
|
|
}
|
|
|
|
mempool_exit(&conf->r1buf_pool);
|
|
}
|
|
|
|
static int raid1_spare_active(struct mddev *mddev)
|
|
{
|
|
int i;
|
|
struct r1conf *conf = mddev->private;
|
|
int count = 0;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Find all failed disks within the RAID1 configuration
|
|
* and mark them readable.
|
|
* Called under mddev lock, so rcu protection not needed.
|
|
* device_lock used to avoid races with raid1_end_read_request
|
|
* which expects 'In_sync' flags and ->degraded to be consistent.
|
|
*/
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
for (i = 0; i < conf->raid_disks; i++) {
|
|
struct md_rdev *rdev = conf->mirrors[i].rdev;
|
|
struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
|
|
if (repl
|
|
&& !test_bit(Candidate, &repl->flags)
|
|
&& repl->recovery_offset == MaxSector
|
|
&& !test_bit(Faulty, &repl->flags)
|
|
&& !test_and_set_bit(In_sync, &repl->flags)) {
|
|
/* replacement has just become active */
|
|
if (!rdev ||
|
|
!test_and_clear_bit(In_sync, &rdev->flags))
|
|
count++;
|
|
if (rdev) {
|
|
/* Replaced device not technically
|
|
* faulty, but we need to be sure
|
|
* it gets removed and never re-added
|
|
*/
|
|
set_bit(Faulty, &rdev->flags);
|
|
sysfs_notify_dirent_safe(
|
|
rdev->sysfs_state);
|
|
}
|
|
}
|
|
if (rdev
|
|
&& rdev->recovery_offset == MaxSector
|
|
&& !test_bit(Faulty, &rdev->flags)
|
|
&& !test_and_set_bit(In_sync, &rdev->flags)) {
|
|
count++;
|
|
sysfs_notify_dirent_safe(rdev->sysfs_state);
|
|
}
|
|
}
|
|
mddev->degraded -= count;
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
|
|
print_conf(conf);
|
|
return count;
|
|
}
|
|
|
|
static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
struct r1conf *conf = mddev->private;
|
|
int err = -EEXIST;
|
|
int mirror = 0;
|
|
struct raid1_info *p;
|
|
int first = 0;
|
|
int last = conf->raid_disks - 1;
|
|
|
|
if (mddev->recovery_disabled == conf->recovery_disabled)
|
|
return -EBUSY;
|
|
|
|
if (md_integrity_add_rdev(rdev, mddev))
|
|
return -ENXIO;
|
|
|
|
if (rdev->raid_disk >= 0)
|
|
first = last = rdev->raid_disk;
|
|
|
|
/*
|
|
* find the disk ... but prefer rdev->saved_raid_disk
|
|
* if possible.
|
|
*/
|
|
if (rdev->saved_raid_disk >= 0 &&
|
|
rdev->saved_raid_disk >= first &&
|
|
rdev->saved_raid_disk < conf->raid_disks &&
|
|
conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
|
|
first = last = rdev->saved_raid_disk;
|
|
|
|
for (mirror = first; mirror <= last; mirror++) {
|
|
p = conf->mirrors+mirror;
|
|
if (!p->rdev) {
|
|
|
|
if (mddev->gendisk)
|
|
disk_stack_limits(mddev->gendisk, rdev->bdev,
|
|
rdev->data_offset << 9);
|
|
|
|
p->head_position = 0;
|
|
rdev->raid_disk = mirror;
|
|
err = 0;
|
|
/* As all devices are equivalent, we don't need a full recovery
|
|
* if this was recently any drive of the array
|
|
*/
|
|
if (rdev->saved_raid_disk < 0)
|
|
conf->fullsync = 1;
|
|
rcu_assign_pointer(p->rdev, rdev);
|
|
break;
|
|
}
|
|
if (test_bit(WantReplacement, &p->rdev->flags) &&
|
|
p[conf->raid_disks].rdev == NULL) {
|
|
/* Add this device as a replacement */
|
|
clear_bit(In_sync, &rdev->flags);
|
|
set_bit(Replacement, &rdev->flags);
|
|
rdev->raid_disk = mirror;
|
|
err = 0;
|
|
conf->fullsync = 1;
|
|
rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
|
|
break;
|
|
}
|
|
}
|
|
if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
|
|
blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
|
|
print_conf(conf);
|
|
return err;
|
|
}
|
|
|
|
static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
|
|
{
|
|
struct r1conf *conf = mddev->private;
|
|
int err = 0;
|
|
int number = rdev->raid_disk;
|
|
struct raid1_info *p = conf->mirrors + number;
|
|
|
|
if (rdev != p->rdev)
|
|
p = conf->mirrors + conf->raid_disks + number;
|
|
|
|
print_conf(conf);
|
|
if (rdev == p->rdev) {
|
|
if (test_bit(In_sync, &rdev->flags) ||
|
|
atomic_read(&rdev->nr_pending)) {
|
|
err = -EBUSY;
|
|
goto abort;
|
|
}
|
|
/* Only remove non-faulty devices if recovery
|
|
* is not possible.
|
|
*/
|
|
if (!test_bit(Faulty, &rdev->flags) &&
|
|
mddev->recovery_disabled != conf->recovery_disabled &&
|
|
mddev->degraded < conf->raid_disks) {
|
|
err = -EBUSY;
|
|
goto abort;
|
|
}
|
|
p->rdev = NULL;
|
|
if (!test_bit(RemoveSynchronized, &rdev->flags)) {
|
|
synchronize_rcu();
|
|
if (atomic_read(&rdev->nr_pending)) {
|
|
/* lost the race, try later */
|
|
err = -EBUSY;
|
|
p->rdev = rdev;
|
|
goto abort;
|
|
}
|
|
}
|
|
if (conf->mirrors[conf->raid_disks + number].rdev) {
|
|
/* We just removed a device that is being replaced.
|
|
* Move down the replacement. We drain all IO before
|
|
* doing this to avoid confusion.
|
|
*/
|
|
struct md_rdev *repl =
|
|
conf->mirrors[conf->raid_disks + number].rdev;
|
|
freeze_array(conf, 0);
|
|
if (atomic_read(&repl->nr_pending)) {
|
|
/* It means that some queued IO of retry_list
|
|
* hold repl. Thus, we cannot set replacement
|
|
* as NULL, avoiding rdev NULL pointer
|
|
* dereference in sync_request_write and
|
|
* handle_write_finished.
|
|
*/
|
|
err = -EBUSY;
|
|
unfreeze_array(conf);
|
|
goto abort;
|
|
}
|
|
clear_bit(Replacement, &repl->flags);
|
|
p->rdev = repl;
|
|
conf->mirrors[conf->raid_disks + number].rdev = NULL;
|
|
unfreeze_array(conf);
|
|
}
|
|
|
|
clear_bit(WantReplacement, &rdev->flags);
|
|
err = md_integrity_register(mddev);
|
|
}
|
|
abort:
|
|
|
|
print_conf(conf);
|
|
return err;
|
|
}
|
|
|
|
static void end_sync_read(struct bio *bio)
|
|
{
|
|
struct r1bio *r1_bio = get_resync_r1bio(bio);
|
|
|
|
update_head_pos(r1_bio->read_disk, r1_bio);
|
|
|
|
/*
|
|
* we have read a block, now it needs to be re-written,
|
|
* or re-read if the read failed.
|
|
* We don't do much here, just schedule handling by raid1d
|
|
*/
|
|
if (!bio->bi_status)
|
|
set_bit(R1BIO_Uptodate, &r1_bio->state);
|
|
|
|
if (atomic_dec_and_test(&r1_bio->remaining))
|
|
reschedule_retry(r1_bio);
|
|
}
|
|
|
|
static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
|
|
{
|
|
sector_t sync_blocks = 0;
|
|
sector_t s = r1_bio->sector;
|
|
long sectors_to_go = r1_bio->sectors;
|
|
|
|
/* make sure these bits don't get cleared. */
|
|
do {
|
|
md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
|
|
s += sync_blocks;
|
|
sectors_to_go -= sync_blocks;
|
|
} while (sectors_to_go > 0);
|
|
}
|
|
|
|
static void end_sync_write(struct bio *bio)
|
|
{
|
|
int uptodate = !bio->bi_status;
|
|
struct r1bio *r1_bio = get_resync_r1bio(bio);
|
|
struct mddev *mddev = r1_bio->mddev;
|
|
struct r1conf *conf = mddev->private;
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
|
|
|
|
if (!uptodate) {
|
|
abort_sync_write(mddev, r1_bio);
|
|
set_bit(WriteErrorSeen, &rdev->flags);
|
|
if (!test_and_set_bit(WantReplacement, &rdev->flags))
|
|
set_bit(MD_RECOVERY_NEEDED, &
|
|
mddev->recovery);
|
|
set_bit(R1BIO_WriteError, &r1_bio->state);
|
|
} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
|
|
&first_bad, &bad_sectors) &&
|
|
!is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
|
|
r1_bio->sector,
|
|
r1_bio->sectors,
|
|
&first_bad, &bad_sectors)
|
|
)
|
|
set_bit(R1BIO_MadeGood, &r1_bio->state);
|
|
|
|
if (atomic_dec_and_test(&r1_bio->remaining)) {
|
|
int s = r1_bio->sectors;
|
|
if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
|
|
test_bit(R1BIO_WriteError, &r1_bio->state))
|
|
reschedule_retry(r1_bio);
|
|
else {
|
|
put_buf(r1_bio);
|
|
md_done_sync(mddev, s, uptodate);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
|
|
int sectors, struct page *page, int rw)
|
|
{
|
|
if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
|
|
/* success */
|
|
return 1;
|
|
if (rw == WRITE) {
|
|
set_bit(WriteErrorSeen, &rdev->flags);
|
|
if (!test_and_set_bit(WantReplacement,
|
|
&rdev->flags))
|
|
set_bit(MD_RECOVERY_NEEDED, &
|
|
rdev->mddev->recovery);
|
|
}
|
|
/* need to record an error - either for the block or the device */
|
|
if (!rdev_set_badblocks(rdev, sector, sectors, 0))
|
|
md_error(rdev->mddev, rdev);
|
|
return 0;
|
|
}
|
|
|
|
static int fix_sync_read_error(struct r1bio *r1_bio)
|
|
{
|
|
/* Try some synchronous reads of other devices to get
|
|
* good data, much like with normal read errors. Only
|
|
* read into the pages we already have so we don't
|
|
* need to re-issue the read request.
|
|
* We don't need to freeze the array, because being in an
|
|
* active sync request, there is no normal IO, and
|
|
* no overlapping syncs.
|
|
* We don't need to check is_badblock() again as we
|
|
* made sure that anything with a bad block in range
|
|
* will have bi_end_io clear.
|
|
*/
|
|
struct mddev *mddev = r1_bio->mddev;
|
|
struct r1conf *conf = mddev->private;
|
|
struct bio *bio = r1_bio->bios[r1_bio->read_disk];
|
|
struct page **pages = get_resync_pages(bio)->pages;
|
|
sector_t sect = r1_bio->sector;
|
|
int sectors = r1_bio->sectors;
|
|
int idx = 0;
|
|
struct md_rdev *rdev;
|
|
|
|
rdev = conf->mirrors[r1_bio->read_disk].rdev;
|
|
if (test_bit(FailFast, &rdev->flags)) {
|
|
/* Don't try recovering from here - just fail it
|
|
* ... unless it is the last working device of course */
|
|
md_error(mddev, rdev);
|
|
if (test_bit(Faulty, &rdev->flags))
|
|
/* Don't try to read from here, but make sure
|
|
* put_buf does it's thing
|
|
*/
|
|
bio->bi_end_io = end_sync_write;
|
|
}
|
|
|
|
while(sectors) {
|
|
int s = sectors;
|
|
int d = r1_bio->read_disk;
|
|
int success = 0;
|
|
int start;
|
|
|
|
if (s > (PAGE_SIZE>>9))
|
|
s = PAGE_SIZE >> 9;
|
|
do {
|
|
if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
|
|
/* No rcu protection needed here devices
|
|
* can only be removed when no resync is
|
|
* active, and resync is currently active
|
|
*/
|
|
rdev = conf->mirrors[d].rdev;
|
|
if (sync_page_io(rdev, sect, s<<9,
|
|
pages[idx],
|
|
REQ_OP_READ, 0, false)) {
|
|
success = 1;
|
|
break;
|
|
}
|
|
}
|
|
d++;
|
|
if (d == conf->raid_disks * 2)
|
|
d = 0;
|
|
} while (!success && d != r1_bio->read_disk);
|
|
|
|
if (!success) {
|
|
char b[BDEVNAME_SIZE];
|
|
int abort = 0;
|
|
/* Cannot read from anywhere, this block is lost.
|
|
* Record a bad block on each device. If that doesn't
|
|
* work just disable and interrupt the recovery.
|
|
* Don't fail devices as that won't really help.
|
|
*/
|
|
pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
|
|
mdname(mddev), bio_devname(bio, b),
|
|
(unsigned long long)r1_bio->sector);
|
|
for (d = 0; d < conf->raid_disks * 2; d++) {
|
|
rdev = conf->mirrors[d].rdev;
|
|
if (!rdev || test_bit(Faulty, &rdev->flags))
|
|
continue;
|
|
if (!rdev_set_badblocks(rdev, sect, s, 0))
|
|
abort = 1;
|
|
}
|
|
if (abort) {
|
|
conf->recovery_disabled =
|
|
mddev->recovery_disabled;
|
|
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
|
|
md_done_sync(mddev, r1_bio->sectors, 0);
|
|
put_buf(r1_bio);
|
|
return 0;
|
|
}
|
|
/* Try next page */
|
|
sectors -= s;
|
|
sect += s;
|
|
idx++;
|
|
continue;
|
|
}
|
|
|
|
start = d;
|
|
/* write it back and re-read */
|
|
while (d != r1_bio->read_disk) {
|
|
if (d == 0)
|
|
d = conf->raid_disks * 2;
|
|
d--;
|
|
if (r1_bio->bios[d]->bi_end_io != end_sync_read)
|
|
continue;
|
|
rdev = conf->mirrors[d].rdev;
|
|
if (r1_sync_page_io(rdev, sect, s,
|
|
pages[idx],
|
|
WRITE) == 0) {
|
|
r1_bio->bios[d]->bi_end_io = NULL;
|
|
rdev_dec_pending(rdev, mddev);
|
|
}
|
|
}
|
|
d = start;
|
|
while (d != r1_bio->read_disk) {
|
|
if (d == 0)
|
|
d = conf->raid_disks * 2;
|
|
d--;
|
|
if (r1_bio->bios[d]->bi_end_io != end_sync_read)
|
|
continue;
|
|
rdev = conf->mirrors[d].rdev;
|
|
if (r1_sync_page_io(rdev, sect, s,
|
|
pages[idx],
|
|
READ) != 0)
|
|
atomic_add(s, &rdev->corrected_errors);
|
|
}
|
|
sectors -= s;
|
|
sect += s;
|
|
idx ++;
|
|
}
|
|
set_bit(R1BIO_Uptodate, &r1_bio->state);
|
|
bio->bi_status = 0;
|
|
return 1;
|
|
}
|
|
|
|
static void process_checks(struct r1bio *r1_bio)
|
|
{
|
|
/* We have read all readable devices. If we haven't
|
|
* got the block, then there is no hope left.
|
|
* If we have, then we want to do a comparison
|
|
* and skip the write if everything is the same.
|
|
* If any blocks failed to read, then we need to
|
|
* attempt an over-write
|
|
*/
|
|
struct mddev *mddev = r1_bio->mddev;
|
|
struct r1conf *conf = mddev->private;
|
|
int primary;
|
|
int i;
|
|
int vcnt;
|
|
|
|
/* Fix variable parts of all bios */
|
|
vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
|
|
for (i = 0; i < conf->raid_disks * 2; i++) {
|
|
blk_status_t status;
|
|
struct bio *b = r1_bio->bios[i];
|
|
struct resync_pages *rp = get_resync_pages(b);
|
|
if (b->bi_end_io != end_sync_read)
|
|
continue;
|
|
/* fixup the bio for reuse, but preserve errno */
|
|
status = b->bi_status;
|
|
bio_reset(b);
|
|
b->bi_status = status;
|
|
b->bi_iter.bi_sector = r1_bio->sector +
|
|
conf->mirrors[i].rdev->data_offset;
|
|
bio_set_dev(b, conf->mirrors[i].rdev->bdev);
|
|
b->bi_end_io = end_sync_read;
|
|
rp->raid_bio = r1_bio;
|
|
b->bi_private = rp;
|
|
|
|
/* initialize bvec table again */
|
|
md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
|
|
}
|
|
for (primary = 0; primary < conf->raid_disks * 2; primary++)
|
|
if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
|
|
!r1_bio->bios[primary]->bi_status) {
|
|
r1_bio->bios[primary]->bi_end_io = NULL;
|
|
rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
|
|
break;
|
|
}
|
|
r1_bio->read_disk = primary;
|
|
for (i = 0; i < conf->raid_disks * 2; i++) {
|
|
int j = 0;
|
|
struct bio *pbio = r1_bio->bios[primary];
|
|
struct bio *sbio = r1_bio->bios[i];
|
|
blk_status_t status = sbio->bi_status;
|
|
struct page **ppages = get_resync_pages(pbio)->pages;
|
|
struct page **spages = get_resync_pages(sbio)->pages;
|
|
struct bio_vec *bi;
|
|
int page_len[RESYNC_PAGES] = { 0 };
|
|
struct bvec_iter_all iter_all;
|
|
|
|
if (sbio->bi_end_io != end_sync_read)
|
|
continue;
|
|
/* Now we can 'fixup' the error value */
|
|
sbio->bi_status = 0;
|
|
|
|
bio_for_each_segment_all(bi, sbio, iter_all)
|
|
page_len[j++] = bi->bv_len;
|
|
|
|
if (!status) {
|
|
for (j = vcnt; j-- ; ) {
|
|
if (memcmp(page_address(ppages[j]),
|
|
page_address(spages[j]),
|
|
page_len[j]))
|
|
break;
|
|
}
|
|
} else
|
|
j = 0;
|
|
if (j >= 0)
|
|
atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
|
|
if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
|
|
&& !status)) {
|
|
/* No need to write to this device. */
|
|
sbio->bi_end_io = NULL;
|
|
rdev_dec_pending(conf->mirrors[i].rdev, mddev);
|
|
continue;
|
|
}
|
|
|
|
bio_copy_data(sbio, pbio);
|
|
}
|
|
}
|
|
|
|
static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
|
|
{
|
|
struct r1conf *conf = mddev->private;
|
|
int i;
|
|
int disks = conf->raid_disks * 2;
|
|
struct bio *wbio;
|
|
|
|
if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
|
|
/* ouch - failed to read all of that. */
|
|
if (!fix_sync_read_error(r1_bio))
|
|
return;
|
|
|
|
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
|
|
process_checks(r1_bio);
|
|
|
|
/*
|
|
* schedule writes
|
|
*/
|
|
atomic_set(&r1_bio->remaining, 1);
|
|
for (i = 0; i < disks ; i++) {
|
|
wbio = r1_bio->bios[i];
|
|
if (wbio->bi_end_io == NULL ||
|
|
(wbio->bi_end_io == end_sync_read &&
|
|
(i == r1_bio->read_disk ||
|
|
!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
|
|
continue;
|
|
if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
|
|
abort_sync_write(mddev, r1_bio);
|
|
continue;
|
|
}
|
|
|
|
bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
|
|
if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
|
|
wbio->bi_opf |= MD_FAILFAST;
|
|
|
|
wbio->bi_end_io = end_sync_write;
|
|
atomic_inc(&r1_bio->remaining);
|
|
md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
|
|
|
|
generic_make_request(wbio);
|
|
}
|
|
|
|
if (atomic_dec_and_test(&r1_bio->remaining)) {
|
|
/* if we're here, all write(s) have completed, so clean up */
|
|
int s = r1_bio->sectors;
|
|
if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
|
|
test_bit(R1BIO_WriteError, &r1_bio->state))
|
|
reschedule_retry(r1_bio);
|
|
else {
|
|
put_buf(r1_bio);
|
|
md_done_sync(mddev, s, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is a kernel thread which:
|
|
*
|
|
* 1. Retries failed read operations on working mirrors.
|
|
* 2. Updates the raid superblock when problems encounter.
|
|
* 3. Performs writes following reads for array synchronising.
|
|
*/
|
|
|
|
static void fix_read_error(struct r1conf *conf, int read_disk,
|
|
sector_t sect, int sectors)
|
|
{
|
|
struct mddev *mddev = conf->mddev;
|
|
while(sectors) {
|
|
int s = sectors;
|
|
int d = read_disk;
|
|
int success = 0;
|
|
int start;
|
|
struct md_rdev *rdev;
|
|
|
|
if (s > (PAGE_SIZE>>9))
|
|
s = PAGE_SIZE >> 9;
|
|
|
|
do {
|
|
sector_t first_bad;
|
|
int bad_sectors;
|
|
|
|
rcu_read_lock();
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (rdev &&
|
|
(test_bit(In_sync, &rdev->flags) ||
|
|
(!test_bit(Faulty, &rdev->flags) &&
|
|
rdev->recovery_offset >= sect + s)) &&
|
|
is_badblock(rdev, sect, s,
|
|
&first_bad, &bad_sectors) == 0) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
if (sync_page_io(rdev, sect, s<<9,
|
|
conf->tmppage, REQ_OP_READ, 0, false))
|
|
success = 1;
|
|
rdev_dec_pending(rdev, mddev);
|
|
if (success)
|
|
break;
|
|
} else
|
|
rcu_read_unlock();
|
|
d++;
|
|
if (d == conf->raid_disks * 2)
|
|
d = 0;
|
|
} while (!success && d != read_disk);
|
|
|
|
if (!success) {
|
|
/* Cannot read from anywhere - mark it bad */
|
|
struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
|
|
if (!rdev_set_badblocks(rdev, sect, s, 0))
|
|
md_error(mddev, rdev);
|
|
break;
|
|
}
|
|
/* write it back and re-read */
|
|
start = d;
|
|
while (d != read_disk) {
|
|
if (d==0)
|
|
d = conf->raid_disks * 2;
|
|
d--;
|
|
rcu_read_lock();
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (rdev &&
|
|
!test_bit(Faulty, &rdev->flags)) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
r1_sync_page_io(rdev, sect, s,
|
|
conf->tmppage, WRITE);
|
|
rdev_dec_pending(rdev, mddev);
|
|
} else
|
|
rcu_read_unlock();
|
|
}
|
|
d = start;
|
|
while (d != read_disk) {
|
|
char b[BDEVNAME_SIZE];
|
|
if (d==0)
|
|
d = conf->raid_disks * 2;
|
|
d--;
|
|
rcu_read_lock();
|
|
rdev = rcu_dereference(conf->mirrors[d].rdev);
|
|
if (rdev &&
|
|
!test_bit(Faulty, &rdev->flags)) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
rcu_read_unlock();
|
|
if (r1_sync_page_io(rdev, sect, s,
|
|
conf->tmppage, READ)) {
|
|
atomic_add(s, &rdev->corrected_errors);
|
|
pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
|
|
mdname(mddev), s,
|
|
(unsigned long long)(sect +
|
|
rdev->data_offset),
|
|
bdevname(rdev->bdev, b));
|
|
}
|
|
rdev_dec_pending(rdev, mddev);
|
|
} else
|
|
rcu_read_unlock();
|
|
}
|
|
sectors -= s;
|
|
sect += s;
|
|
}
|
|
}
|
|
|
|
static int narrow_write_error(struct r1bio *r1_bio, int i)
|
|
{
|
|
struct mddev *mddev = r1_bio->mddev;
|
|
struct r1conf *conf = mddev->private;
|
|
struct md_rdev *rdev = conf->mirrors[i].rdev;
|
|
|
|
/* bio has the data to be written to device 'i' where
|
|
* we just recently had a write error.
|
|
* We repeatedly clone the bio and trim down to one block,
|
|
* then try the write. Where the write fails we record
|
|
* a bad block.
|
|
* It is conceivable that the bio doesn't exactly align with
|
|
* blocks. We must handle this somehow.
|
|
*
|
|
* We currently own a reference on the rdev.
|
|
*/
|
|
|
|
int block_sectors;
|
|
sector_t sector;
|
|
int sectors;
|
|
int sect_to_write = r1_bio->sectors;
|
|
int ok = 1;
|
|
|
|
if (rdev->badblocks.shift < 0)
|
|
return 0;
|
|
|
|
block_sectors = roundup(1 << rdev->badblocks.shift,
|
|
bdev_logical_block_size(rdev->bdev) >> 9);
|
|
sector = r1_bio->sector;
|
|
sectors = ((sector + block_sectors)
|
|
& ~(sector_t)(block_sectors - 1))
|
|
- sector;
|
|
|
|
while (sect_to_write) {
|
|
struct bio *wbio;
|
|
if (sectors > sect_to_write)
|
|
sectors = sect_to_write;
|
|
/* Write at 'sector' for 'sectors'*/
|
|
|
|
if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
|
|
wbio = bio_clone_fast(r1_bio->behind_master_bio,
|
|
GFP_NOIO,
|
|
&mddev->bio_set);
|
|
} else {
|
|
wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
|
|
&mddev->bio_set);
|
|
}
|
|
|
|
bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
|
|
wbio->bi_iter.bi_sector = r1_bio->sector;
|
|
wbio->bi_iter.bi_size = r1_bio->sectors << 9;
|
|
|
|
bio_trim(wbio, sector - r1_bio->sector, sectors);
|
|
wbio->bi_iter.bi_sector += rdev->data_offset;
|
|
bio_set_dev(wbio, rdev->bdev);
|
|
|
|
if (submit_bio_wait(wbio) < 0)
|
|
/* failure! */
|
|
ok = rdev_set_badblocks(rdev, sector,
|
|
sectors, 0)
|
|
&& ok;
|
|
|
|
bio_put(wbio);
|
|
sect_to_write -= sectors;
|
|
sector += sectors;
|
|
sectors = block_sectors;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
|
|
{
|
|
int m;
|
|
int s = r1_bio->sectors;
|
|
for (m = 0; m < conf->raid_disks * 2 ; m++) {
|
|
struct md_rdev *rdev = conf->mirrors[m].rdev;
|
|
struct bio *bio = r1_bio->bios[m];
|
|
if (bio->bi_end_io == NULL)
|
|
continue;
|
|
if (!bio->bi_status &&
|
|
test_bit(R1BIO_MadeGood, &r1_bio->state)) {
|
|
rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
|
|
}
|
|
if (bio->bi_status &&
|
|
test_bit(R1BIO_WriteError, &r1_bio->state)) {
|
|
if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
|
|
md_error(conf->mddev, rdev);
|
|
}
|
|
}
|
|
put_buf(r1_bio);
|
|
md_done_sync(conf->mddev, s, 1);
|
|
}
|
|
|
|
static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
|
|
{
|
|
int m, idx;
|
|
bool fail = false;
|
|
|
|
for (m = 0; m < conf->raid_disks * 2 ; m++)
|
|
if (r1_bio->bios[m] == IO_MADE_GOOD) {
|
|
struct md_rdev *rdev = conf->mirrors[m].rdev;
|
|
rdev_clear_badblocks(rdev,
|
|
r1_bio->sector,
|
|
r1_bio->sectors, 0);
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
} else if (r1_bio->bios[m] != NULL) {
|
|
/* This drive got a write error. We need to
|
|
* narrow down and record precise write
|
|
* errors.
|
|
*/
|
|
fail = true;
|
|
if (!narrow_write_error(r1_bio, m)) {
|
|
md_error(conf->mddev,
|
|
conf->mirrors[m].rdev);
|
|
/* an I/O failed, we can't clear the bitmap */
|
|
set_bit(R1BIO_Degraded, &r1_bio->state);
|
|
}
|
|
rdev_dec_pending(conf->mirrors[m].rdev,
|
|
conf->mddev);
|
|
}
|
|
if (fail) {
|
|
spin_lock_irq(&conf->device_lock);
|
|
list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
|
|
idx = sector_to_idx(r1_bio->sector);
|
|
atomic_inc(&conf->nr_queued[idx]);
|
|
spin_unlock_irq(&conf->device_lock);
|
|
/*
|
|
* In case freeze_array() is waiting for condition
|
|
* get_unqueued_pending() == extra to be true.
|
|
*/
|
|
wake_up(&conf->wait_barrier);
|
|
md_wakeup_thread(conf->mddev->thread);
|
|
} else {
|
|
if (test_bit(R1BIO_WriteError, &r1_bio->state))
|
|
close_write(r1_bio);
|
|
raid_end_bio_io(r1_bio);
|
|
}
|
|
}
|
|
|
|
static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
|
|
{
|
|
struct mddev *mddev = conf->mddev;
|
|
struct bio *bio;
|
|
struct md_rdev *rdev;
|
|
|
|
clear_bit(R1BIO_ReadError, &r1_bio->state);
|
|
/* we got a read error. Maybe the drive is bad. Maybe just
|
|
* the block and we can fix it.
|
|
* We freeze all other IO, and try reading the block from
|
|
* other devices. When we find one, we re-write
|
|
* and check it that fixes the read error.
|
|
* This is all done synchronously while the array is
|
|
* frozen
|
|
*/
|
|
|
|
bio = r1_bio->bios[r1_bio->read_disk];
|
|
bio_put(bio);
|
|
r1_bio->bios[r1_bio->read_disk] = NULL;
|
|
|
|
rdev = conf->mirrors[r1_bio->read_disk].rdev;
|
|
if (mddev->ro == 0
|
|
&& !test_bit(FailFast, &rdev->flags)) {
|
|
freeze_array(conf, 1);
|
|
fix_read_error(conf, r1_bio->read_disk,
|
|
r1_bio->sector, r1_bio->sectors);
|
|
unfreeze_array(conf);
|
|
} else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
|
|
md_error(mddev, rdev);
|
|
} else {
|
|
r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
|
|
}
|
|
|
|
rdev_dec_pending(rdev, conf->mddev);
|
|
allow_barrier(conf, r1_bio->sector);
|
|
bio = r1_bio->master_bio;
|
|
|
|
/* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
|
|
r1_bio->state = 0;
|
|
raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
|
|
}
|
|
|
|
static void raid1d(struct md_thread *thread)
|
|
{
|
|
struct mddev *mddev = thread->mddev;
|
|
struct r1bio *r1_bio;
|
|
unsigned long flags;
|
|
struct r1conf *conf = mddev->private;
|
|
struct list_head *head = &conf->retry_list;
|
|
struct blk_plug plug;
|
|
int idx;
|
|
|
|
md_check_recovery(mddev);
|
|
|
|
if (!list_empty_careful(&conf->bio_end_io_list) &&
|
|
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
|
|
LIST_HEAD(tmp);
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
|
|
list_splice_init(&conf->bio_end_io_list, &tmp);
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
while (!list_empty(&tmp)) {
|
|
r1_bio = list_first_entry(&tmp, struct r1bio,
|
|
retry_list);
|
|
list_del(&r1_bio->retry_list);
|
|
idx = sector_to_idx(r1_bio->sector);
|
|
atomic_dec(&conf->nr_queued[idx]);
|
|
if (mddev->degraded)
|
|
set_bit(R1BIO_Degraded, &r1_bio->state);
|
|
if (test_bit(R1BIO_WriteError, &r1_bio->state))
|
|
close_write(r1_bio);
|
|
raid_end_bio_io(r1_bio);
|
|
}
|
|
}
|
|
|
|
blk_start_plug(&plug);
|
|
for (;;) {
|
|
|
|
flush_pending_writes(conf);
|
|
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
if (list_empty(head)) {
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
break;
|
|
}
|
|
r1_bio = list_entry(head->prev, struct r1bio, retry_list);
|
|
list_del(head->prev);
|
|
idx = sector_to_idx(r1_bio->sector);
|
|
atomic_dec(&conf->nr_queued[idx]);
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
|
|
mddev = r1_bio->mddev;
|
|
conf = mddev->private;
|
|
if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
|
|
if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
|
|
test_bit(R1BIO_WriteError, &r1_bio->state))
|
|
handle_sync_write_finished(conf, r1_bio);
|
|
else
|
|
sync_request_write(mddev, r1_bio);
|
|
} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
|
|
test_bit(R1BIO_WriteError, &r1_bio->state))
|
|
handle_write_finished(conf, r1_bio);
|
|
else if (test_bit(R1BIO_ReadError, &r1_bio->state))
|
|
handle_read_error(conf, r1_bio);
|
|
else
|
|
WARN_ON_ONCE(1);
|
|
|
|
cond_resched();
|
|
if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
|
|
md_check_recovery(mddev);
|
|
}
|
|
blk_finish_plug(&plug);
|
|
}
|
|
|
|
static int init_resync(struct r1conf *conf)
|
|
{
|
|
int buffs;
|
|
|
|
buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
|
|
BUG_ON(mempool_initialized(&conf->r1buf_pool));
|
|
|
|
return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
|
|
r1buf_pool_free, conf->poolinfo);
|
|
}
|
|
|
|
static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
|
|
{
|
|
struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
|
|
struct resync_pages *rps;
|
|
struct bio *bio;
|
|
int i;
|
|
|
|
for (i = conf->poolinfo->raid_disks; i--; ) {
|
|
bio = r1bio->bios[i];
|
|
rps = bio->bi_private;
|
|
bio_reset(bio);
|
|
bio->bi_private = rps;
|
|
}
|
|
r1bio->master_bio = NULL;
|
|
return r1bio;
|
|
}
|
|
|
|
/*
|
|
* perform a "sync" on one "block"
|
|
*
|
|
* We need to make sure that no normal I/O request - particularly write
|
|
* requests - conflict with active sync requests.
|
|
*
|
|
* This is achieved by tracking pending requests and a 'barrier' concept
|
|
* that can be installed to exclude normal IO requests.
|
|
*/
|
|
|
|
static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
|
|
int *skipped)
|
|
{
|
|
struct r1conf *conf = mddev->private;
|
|
struct r1bio *r1_bio;
|
|
struct bio *bio;
|
|
sector_t max_sector, nr_sectors;
|
|
int disk = -1;
|
|
int i;
|
|
int wonly = -1;
|
|
int write_targets = 0, read_targets = 0;
|
|
sector_t sync_blocks;
|
|
int still_degraded = 0;
|
|
int good_sectors = RESYNC_SECTORS;
|
|
int min_bad = 0; /* number of sectors that are bad in all devices */
|
|
int idx = sector_to_idx(sector_nr);
|
|
int page_idx = 0;
|
|
|
|
if (!mempool_initialized(&conf->r1buf_pool))
|
|
if (init_resync(conf))
|
|
return 0;
|
|
|
|
max_sector = mddev->dev_sectors;
|
|
if (sector_nr >= max_sector) {
|
|
/* If we aborted, we need to abort the
|
|
* sync on the 'current' bitmap chunk (there will
|
|
* only be one in raid1 resync.
|
|
* We can find the current addess in mddev->curr_resync
|
|
*/
|
|
if (mddev->curr_resync < max_sector) /* aborted */
|
|
md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
|
|
&sync_blocks, 1);
|
|
else /* completed sync */
|
|
conf->fullsync = 0;
|
|
|
|
md_bitmap_close_sync(mddev->bitmap);
|
|
close_sync(conf);
|
|
|
|
if (mddev_is_clustered(mddev)) {
|
|
conf->cluster_sync_low = 0;
|
|
conf->cluster_sync_high = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (mddev->bitmap == NULL &&
|
|
mddev->recovery_cp == MaxSector &&
|
|
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
|
|
conf->fullsync == 0) {
|
|
*skipped = 1;
|
|
return max_sector - sector_nr;
|
|
}
|
|
/* before building a request, check if we can skip these blocks..
|
|
* This call the bitmap_start_sync doesn't actually record anything
|
|
*/
|
|
if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
|
|
!conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
|
|
/* We can skip this block, and probably several more */
|
|
*skipped = 1;
|
|
return sync_blocks;
|
|
}
|
|
|
|
/*
|
|
* If there is non-resync activity waiting for a turn, then let it
|
|
* though before starting on this new sync request.
|
|
*/
|
|
if (atomic_read(&conf->nr_waiting[idx]))
|
|
schedule_timeout_uninterruptible(1);
|
|
|
|
/* we are incrementing sector_nr below. To be safe, we check against
|
|
* sector_nr + two times RESYNC_SECTORS
|
|
*/
|
|
|
|
md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
|
|
mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
|
|
|
|
|
|
if (raise_barrier(conf, sector_nr))
|
|
return 0;
|
|
|
|
r1_bio = raid1_alloc_init_r1buf(conf);
|
|
|
|
rcu_read_lock();
|
|
/*
|
|
* If we get a correctably read error during resync or recovery,
|
|
* we might want to read from a different device. So we
|
|
* flag all drives that could conceivably be read from for READ,
|
|
* and any others (which will be non-In_sync devices) for WRITE.
|
|
* If a read fails, we try reading from something else for which READ
|
|
* is OK.
|
|
*/
|
|
|
|
r1_bio->mddev = mddev;
|
|
r1_bio->sector = sector_nr;
|
|
r1_bio->state = 0;
|
|
set_bit(R1BIO_IsSync, &r1_bio->state);
|
|
/* make sure good_sectors won't go across barrier unit boundary */
|
|
good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
|
|
|
|
for (i = 0; i < conf->raid_disks * 2; i++) {
|
|
struct md_rdev *rdev;
|
|
bio = r1_bio->bios[i];
|
|
|
|
rdev = rcu_dereference(conf->mirrors[i].rdev);
|
|
if (rdev == NULL ||
|
|
test_bit(Faulty, &rdev->flags)) {
|
|
if (i < conf->raid_disks)
|
|
still_degraded = 1;
|
|
} else if (!test_bit(In_sync, &rdev->flags)) {
|
|
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
|
|
bio->bi_end_io = end_sync_write;
|
|
write_targets ++;
|
|
} else {
|
|
/* may need to read from here */
|
|
sector_t first_bad = MaxSector;
|
|
int bad_sectors;
|
|
|
|
if (is_badblock(rdev, sector_nr, good_sectors,
|
|
&first_bad, &bad_sectors)) {
|
|
if (first_bad > sector_nr)
|
|
good_sectors = first_bad - sector_nr;
|
|
else {
|
|
bad_sectors -= (sector_nr - first_bad);
|
|
if (min_bad == 0 ||
|
|
min_bad > bad_sectors)
|
|
min_bad = bad_sectors;
|
|
}
|
|
}
|
|
if (sector_nr < first_bad) {
|
|
if (test_bit(WriteMostly, &rdev->flags)) {
|
|
if (wonly < 0)
|
|
wonly = i;
|
|
} else {
|
|
if (disk < 0)
|
|
disk = i;
|
|
}
|
|
bio_set_op_attrs(bio, REQ_OP_READ, 0);
|
|
bio->bi_end_io = end_sync_read;
|
|
read_targets++;
|
|
} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
|
|
test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
|
|
!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
|
|
/*
|
|
* The device is suitable for reading (InSync),
|
|
* but has bad block(s) here. Let's try to correct them,
|
|
* if we are doing resync or repair. Otherwise, leave
|
|
* this device alone for this sync request.
|
|
*/
|
|
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
|
|
bio->bi_end_io = end_sync_write;
|
|
write_targets++;
|
|
}
|
|
}
|
|
if (bio->bi_end_io) {
|
|
atomic_inc(&rdev->nr_pending);
|
|
bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
|
|
bio_set_dev(bio, rdev->bdev);
|
|
if (test_bit(FailFast, &rdev->flags))
|
|
bio->bi_opf |= MD_FAILFAST;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
if (disk < 0)
|
|
disk = wonly;
|
|
r1_bio->read_disk = disk;
|
|
|
|
if (read_targets == 0 && min_bad > 0) {
|
|
/* These sectors are bad on all InSync devices, so we
|
|
* need to mark them bad on all write targets
|
|
*/
|
|
int ok = 1;
|
|
for (i = 0 ; i < conf->raid_disks * 2 ; i++)
|
|
if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
|
|
struct md_rdev *rdev = conf->mirrors[i].rdev;
|
|
ok = rdev_set_badblocks(rdev, sector_nr,
|
|
min_bad, 0
|
|
) && ok;
|
|
}
|
|
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
|
|
*skipped = 1;
|
|
put_buf(r1_bio);
|
|
|
|
if (!ok) {
|
|
/* Cannot record the badblocks, so need to
|
|
* abort the resync.
|
|
* If there are multiple read targets, could just
|
|
* fail the really bad ones ???
|
|
*/
|
|
conf->recovery_disabled = mddev->recovery_disabled;
|
|
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
|
|
return 0;
|
|
} else
|
|
return min_bad;
|
|
|
|
}
|
|
if (min_bad > 0 && min_bad < good_sectors) {
|
|
/* only resync enough to reach the next bad->good
|
|
* transition */
|
|
good_sectors = min_bad;
|
|
}
|
|
|
|
if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
|
|
/* extra read targets are also write targets */
|
|
write_targets += read_targets-1;
|
|
|
|
if (write_targets == 0 || read_targets == 0) {
|
|
/* There is nowhere to write, so all non-sync
|
|
* drives must be failed - so we are finished
|
|
*/
|
|
sector_t rv;
|
|
if (min_bad > 0)
|
|
max_sector = sector_nr + min_bad;
|
|
rv = max_sector - sector_nr;
|
|
*skipped = 1;
|
|
put_buf(r1_bio);
|
|
return rv;
|
|
}
|
|
|
|
if (max_sector > mddev->resync_max)
|
|
max_sector = mddev->resync_max; /* Don't do IO beyond here */
|
|
if (max_sector > sector_nr + good_sectors)
|
|
max_sector = sector_nr + good_sectors;
|
|
nr_sectors = 0;
|
|
sync_blocks = 0;
|
|
do {
|
|
struct page *page;
|
|
int len = PAGE_SIZE;
|
|
if (sector_nr + (len>>9) > max_sector)
|
|
len = (max_sector - sector_nr) << 9;
|
|
if (len == 0)
|
|
break;
|
|
if (sync_blocks == 0) {
|
|
if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
|
|
&sync_blocks, still_degraded) &&
|
|
!conf->fullsync &&
|
|
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
|
|
break;
|
|
if ((len >> 9) > sync_blocks)
|
|
len = sync_blocks<<9;
|
|
}
|
|
|
|
for (i = 0 ; i < conf->raid_disks * 2; i++) {
|
|
struct resync_pages *rp;
|
|
|
|
bio = r1_bio->bios[i];
|
|
rp = get_resync_pages(bio);
|
|
if (bio->bi_end_io) {
|
|
page = resync_fetch_page(rp, page_idx);
|
|
|
|
/*
|
|
* won't fail because the vec table is big
|
|
* enough to hold all these pages
|
|
*/
|
|
bio_add_page(bio, page, len, 0);
|
|
}
|
|
}
|
|
nr_sectors += len>>9;
|
|
sector_nr += len>>9;
|
|
sync_blocks -= (len>>9);
|
|
} while (++page_idx < RESYNC_PAGES);
|
|
|
|
r1_bio->sectors = nr_sectors;
|
|
|
|
if (mddev_is_clustered(mddev) &&
|
|
conf->cluster_sync_high < sector_nr + nr_sectors) {
|
|
conf->cluster_sync_low = mddev->curr_resync_completed;
|
|
conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
|
|
/* Send resync message */
|
|
md_cluster_ops->resync_info_update(mddev,
|
|
conf->cluster_sync_low,
|
|
conf->cluster_sync_high);
|
|
}
|
|
|
|
/* For a user-requested sync, we read all readable devices and do a
|
|
* compare
|
|
*/
|
|
if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
|
|
atomic_set(&r1_bio->remaining, read_targets);
|
|
for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
|
|
bio = r1_bio->bios[i];
|
|
if (bio->bi_end_io == end_sync_read) {
|
|
read_targets--;
|
|
md_sync_acct_bio(bio, nr_sectors);
|
|
if (read_targets == 1)
|
|
bio->bi_opf &= ~MD_FAILFAST;
|
|
generic_make_request(bio);
|
|
}
|
|
}
|
|
} else {
|
|
atomic_set(&r1_bio->remaining, 1);
|
|
bio = r1_bio->bios[r1_bio->read_disk];
|
|
md_sync_acct_bio(bio, nr_sectors);
|
|
if (read_targets == 1)
|
|
bio->bi_opf &= ~MD_FAILFAST;
|
|
generic_make_request(bio);
|
|
|
|
}
|
|
return nr_sectors;
|
|
}
|
|
|
|
static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
|
|
{
|
|
if (sectors)
|
|
return sectors;
|
|
|
|
return mddev->dev_sectors;
|
|
}
|
|
|
|
static struct r1conf *setup_conf(struct mddev *mddev)
|
|
{
|
|
struct r1conf *conf;
|
|
int i;
|
|
struct raid1_info *disk;
|
|
struct md_rdev *rdev;
|
|
int err = -ENOMEM;
|
|
|
|
conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
|
|
if (!conf)
|
|
goto abort;
|
|
|
|
conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
|
|
sizeof(atomic_t), GFP_KERNEL);
|
|
if (!conf->nr_pending)
|
|
goto abort;
|
|
|
|
conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
|
|
sizeof(atomic_t), GFP_KERNEL);
|
|
if (!conf->nr_waiting)
|
|
goto abort;
|
|
|
|
conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
|
|
sizeof(atomic_t), GFP_KERNEL);
|
|
if (!conf->nr_queued)
|
|
goto abort;
|
|
|
|
conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
|
|
sizeof(atomic_t), GFP_KERNEL);
|
|
if (!conf->barrier)
|
|
goto abort;
|
|
|
|
conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
|
|
mddev->raid_disks, 2),
|
|
GFP_KERNEL);
|
|
if (!conf->mirrors)
|
|
goto abort;
|
|
|
|
conf->tmppage = alloc_page(GFP_KERNEL);
|
|
if (!conf->tmppage)
|
|
goto abort;
|
|
|
|
conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
|
|
if (!conf->poolinfo)
|
|
goto abort;
|
|
conf->poolinfo->raid_disks = mddev->raid_disks * 2;
|
|
err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
|
|
r1bio_pool_free, conf->poolinfo);
|
|
if (err)
|
|
goto abort;
|
|
|
|
err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
|
|
if (err)
|
|
goto abort;
|
|
|
|
conf->poolinfo->mddev = mddev;
|
|
|
|
err = -EINVAL;
|
|
spin_lock_init(&conf->device_lock);
|
|
rdev_for_each(rdev, mddev) {
|
|
int disk_idx = rdev->raid_disk;
|
|
if (disk_idx >= mddev->raid_disks
|
|
|| disk_idx < 0)
|
|
continue;
|
|
if (test_bit(Replacement, &rdev->flags))
|
|
disk = conf->mirrors + mddev->raid_disks + disk_idx;
|
|
else
|
|
disk = conf->mirrors + disk_idx;
|
|
|
|
if (disk->rdev)
|
|
goto abort;
|
|
disk->rdev = rdev;
|
|
disk->head_position = 0;
|
|
disk->seq_start = MaxSector;
|
|
}
|
|
conf->raid_disks = mddev->raid_disks;
|
|
conf->mddev = mddev;
|
|
INIT_LIST_HEAD(&conf->retry_list);
|
|
INIT_LIST_HEAD(&conf->bio_end_io_list);
|
|
|
|
spin_lock_init(&conf->resync_lock);
|
|
init_waitqueue_head(&conf->wait_barrier);
|
|
|
|
bio_list_init(&conf->pending_bio_list);
|
|
conf->pending_count = 0;
|
|
conf->recovery_disabled = mddev->recovery_disabled - 1;
|
|
|
|
err = -EIO;
|
|
for (i = 0; i < conf->raid_disks * 2; i++) {
|
|
|
|
disk = conf->mirrors + i;
|
|
|
|
if (i < conf->raid_disks &&
|
|
disk[conf->raid_disks].rdev) {
|
|
/* This slot has a replacement. */
|
|
if (!disk->rdev) {
|
|
/* No original, just make the replacement
|
|
* a recovering spare
|
|
*/
|
|
disk->rdev =
|
|
disk[conf->raid_disks].rdev;
|
|
disk[conf->raid_disks].rdev = NULL;
|
|
} else if (!test_bit(In_sync, &disk->rdev->flags))
|
|
/* Original is not in_sync - bad */
|
|
goto abort;
|
|
}
|
|
|
|
if (!disk->rdev ||
|
|
!test_bit(In_sync, &disk->rdev->flags)) {
|
|
disk->head_position = 0;
|
|
if (disk->rdev &&
|
|
(disk->rdev->saved_raid_disk < 0))
|
|
conf->fullsync = 1;
|
|
}
|
|
}
|
|
|
|
err = -ENOMEM;
|
|
conf->thread = md_register_thread(raid1d, mddev, "raid1");
|
|
if (!conf->thread)
|
|
goto abort;
|
|
|
|
return conf;
|
|
|
|
abort:
|
|
if (conf) {
|
|
mempool_exit(&conf->r1bio_pool);
|
|
kfree(conf->mirrors);
|
|
safe_put_page(conf->tmppage);
|
|
kfree(conf->poolinfo);
|
|
kfree(conf->nr_pending);
|
|
kfree(conf->nr_waiting);
|
|
kfree(conf->nr_queued);
|
|
kfree(conf->barrier);
|
|
bioset_exit(&conf->bio_split);
|
|
kfree(conf);
|
|
}
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void raid1_free(struct mddev *mddev, void *priv);
|
|
static int raid1_run(struct mddev *mddev)
|
|
{
|
|
struct r1conf *conf;
|
|
int i;
|
|
struct md_rdev *rdev;
|
|
int ret;
|
|
bool discard_supported = false;
|
|
|
|
if (mddev->level != 1) {
|
|
pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
|
|
mdname(mddev), mddev->level);
|
|
return -EIO;
|
|
}
|
|
if (mddev->reshape_position != MaxSector) {
|
|
pr_warn("md/raid1:%s: reshape_position set but not supported\n",
|
|
mdname(mddev));
|
|
return -EIO;
|
|
}
|
|
if (mddev_init_writes_pending(mddev) < 0)
|
|
return -ENOMEM;
|
|
/*
|
|
* copy the already verified devices into our private RAID1
|
|
* bookkeeping area. [whatever we allocate in run(),
|
|
* should be freed in raid1_free()]
|
|
*/
|
|
if (mddev->private == NULL)
|
|
conf = setup_conf(mddev);
|
|
else
|
|
conf = mddev->private;
|
|
|
|
if (IS_ERR(conf))
|
|
return PTR_ERR(conf);
|
|
|
|
if (mddev->queue) {
|
|
blk_queue_max_write_same_sectors(mddev->queue, 0);
|
|
blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
|
|
}
|
|
|
|
rdev_for_each(rdev, mddev) {
|
|
if (!mddev->gendisk)
|
|
continue;
|
|
disk_stack_limits(mddev->gendisk, rdev->bdev,
|
|
rdev->data_offset << 9);
|
|
if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
|
|
discard_supported = true;
|
|
}
|
|
|
|
mddev->degraded = 0;
|
|
for (i=0; i < conf->raid_disks; i++)
|
|
if (conf->mirrors[i].rdev == NULL ||
|
|
!test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
|
|
test_bit(Faulty, &conf->mirrors[i].rdev->flags))
|
|
mddev->degraded++;
|
|
|
|
if (conf->raid_disks - mddev->degraded == 1)
|
|
mddev->recovery_cp = MaxSector;
|
|
|
|
if (mddev->recovery_cp != MaxSector)
|
|
pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
|
|
mdname(mddev));
|
|
pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
|
|
mdname(mddev), mddev->raid_disks - mddev->degraded,
|
|
mddev->raid_disks);
|
|
|
|
/*
|
|
* Ok, everything is just fine now
|
|
*/
|
|
mddev->thread = conf->thread;
|
|
conf->thread = NULL;
|
|
mddev->private = conf;
|
|
set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
|
|
|
|
md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
|
|
|
|
if (mddev->queue) {
|
|
if (discard_supported)
|
|
blk_queue_flag_set(QUEUE_FLAG_DISCARD,
|
|
mddev->queue);
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
|
|
mddev->queue);
|
|
}
|
|
|
|
ret = md_integrity_register(mddev);
|
|
if (ret) {
|
|
md_unregister_thread(&mddev->thread);
|
|
raid1_free(mddev, conf);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void raid1_free(struct mddev *mddev, void *priv)
|
|
{
|
|
struct r1conf *conf = priv;
|
|
|
|
mempool_exit(&conf->r1bio_pool);
|
|
kfree(conf->mirrors);
|
|
safe_put_page(conf->tmppage);
|
|
kfree(conf->poolinfo);
|
|
kfree(conf->nr_pending);
|
|
kfree(conf->nr_waiting);
|
|
kfree(conf->nr_queued);
|
|
kfree(conf->barrier);
|
|
bioset_exit(&conf->bio_split);
|
|
kfree(conf);
|
|
}
|
|
|
|
static int raid1_resize(struct mddev *mddev, sector_t sectors)
|
|
{
|
|
/* no resync is happening, and there is enough space
|
|
* on all devices, so we can resize.
|
|
* We need to make sure resync covers any new space.
|
|
* If the array is shrinking we should possibly wait until
|
|
* any io in the removed space completes, but it hardly seems
|
|
* worth it.
|
|
*/
|
|
sector_t newsize = raid1_size(mddev, sectors, 0);
|
|
if (mddev->external_size &&
|
|
mddev->array_sectors > newsize)
|
|
return -EINVAL;
|
|
if (mddev->bitmap) {
|
|
int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
md_set_array_sectors(mddev, newsize);
|
|
if (sectors > mddev->dev_sectors &&
|
|
mddev->recovery_cp > mddev->dev_sectors) {
|
|
mddev->recovery_cp = mddev->dev_sectors;
|
|
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
|
|
}
|
|
mddev->dev_sectors = sectors;
|
|
mddev->resync_max_sectors = sectors;
|
|
return 0;
|
|
}
|
|
|
|
static int raid1_reshape(struct mddev *mddev)
|
|
{
|
|
/* We need to:
|
|
* 1/ resize the r1bio_pool
|
|
* 2/ resize conf->mirrors
|
|
*
|
|
* We allocate a new r1bio_pool if we can.
|
|
* Then raise a device barrier and wait until all IO stops.
|
|
* Then resize conf->mirrors and swap in the new r1bio pool.
|
|
*
|
|
* At the same time, we "pack" the devices so that all the missing
|
|
* devices have the higher raid_disk numbers.
|
|
*/
|
|
mempool_t newpool, oldpool;
|
|
struct pool_info *newpoolinfo;
|
|
struct raid1_info *newmirrors;
|
|
struct r1conf *conf = mddev->private;
|
|
int cnt, raid_disks;
|
|
unsigned long flags;
|
|
int d, d2;
|
|
int ret;
|
|
|
|
memset(&newpool, 0, sizeof(newpool));
|
|
memset(&oldpool, 0, sizeof(oldpool));
|
|
|
|
/* Cannot change chunk_size, layout, or level */
|
|
if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
|
|
mddev->layout != mddev->new_layout ||
|
|
mddev->level != mddev->new_level) {
|
|
mddev->new_chunk_sectors = mddev->chunk_sectors;
|
|
mddev->new_layout = mddev->layout;
|
|
mddev->new_level = mddev->level;
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!mddev_is_clustered(mddev))
|
|
md_allow_write(mddev);
|
|
|
|
raid_disks = mddev->raid_disks + mddev->delta_disks;
|
|
|
|
if (raid_disks < conf->raid_disks) {
|
|
cnt=0;
|
|
for (d= 0; d < conf->raid_disks; d++)
|
|
if (conf->mirrors[d].rdev)
|
|
cnt++;
|
|
if (cnt > raid_disks)
|
|
return -EBUSY;
|
|
}
|
|
|
|
newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
|
|
if (!newpoolinfo)
|
|
return -ENOMEM;
|
|
newpoolinfo->mddev = mddev;
|
|
newpoolinfo->raid_disks = raid_disks * 2;
|
|
|
|
ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
|
|
r1bio_pool_free, newpoolinfo);
|
|
if (ret) {
|
|
kfree(newpoolinfo);
|
|
return ret;
|
|
}
|
|
newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
|
|
raid_disks, 2),
|
|
GFP_KERNEL);
|
|
if (!newmirrors) {
|
|
kfree(newpoolinfo);
|
|
mempool_exit(&newpool);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
freeze_array(conf, 0);
|
|
|
|
/* ok, everything is stopped */
|
|
oldpool = conf->r1bio_pool;
|
|
conf->r1bio_pool = newpool;
|
|
|
|
for (d = d2 = 0; d < conf->raid_disks; d++) {
|
|
struct md_rdev *rdev = conf->mirrors[d].rdev;
|
|
if (rdev && rdev->raid_disk != d2) {
|
|
sysfs_unlink_rdev(mddev, rdev);
|
|
rdev->raid_disk = d2;
|
|
sysfs_unlink_rdev(mddev, rdev);
|
|
if (sysfs_link_rdev(mddev, rdev))
|
|
pr_warn("md/raid1:%s: cannot register rd%d\n",
|
|
mdname(mddev), rdev->raid_disk);
|
|
}
|
|
if (rdev)
|
|
newmirrors[d2++].rdev = rdev;
|
|
}
|
|
kfree(conf->mirrors);
|
|
conf->mirrors = newmirrors;
|
|
kfree(conf->poolinfo);
|
|
conf->poolinfo = newpoolinfo;
|
|
|
|
spin_lock_irqsave(&conf->device_lock, flags);
|
|
mddev->degraded += (raid_disks - conf->raid_disks);
|
|
spin_unlock_irqrestore(&conf->device_lock, flags);
|
|
conf->raid_disks = mddev->raid_disks = raid_disks;
|
|
mddev->delta_disks = 0;
|
|
|
|
unfreeze_array(conf);
|
|
|
|
set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
|
|
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
|
|
md_wakeup_thread(mddev->thread);
|
|
|
|
mempool_exit(&oldpool);
|
|
return 0;
|
|
}
|
|
|
|
static void raid1_quiesce(struct mddev *mddev, int quiesce)
|
|
{
|
|
struct r1conf *conf = mddev->private;
|
|
|
|
if (quiesce)
|
|
freeze_array(conf, 0);
|
|
else
|
|
unfreeze_array(conf);
|
|
}
|
|
|
|
static void *raid1_takeover(struct mddev *mddev)
|
|
{
|
|
/* raid1 can take over:
|
|
* raid5 with 2 devices, any layout or chunk size
|
|
*/
|
|
if (mddev->level == 5 && mddev->raid_disks == 2) {
|
|
struct r1conf *conf;
|
|
mddev->new_level = 1;
|
|
mddev->new_layout = 0;
|
|
mddev->new_chunk_sectors = 0;
|
|
conf = setup_conf(mddev);
|
|
if (!IS_ERR(conf)) {
|
|
/* Array must appear to be quiesced */
|
|
conf->array_frozen = 1;
|
|
mddev_clear_unsupported_flags(mddev,
|
|
UNSUPPORTED_MDDEV_FLAGS);
|
|
}
|
|
return conf;
|
|
}
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
static struct md_personality raid1_personality =
|
|
{
|
|
.name = "raid1",
|
|
.level = 1,
|
|
.owner = THIS_MODULE,
|
|
.make_request = raid1_make_request,
|
|
.run = raid1_run,
|
|
.free = raid1_free,
|
|
.status = raid1_status,
|
|
.error_handler = raid1_error,
|
|
.hot_add_disk = raid1_add_disk,
|
|
.hot_remove_disk= raid1_remove_disk,
|
|
.spare_active = raid1_spare_active,
|
|
.sync_request = raid1_sync_request,
|
|
.resize = raid1_resize,
|
|
.size = raid1_size,
|
|
.check_reshape = raid1_reshape,
|
|
.quiesce = raid1_quiesce,
|
|
.takeover = raid1_takeover,
|
|
.congested = raid1_congested,
|
|
};
|
|
|
|
static int __init raid_init(void)
|
|
{
|
|
return register_md_personality(&raid1_personality);
|
|
}
|
|
|
|
static void raid_exit(void)
|
|
{
|
|
unregister_md_personality(&raid1_personality);
|
|
}
|
|
|
|
module_init(raid_init);
|
|
module_exit(raid_exit);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
|
|
MODULE_ALIAS("md-personality-3"); /* RAID1 */
|
|
MODULE_ALIAS("md-raid1");
|
|
MODULE_ALIAS("md-level-1");
|
|
|
|
module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
|