1462 lines
36 KiB
C
1462 lines
36 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
*/
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kvm.h>
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/file.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/pgtable.h>
|
|
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/page.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pte-walk.h>
|
|
#include <asm/ultravisor.h>
|
|
#include <asm/kvm_book3s_uvmem.h>
|
|
|
|
/*
|
|
* Supported radix tree geometry.
|
|
* Like p9, we support either 5 or 9 bits at the first (lowest) level,
|
|
* for a page size of 64k or 4k.
|
|
*/
|
|
static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
|
|
|
|
unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid,
|
|
gva_t eaddr, void *to, void *from,
|
|
unsigned long n)
|
|
{
|
|
int old_pid, old_lpid;
|
|
unsigned long quadrant, ret = n;
|
|
bool is_load = !!to;
|
|
|
|
/* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */
|
|
if (kvmhv_on_pseries())
|
|
return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr,
|
|
(to != NULL) ? __pa(to): 0,
|
|
(from != NULL) ? __pa(from): 0, n);
|
|
|
|
quadrant = 1;
|
|
if (!pid)
|
|
quadrant = 2;
|
|
if (is_load)
|
|
from = (void *) (eaddr | (quadrant << 62));
|
|
else
|
|
to = (void *) (eaddr | (quadrant << 62));
|
|
|
|
preempt_disable();
|
|
|
|
/* switch the lpid first to avoid running host with unallocated pid */
|
|
old_lpid = mfspr(SPRN_LPID);
|
|
if (old_lpid != lpid)
|
|
mtspr(SPRN_LPID, lpid);
|
|
if (quadrant == 1) {
|
|
old_pid = mfspr(SPRN_PID);
|
|
if (old_pid != pid)
|
|
mtspr(SPRN_PID, pid);
|
|
}
|
|
isync();
|
|
|
|
if (is_load)
|
|
ret = copy_from_user_nofault(to, (const void __user *)from, n);
|
|
else
|
|
ret = copy_to_user_nofault((void __user *)to, from, n);
|
|
|
|
/* switch the pid first to avoid running host with unallocated pid */
|
|
if (quadrant == 1 && pid != old_pid)
|
|
mtspr(SPRN_PID, old_pid);
|
|
if (lpid != old_lpid)
|
|
mtspr(SPRN_LPID, old_lpid);
|
|
isync();
|
|
|
|
preempt_enable();
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix);
|
|
|
|
static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr,
|
|
void *to, void *from, unsigned long n)
|
|
{
|
|
int lpid = vcpu->kvm->arch.lpid;
|
|
int pid = vcpu->arch.pid;
|
|
|
|
/* This would cause a data segment intr so don't allow the access */
|
|
if (eaddr & (0x3FFUL << 52))
|
|
return -EINVAL;
|
|
|
|
/* Should we be using the nested lpid */
|
|
if (vcpu->arch.nested)
|
|
lpid = vcpu->arch.nested->shadow_lpid;
|
|
|
|
/* If accessing quadrant 3 then pid is expected to be 0 */
|
|
if (((eaddr >> 62) & 0x3) == 0x3)
|
|
pid = 0;
|
|
|
|
eaddr &= ~(0xFFFUL << 52);
|
|
|
|
return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n);
|
|
}
|
|
|
|
long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to,
|
|
unsigned long n)
|
|
{
|
|
long ret;
|
|
|
|
ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
|
|
if (ret > 0)
|
|
memset(to + (n - ret), 0, ret);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix);
|
|
|
|
long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from,
|
|
unsigned long n)
|
|
{
|
|
return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix);
|
|
|
|
int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
|
|
struct kvmppc_pte *gpte, u64 root,
|
|
u64 *pte_ret_p)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int ret, level, ps;
|
|
unsigned long rts, bits, offset, index;
|
|
u64 pte, base, gpa;
|
|
__be64 rpte;
|
|
|
|
rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
|
|
((root & RTS2_MASK) >> RTS2_SHIFT);
|
|
bits = root & RPDS_MASK;
|
|
base = root & RPDB_MASK;
|
|
|
|
offset = rts + 31;
|
|
|
|
/* Current implementations only support 52-bit space */
|
|
if (offset != 52)
|
|
return -EINVAL;
|
|
|
|
/* Walk each level of the radix tree */
|
|
for (level = 3; level >= 0; --level) {
|
|
u64 addr;
|
|
/* Check a valid size */
|
|
if (level && bits != p9_supported_radix_bits[level])
|
|
return -EINVAL;
|
|
if (level == 0 && !(bits == 5 || bits == 9))
|
|
return -EINVAL;
|
|
offset -= bits;
|
|
index = (eaddr >> offset) & ((1UL << bits) - 1);
|
|
/* Check that low bits of page table base are zero */
|
|
if (base & ((1UL << (bits + 3)) - 1))
|
|
return -EINVAL;
|
|
/* Read the entry from guest memory */
|
|
addr = base + (index * sizeof(rpte));
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
if (ret) {
|
|
if (pte_ret_p)
|
|
*pte_ret_p = addr;
|
|
return ret;
|
|
}
|
|
pte = __be64_to_cpu(rpte);
|
|
if (!(pte & _PAGE_PRESENT))
|
|
return -ENOENT;
|
|
/* Check if a leaf entry */
|
|
if (pte & _PAGE_PTE)
|
|
break;
|
|
/* Get ready to walk the next level */
|
|
base = pte & RPDB_MASK;
|
|
bits = pte & RPDS_MASK;
|
|
}
|
|
|
|
/* Need a leaf at lowest level; 512GB pages not supported */
|
|
if (level < 0 || level == 3)
|
|
return -EINVAL;
|
|
|
|
/* We found a valid leaf PTE */
|
|
/* Offset is now log base 2 of the page size */
|
|
gpa = pte & 0x01fffffffffff000ul;
|
|
if (gpa & ((1ul << offset) - 1))
|
|
return -EINVAL;
|
|
gpa |= eaddr & ((1ul << offset) - 1);
|
|
for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
|
|
if (offset == mmu_psize_defs[ps].shift)
|
|
break;
|
|
gpte->page_size = ps;
|
|
gpte->page_shift = offset;
|
|
|
|
gpte->eaddr = eaddr;
|
|
gpte->raddr = gpa;
|
|
|
|
/* Work out permissions */
|
|
gpte->may_read = !!(pte & _PAGE_READ);
|
|
gpte->may_write = !!(pte & _PAGE_WRITE);
|
|
gpte->may_execute = !!(pte & _PAGE_EXEC);
|
|
|
|
gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
|
|
|
|
if (pte_ret_p)
|
|
*pte_ret_p = pte;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Used to walk a partition or process table radix tree in guest memory
|
|
* Note: We exploit the fact that a partition table and a process
|
|
* table have the same layout, a partition-scoped page table and a
|
|
* process-scoped page table have the same layout, and the 2nd
|
|
* doubleword of a partition table entry has the same layout as
|
|
* the PTCR register.
|
|
*/
|
|
int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
|
|
struct kvmppc_pte *gpte, u64 table,
|
|
int table_index, u64 *pte_ret_p)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
int ret;
|
|
unsigned long size, ptbl, root;
|
|
struct prtb_entry entry;
|
|
|
|
if ((table & PRTS_MASK) > 24)
|
|
return -EINVAL;
|
|
size = 1ul << ((table & PRTS_MASK) + 12);
|
|
|
|
/* Is the table big enough to contain this entry? */
|
|
if ((table_index * sizeof(entry)) >= size)
|
|
return -EINVAL;
|
|
|
|
/* Read the table to find the root of the radix tree */
|
|
ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
|
|
vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
|
|
ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
|
|
srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Root is stored in the first double word */
|
|
root = be64_to_cpu(entry.prtb0);
|
|
|
|
return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
|
|
}
|
|
|
|
int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
|
|
struct kvmppc_pte *gpte, bool data, bool iswrite)
|
|
{
|
|
u32 pid;
|
|
u64 pte;
|
|
int ret;
|
|
|
|
/* Work out effective PID */
|
|
switch (eaddr >> 62) {
|
|
case 0:
|
|
pid = vcpu->arch.pid;
|
|
break;
|
|
case 3:
|
|
pid = 0;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte,
|
|
vcpu->kvm->arch.process_table, pid, &pte);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Check privilege (applies only to process scoped translations) */
|
|
if (kvmppc_get_msr(vcpu) & MSR_PR) {
|
|
if (pte & _PAGE_PRIVILEGED) {
|
|
gpte->may_read = 0;
|
|
gpte->may_write = 0;
|
|
gpte->may_execute = 0;
|
|
}
|
|
} else {
|
|
if (!(pte & _PAGE_PRIVILEGED)) {
|
|
/* Check AMR/IAMR to see if strict mode is in force */
|
|
if (vcpu->arch.amr & (1ul << 62))
|
|
gpte->may_read = 0;
|
|
if (vcpu->arch.amr & (1ul << 63))
|
|
gpte->may_write = 0;
|
|
if (vcpu->arch.iamr & (1ul << 62))
|
|
gpte->may_execute = 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
|
|
unsigned int pshift, unsigned int lpid)
|
|
{
|
|
unsigned long psize = PAGE_SIZE;
|
|
int psi;
|
|
long rc;
|
|
unsigned long rb;
|
|
|
|
if (pshift)
|
|
psize = 1UL << pshift;
|
|
else
|
|
pshift = PAGE_SHIFT;
|
|
|
|
addr &= ~(psize - 1);
|
|
|
|
if (!kvmhv_on_pseries()) {
|
|
radix__flush_tlb_lpid_page(lpid, addr, psize);
|
|
return;
|
|
}
|
|
|
|
psi = shift_to_mmu_psize(pshift);
|
|
rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58));
|
|
rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1),
|
|
lpid, rb);
|
|
if (rc)
|
|
pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc);
|
|
}
|
|
|
|
static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid)
|
|
{
|
|
long rc;
|
|
|
|
if (!kvmhv_on_pseries()) {
|
|
radix__flush_pwc_lpid(lpid);
|
|
return;
|
|
}
|
|
|
|
rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1),
|
|
lpid, TLBIEL_INVAL_SET_LPID);
|
|
if (rc)
|
|
pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc);
|
|
}
|
|
|
|
static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
|
|
unsigned long clr, unsigned long set,
|
|
unsigned long addr, unsigned int shift)
|
|
{
|
|
return __radix_pte_update(ptep, clr, set);
|
|
}
|
|
|
|
static void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
|
|
pte_t *ptep, pte_t pte)
|
|
{
|
|
radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
|
|
}
|
|
|
|
static struct kmem_cache *kvm_pte_cache;
|
|
static struct kmem_cache *kvm_pmd_cache;
|
|
|
|
static pte_t *kvmppc_pte_alloc(void)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
|
|
/* pmd_populate() will only reference _pa(pte). */
|
|
kmemleak_ignore(pte);
|
|
|
|
return pte;
|
|
}
|
|
|
|
static void kvmppc_pte_free(pte_t *ptep)
|
|
{
|
|
kmem_cache_free(kvm_pte_cache, ptep);
|
|
}
|
|
|
|
static pmd_t *kvmppc_pmd_alloc(void)
|
|
{
|
|
pmd_t *pmd;
|
|
|
|
pmd = kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
|
|
/* pud_populate() will only reference _pa(pmd). */
|
|
kmemleak_ignore(pmd);
|
|
|
|
return pmd;
|
|
}
|
|
|
|
static void kvmppc_pmd_free(pmd_t *pmdp)
|
|
{
|
|
kmem_cache_free(kvm_pmd_cache, pmdp);
|
|
}
|
|
|
|
/* Called with kvm->mmu_lock held */
|
|
void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
|
|
unsigned int shift,
|
|
const struct kvm_memory_slot *memslot,
|
|
unsigned int lpid)
|
|
|
|
{
|
|
unsigned long old;
|
|
unsigned long gfn = gpa >> PAGE_SHIFT;
|
|
unsigned long page_size = PAGE_SIZE;
|
|
unsigned long hpa;
|
|
|
|
old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
|
|
kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
|
|
|
|
/* The following only applies to L1 entries */
|
|
if (lpid != kvm->arch.lpid)
|
|
return;
|
|
|
|
if (!memslot) {
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
if (!memslot)
|
|
return;
|
|
}
|
|
if (shift) { /* 1GB or 2MB page */
|
|
page_size = 1ul << shift;
|
|
if (shift == PMD_SHIFT)
|
|
kvm->stat.num_2M_pages--;
|
|
else if (shift == PUD_SHIFT)
|
|
kvm->stat.num_1G_pages--;
|
|
}
|
|
|
|
gpa &= ~(page_size - 1);
|
|
hpa = old & PTE_RPN_MASK;
|
|
kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size);
|
|
|
|
if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap)
|
|
kvmppc_update_dirty_map(memslot, gfn, page_size);
|
|
}
|
|
|
|
/*
|
|
* kvmppc_free_p?d are used to free existing page tables, and recursively
|
|
* descend and clear and free children.
|
|
* Callers are responsible for flushing the PWC.
|
|
*
|
|
* When page tables are being unmapped/freed as part of page fault path
|
|
* (full == false), valid ptes are generally not expected; however, there
|
|
* is one situation where they arise, which is when dirty page logging is
|
|
* turned off for a memslot while the VM is running. The new memslot
|
|
* becomes visible to page faults before the memslot commit function
|
|
* gets to flush the memslot, which can lead to a 2MB page mapping being
|
|
* installed for a guest physical address where there are already 64kB
|
|
* (or 4kB) mappings (of sub-pages of the same 2MB page).
|
|
*/
|
|
static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
|
|
unsigned int lpid)
|
|
{
|
|
if (full) {
|
|
memset(pte, 0, sizeof(long) << RADIX_PTE_INDEX_SIZE);
|
|
} else {
|
|
pte_t *p = pte;
|
|
unsigned long it;
|
|
|
|
for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
|
|
if (pte_val(*p) == 0)
|
|
continue;
|
|
kvmppc_unmap_pte(kvm, p,
|
|
pte_pfn(*p) << PAGE_SHIFT,
|
|
PAGE_SHIFT, NULL, lpid);
|
|
}
|
|
}
|
|
|
|
kvmppc_pte_free(pte);
|
|
}
|
|
|
|
static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
|
|
unsigned int lpid)
|
|
{
|
|
unsigned long im;
|
|
pmd_t *p = pmd;
|
|
|
|
for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
|
|
if (!pmd_present(*p))
|
|
continue;
|
|
if (pmd_is_leaf(*p)) {
|
|
if (full) {
|
|
pmd_clear(p);
|
|
} else {
|
|
WARN_ON_ONCE(1);
|
|
kvmppc_unmap_pte(kvm, (pte_t *)p,
|
|
pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
|
|
PMD_SHIFT, NULL, lpid);
|
|
}
|
|
} else {
|
|
pte_t *pte;
|
|
|
|
pte = pte_offset_map(p, 0);
|
|
kvmppc_unmap_free_pte(kvm, pte, full, lpid);
|
|
pmd_clear(p);
|
|
}
|
|
}
|
|
kvmppc_pmd_free(pmd);
|
|
}
|
|
|
|
static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
|
|
unsigned int lpid)
|
|
{
|
|
unsigned long iu;
|
|
pud_t *p = pud;
|
|
|
|
for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
|
|
if (!pud_present(*p))
|
|
continue;
|
|
if (pud_is_leaf(*p)) {
|
|
pud_clear(p);
|
|
} else {
|
|
pmd_t *pmd;
|
|
|
|
pmd = pmd_offset(p, 0);
|
|
kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
|
|
pud_clear(p);
|
|
}
|
|
}
|
|
pud_free(kvm->mm, pud);
|
|
}
|
|
|
|
void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid)
|
|
{
|
|
unsigned long ig;
|
|
|
|
for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
|
|
p4d_t *p4d = p4d_offset(pgd, 0);
|
|
pud_t *pud;
|
|
|
|
if (!p4d_present(*p4d))
|
|
continue;
|
|
pud = pud_offset(p4d, 0);
|
|
kvmppc_unmap_free_pud(kvm, pud, lpid);
|
|
p4d_clear(p4d);
|
|
}
|
|
}
|
|
|
|
void kvmppc_free_radix(struct kvm *kvm)
|
|
{
|
|
if (kvm->arch.pgtable) {
|
|
kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
|
|
kvm->arch.lpid);
|
|
pgd_free(kvm->mm, kvm->arch.pgtable);
|
|
kvm->arch.pgtable = NULL;
|
|
}
|
|
}
|
|
|
|
static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
|
|
unsigned long gpa, unsigned int lpid)
|
|
{
|
|
pte_t *pte = pte_offset_kernel(pmd, 0);
|
|
|
|
/*
|
|
* Clearing the pmd entry then flushing the PWC ensures that the pte
|
|
* page no longer be cached by the MMU, so can be freed without
|
|
* flushing the PWC again.
|
|
*/
|
|
pmd_clear(pmd);
|
|
kvmppc_radix_flush_pwc(kvm, lpid);
|
|
|
|
kvmppc_unmap_free_pte(kvm, pte, false, lpid);
|
|
}
|
|
|
|
static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
|
|
unsigned long gpa, unsigned int lpid)
|
|
{
|
|
pmd_t *pmd = pmd_offset(pud, 0);
|
|
|
|
/*
|
|
* Clearing the pud entry then flushing the PWC ensures that the pmd
|
|
* page and any children pte pages will no longer be cached by the MMU,
|
|
* so can be freed without flushing the PWC again.
|
|
*/
|
|
pud_clear(pud);
|
|
kvmppc_radix_flush_pwc(kvm, lpid);
|
|
|
|
kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
|
|
}
|
|
|
|
/*
|
|
* There are a number of bits which may differ between different faults to
|
|
* the same partition scope entry. RC bits, in the course of cleaning and
|
|
* aging. And the write bit can change, either the access could have been
|
|
* upgraded, or a read fault could happen concurrently with a write fault
|
|
* that sets those bits first.
|
|
*/
|
|
#define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
|
|
|
|
int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
|
|
unsigned long gpa, unsigned int level,
|
|
unsigned long mmu_seq, unsigned int lpid,
|
|
unsigned long *rmapp, struct rmap_nested **n_rmap)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud, *new_pud = NULL;
|
|
pmd_t *pmd, *new_pmd = NULL;
|
|
pte_t *ptep, *new_ptep = NULL;
|
|
int ret;
|
|
|
|
/* Traverse the guest's 2nd-level tree, allocate new levels needed */
|
|
pgd = pgtable + pgd_index(gpa);
|
|
p4d = p4d_offset(pgd, gpa);
|
|
|
|
pud = NULL;
|
|
if (p4d_present(*p4d))
|
|
pud = pud_offset(p4d, gpa);
|
|
else
|
|
new_pud = pud_alloc_one(kvm->mm, gpa);
|
|
|
|
pmd = NULL;
|
|
if (pud && pud_present(*pud) && !pud_is_leaf(*pud))
|
|
pmd = pmd_offset(pud, gpa);
|
|
else if (level <= 1)
|
|
new_pmd = kvmppc_pmd_alloc();
|
|
|
|
if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
|
|
new_ptep = kvmppc_pte_alloc();
|
|
|
|
/* Check if we might have been invalidated; let the guest retry if so */
|
|
spin_lock(&kvm->mmu_lock);
|
|
ret = -EAGAIN;
|
|
if (mmu_notifier_retry(kvm, mmu_seq))
|
|
goto out_unlock;
|
|
|
|
/* Now traverse again under the lock and change the tree */
|
|
ret = -ENOMEM;
|
|
if (p4d_none(*p4d)) {
|
|
if (!new_pud)
|
|
goto out_unlock;
|
|
p4d_populate(kvm->mm, p4d, new_pud);
|
|
new_pud = NULL;
|
|
}
|
|
pud = pud_offset(p4d, gpa);
|
|
if (pud_is_leaf(*pud)) {
|
|
unsigned long hgpa = gpa & PUD_MASK;
|
|
|
|
/* Check if we raced and someone else has set the same thing */
|
|
if (level == 2) {
|
|
if (pud_raw(*pud) == pte_raw(pte)) {
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
/* Valid 1GB page here already, add our extra bits */
|
|
WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
|
|
PTE_BITS_MUST_MATCH);
|
|
kvmppc_radix_update_pte(kvm, (pte_t *)pud,
|
|
0, pte_val(pte), hgpa, PUD_SHIFT);
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
/*
|
|
* If we raced with another CPU which has just put
|
|
* a 1GB pte in after we saw a pmd page, try again.
|
|
*/
|
|
if (!new_pmd) {
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
/* Valid 1GB page here already, remove it */
|
|
kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
|
|
lpid);
|
|
}
|
|
if (level == 2) {
|
|
if (!pud_none(*pud)) {
|
|
/*
|
|
* There's a page table page here, but we wanted to
|
|
* install a large page, so remove and free the page
|
|
* table page.
|
|
*/
|
|
kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
|
|
}
|
|
kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
|
|
if (rmapp && n_rmap)
|
|
kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
if (pud_none(*pud)) {
|
|
if (!new_pmd)
|
|
goto out_unlock;
|
|
pud_populate(kvm->mm, pud, new_pmd);
|
|
new_pmd = NULL;
|
|
}
|
|
pmd = pmd_offset(pud, gpa);
|
|
if (pmd_is_leaf(*pmd)) {
|
|
unsigned long lgpa = gpa & PMD_MASK;
|
|
|
|
/* Check if we raced and someone else has set the same thing */
|
|
if (level == 1) {
|
|
if (pmd_raw(*pmd) == pte_raw(pte)) {
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
/* Valid 2MB page here already, add our extra bits */
|
|
WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
|
|
PTE_BITS_MUST_MATCH);
|
|
kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
|
|
0, pte_val(pte), lgpa, PMD_SHIFT);
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If we raced with another CPU which has just put
|
|
* a 2MB pte in after we saw a pte page, try again.
|
|
*/
|
|
if (!new_ptep) {
|
|
ret = -EAGAIN;
|
|
goto out_unlock;
|
|
}
|
|
/* Valid 2MB page here already, remove it */
|
|
kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
|
|
lpid);
|
|
}
|
|
if (level == 1) {
|
|
if (!pmd_none(*pmd)) {
|
|
/*
|
|
* There's a page table page here, but we wanted to
|
|
* install a large page, so remove and free the page
|
|
* table page.
|
|
*/
|
|
kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
|
|
}
|
|
kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
|
|
if (rmapp && n_rmap)
|
|
kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
if (pmd_none(*pmd)) {
|
|
if (!new_ptep)
|
|
goto out_unlock;
|
|
pmd_populate(kvm->mm, pmd, new_ptep);
|
|
new_ptep = NULL;
|
|
}
|
|
ptep = pte_offset_kernel(pmd, gpa);
|
|
if (pte_present(*ptep)) {
|
|
/* Check if someone else set the same thing */
|
|
if (pte_raw(*ptep) == pte_raw(pte)) {
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
/* Valid page here already, add our extra bits */
|
|
WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
|
|
PTE_BITS_MUST_MATCH);
|
|
kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
|
|
if (rmapp && n_rmap)
|
|
kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
|
|
ret = 0;
|
|
|
|
out_unlock:
|
|
spin_unlock(&kvm->mmu_lock);
|
|
if (new_pud)
|
|
pud_free(kvm->mm, new_pud);
|
|
if (new_pmd)
|
|
kvmppc_pmd_free(new_pmd);
|
|
if (new_ptep)
|
|
kvmppc_pte_free(new_ptep);
|
|
return ret;
|
|
}
|
|
|
|
bool kvmppc_hv_handle_set_rc(struct kvm *kvm, bool nested, bool writing,
|
|
unsigned long gpa, unsigned int lpid)
|
|
{
|
|
unsigned long pgflags;
|
|
unsigned int shift;
|
|
pte_t *ptep;
|
|
|
|
/*
|
|
* Need to set an R or C bit in the 2nd-level tables;
|
|
* since we are just helping out the hardware here,
|
|
* it is sufficient to do what the hardware does.
|
|
*/
|
|
pgflags = _PAGE_ACCESSED;
|
|
if (writing)
|
|
pgflags |= _PAGE_DIRTY;
|
|
|
|
if (nested)
|
|
ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
|
|
else
|
|
ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
|
|
|
|
if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) {
|
|
kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
|
|
unsigned long gpa,
|
|
struct kvm_memory_slot *memslot,
|
|
bool writing, bool kvm_ro,
|
|
pte_t *inserted_pte, unsigned int *levelp)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
struct page *page = NULL;
|
|
unsigned long mmu_seq;
|
|
unsigned long hva, gfn = gpa >> PAGE_SHIFT;
|
|
bool upgrade_write = false;
|
|
bool *upgrade_p = &upgrade_write;
|
|
pte_t pte, *ptep;
|
|
unsigned int shift, level;
|
|
int ret;
|
|
bool large_enable;
|
|
|
|
/* used to check for invalidations in progress */
|
|
mmu_seq = kvm->mmu_notifier_seq;
|
|
smp_rmb();
|
|
|
|
/*
|
|
* Do a fast check first, since __gfn_to_pfn_memslot doesn't
|
|
* do it with !atomic && !async, which is how we call it.
|
|
* We always ask for write permission since the common case
|
|
* is that the page is writable.
|
|
*/
|
|
hva = gfn_to_hva_memslot(memslot, gfn);
|
|
if (!kvm_ro && get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
|
|
upgrade_write = true;
|
|
} else {
|
|
unsigned long pfn;
|
|
|
|
/* Call KVM generic code to do the slow-path check */
|
|
pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
|
|
writing, upgrade_p, NULL);
|
|
if (is_error_noslot_pfn(pfn))
|
|
return -EFAULT;
|
|
page = NULL;
|
|
if (pfn_valid(pfn)) {
|
|
page = pfn_to_page(pfn);
|
|
if (PageReserved(page))
|
|
page = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read the PTE from the process' radix tree and use that
|
|
* so we get the shift and attribute bits.
|
|
*/
|
|
spin_lock(&kvm->mmu_lock);
|
|
ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
|
|
pte = __pte(0);
|
|
if (ptep)
|
|
pte = READ_ONCE(*ptep);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
/*
|
|
* If the PTE disappeared temporarily due to a THP
|
|
* collapse, just return and let the guest try again.
|
|
*/
|
|
if (!pte_present(pte)) {
|
|
if (page)
|
|
put_page(page);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/* If we're logging dirty pages, always map single pages */
|
|
large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES);
|
|
|
|
/* Get pte level from shift/size */
|
|
if (large_enable && shift == PUD_SHIFT &&
|
|
(gpa & (PUD_SIZE - PAGE_SIZE)) ==
|
|
(hva & (PUD_SIZE - PAGE_SIZE))) {
|
|
level = 2;
|
|
} else if (large_enable && shift == PMD_SHIFT &&
|
|
(gpa & (PMD_SIZE - PAGE_SIZE)) ==
|
|
(hva & (PMD_SIZE - PAGE_SIZE))) {
|
|
level = 1;
|
|
} else {
|
|
level = 0;
|
|
if (shift > PAGE_SHIFT) {
|
|
/*
|
|
* If the pte maps more than one page, bring over
|
|
* bits from the virtual address to get the real
|
|
* address of the specific single page we want.
|
|
*/
|
|
unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
|
|
pte = __pte(pte_val(pte) | (hva & rpnmask));
|
|
}
|
|
}
|
|
|
|
pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
|
|
if (writing || upgrade_write) {
|
|
if (pte_val(pte) & _PAGE_WRITE)
|
|
pte = __pte(pte_val(pte) | _PAGE_DIRTY);
|
|
} else {
|
|
pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
|
|
}
|
|
|
|
/* Allocate space in the tree and write the PTE */
|
|
ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
|
|
mmu_seq, kvm->arch.lpid, NULL, NULL);
|
|
if (inserted_pte)
|
|
*inserted_pte = pte;
|
|
if (levelp)
|
|
*levelp = level;
|
|
|
|
if (page) {
|
|
if (!ret && (pte_val(pte) & _PAGE_WRITE))
|
|
set_page_dirty_lock(page);
|
|
put_page(page);
|
|
}
|
|
|
|
/* Increment number of large pages if we (successfully) inserted one */
|
|
if (!ret) {
|
|
if (level == 1)
|
|
kvm->stat.num_2M_pages++;
|
|
else if (level == 2)
|
|
kvm->stat.num_1G_pages++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvmppc_book3s_radix_page_fault(struct kvm_vcpu *vcpu,
|
|
unsigned long ea, unsigned long dsisr)
|
|
{
|
|
struct kvm *kvm = vcpu->kvm;
|
|
unsigned long gpa, gfn;
|
|
struct kvm_memory_slot *memslot;
|
|
long ret;
|
|
bool writing = !!(dsisr & DSISR_ISSTORE);
|
|
bool kvm_ro = false;
|
|
|
|
/* Check for unusual errors */
|
|
if (dsisr & DSISR_UNSUPP_MMU) {
|
|
pr_err("KVM: Got unsupported MMU fault\n");
|
|
return -EFAULT;
|
|
}
|
|
if (dsisr & DSISR_BADACCESS) {
|
|
/* Reflect to the guest as DSI */
|
|
pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
|
|
kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/* Translate the logical address */
|
|
gpa = vcpu->arch.fault_gpa & ~0xfffUL;
|
|
gpa &= ~0xF000000000000000ul;
|
|
gfn = gpa >> PAGE_SHIFT;
|
|
if (!(dsisr & DSISR_PRTABLE_FAULT))
|
|
gpa |= ea & 0xfff;
|
|
|
|
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
|
|
return kvmppc_send_page_to_uv(kvm, gfn);
|
|
|
|
/* Get the corresponding memslot */
|
|
memslot = gfn_to_memslot(kvm, gfn);
|
|
|
|
/* No memslot means it's an emulated MMIO region */
|
|
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
|
|
if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
|
|
DSISR_SET_RC)) {
|
|
/*
|
|
* Bad address in guest page table tree, or other
|
|
* unusual error - reflect it to the guest as DSI.
|
|
*/
|
|
kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
|
|
return RESUME_GUEST;
|
|
}
|
|
return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
|
|
}
|
|
|
|
if (memslot->flags & KVM_MEM_READONLY) {
|
|
if (writing) {
|
|
/* give the guest a DSI */
|
|
kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE |
|
|
DSISR_PROTFAULT);
|
|
return RESUME_GUEST;
|
|
}
|
|
kvm_ro = true;
|
|
}
|
|
|
|
/* Failed to set the reference/change bits */
|
|
if (dsisr & DSISR_SET_RC) {
|
|
spin_lock(&kvm->mmu_lock);
|
|
if (kvmppc_hv_handle_set_rc(kvm, false, writing,
|
|
gpa, kvm->arch.lpid))
|
|
dsisr &= ~DSISR_SET_RC;
|
|
spin_unlock(&kvm->mmu_lock);
|
|
|
|
if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
|
|
DSISR_PROTFAULT | DSISR_SET_RC)))
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/* Try to insert a pte */
|
|
ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing,
|
|
kvm_ro, NULL, NULL);
|
|
|
|
if (ret == 0 || ret == -EAGAIN)
|
|
ret = RESUME_GUEST;
|
|
return ret;
|
|
}
|
|
|
|
/* Called with kvm->mmu_lock held */
|
|
void kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long gfn)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
|
unsigned int shift;
|
|
|
|
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) {
|
|
uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT);
|
|
return;
|
|
}
|
|
|
|
ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
|
|
if (ptep && pte_present(*ptep))
|
|
kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
|
|
kvm->arch.lpid);
|
|
}
|
|
|
|
/* Called with kvm->mmu_lock held */
|
|
bool kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long gfn)
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
|
unsigned int shift;
|
|
bool ref = false;
|
|
unsigned long old, *rmapp;
|
|
|
|
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
|
|
return ref;
|
|
|
|
ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
|
|
if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
|
|
old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
|
|
gpa, shift);
|
|
/* XXX need to flush tlb here? */
|
|
/* Also clear bit in ptes in shadow pgtable for nested guests */
|
|
rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
|
kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0,
|
|
old & PTE_RPN_MASK,
|
|
1UL << shift);
|
|
ref = true;
|
|
}
|
|
return ref;
|
|
}
|
|
|
|
/* Called with kvm->mmu_lock held */
|
|
bool kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
|
|
unsigned long gfn)
|
|
|
|
{
|
|
pte_t *ptep;
|
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
|
unsigned int shift;
|
|
bool ref = false;
|
|
|
|
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
|
|
return ref;
|
|
|
|
ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
|
|
if (ptep && pte_present(*ptep) && pte_young(*ptep))
|
|
ref = true;
|
|
return ref;
|
|
}
|
|
|
|
/* Returns the number of PAGE_SIZE pages that are dirty */
|
|
static int kvm_radix_test_clear_dirty(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot, int pagenum)
|
|
{
|
|
unsigned long gfn = memslot->base_gfn + pagenum;
|
|
unsigned long gpa = gfn << PAGE_SHIFT;
|
|
pte_t *ptep, pte;
|
|
unsigned int shift;
|
|
int ret = 0;
|
|
unsigned long old, *rmapp;
|
|
|
|
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
|
|
return ret;
|
|
|
|
/*
|
|
* For performance reasons we don't hold kvm->mmu_lock while walking the
|
|
* partition scoped table.
|
|
*/
|
|
ptep = find_kvm_secondary_pte_unlocked(kvm, gpa, &shift);
|
|
if (!ptep)
|
|
return 0;
|
|
|
|
pte = READ_ONCE(*ptep);
|
|
if (pte_present(pte) && pte_dirty(pte)) {
|
|
spin_lock(&kvm->mmu_lock);
|
|
/*
|
|
* Recheck the pte again
|
|
*/
|
|
if (pte_val(pte) != pte_val(*ptep)) {
|
|
/*
|
|
* We have KVM_MEM_LOG_DIRTY_PAGES enabled. Hence we can
|
|
* only find PAGE_SIZE pte entries here. We can continue
|
|
* to use the pte addr returned by above page table
|
|
* walk.
|
|
*/
|
|
if (!pte_present(*ptep) || !pte_dirty(*ptep)) {
|
|
spin_unlock(&kvm->mmu_lock);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
VM_BUG_ON(shift);
|
|
old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
|
|
gpa, shift);
|
|
kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
|
|
/* Also clear bit in ptes in shadow pgtable for nested guests */
|
|
rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
|
|
kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0,
|
|
old & PTE_RPN_MASK,
|
|
1UL << shift);
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot, unsigned long *map)
|
|
{
|
|
unsigned long i, j;
|
|
int npages;
|
|
|
|
for (i = 0; i < memslot->npages; i = j) {
|
|
npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
|
|
|
|
/*
|
|
* Note that if npages > 0 then i must be a multiple of npages,
|
|
* since huge pages are only used to back the guest at guest
|
|
* real addresses that are a multiple of their size.
|
|
* Since we have at most one PTE covering any given guest
|
|
* real address, if npages > 1 we can skip to i + npages.
|
|
*/
|
|
j = i + 1;
|
|
if (npages) {
|
|
set_dirty_bits(map, i, npages);
|
|
j = i + npages;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_radix_flush_memslot(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot)
|
|
{
|
|
unsigned long n;
|
|
pte_t *ptep;
|
|
unsigned long gpa;
|
|
unsigned int shift;
|
|
|
|
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)
|
|
kvmppc_uvmem_drop_pages(memslot, kvm, true);
|
|
|
|
if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
|
|
return;
|
|
|
|
gpa = memslot->base_gfn << PAGE_SHIFT;
|
|
spin_lock(&kvm->mmu_lock);
|
|
for (n = memslot->npages; n; --n) {
|
|
ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
|
|
if (ptep && pte_present(*ptep))
|
|
kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
|
|
kvm->arch.lpid);
|
|
gpa += PAGE_SIZE;
|
|
}
|
|
/*
|
|
* Increase the mmu notifier sequence number to prevent any page
|
|
* fault that read the memslot earlier from writing a PTE.
|
|
*/
|
|
kvm->mmu_notifier_seq++;
|
|
spin_unlock(&kvm->mmu_lock);
|
|
}
|
|
|
|
static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
|
|
int psize, int *indexp)
|
|
{
|
|
if (!mmu_psize_defs[psize].shift)
|
|
return;
|
|
info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
|
|
(mmu_psize_defs[psize].ap << 29);
|
|
++(*indexp);
|
|
}
|
|
|
|
int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
|
|
{
|
|
int i;
|
|
|
|
if (!radix_enabled())
|
|
return -EINVAL;
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
/* 4k page size */
|
|
info->geometries[0].page_shift = 12;
|
|
info->geometries[0].level_bits[0] = 9;
|
|
for (i = 1; i < 4; ++i)
|
|
info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
|
|
/* 64k page size */
|
|
info->geometries[1].page_shift = 16;
|
|
for (i = 0; i < 4; ++i)
|
|
info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
|
|
|
|
i = 0;
|
|
add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
|
|
add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
|
|
add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
|
|
add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_init_vm_radix(struct kvm *kvm)
|
|
{
|
|
kvm->arch.pgtable = pgd_alloc(kvm->mm);
|
|
if (!kvm->arch.pgtable)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static void pte_ctor(void *addr)
|
|
{
|
|
memset(addr, 0, RADIX_PTE_TABLE_SIZE);
|
|
}
|
|
|
|
static void pmd_ctor(void *addr)
|
|
{
|
|
memset(addr, 0, RADIX_PMD_TABLE_SIZE);
|
|
}
|
|
|
|
struct debugfs_radix_state {
|
|
struct kvm *kvm;
|
|
struct mutex mutex;
|
|
unsigned long gpa;
|
|
int lpid;
|
|
int chars_left;
|
|
int buf_index;
|
|
char buf[128];
|
|
u8 hdr;
|
|
};
|
|
|
|
static int debugfs_radix_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct kvm *kvm = inode->i_private;
|
|
struct debugfs_radix_state *p;
|
|
|
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
kvm_get_kvm(kvm);
|
|
p->kvm = kvm;
|
|
mutex_init(&p->mutex);
|
|
file->private_data = p;
|
|
|
|
return nonseekable_open(inode, file);
|
|
}
|
|
|
|
static int debugfs_radix_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct debugfs_radix_state *p = file->private_data;
|
|
|
|
kvm_put_kvm(p->kvm);
|
|
kfree(p);
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t debugfs_radix_read(struct file *file, char __user *buf,
|
|
size_t len, loff_t *ppos)
|
|
{
|
|
struct debugfs_radix_state *p = file->private_data;
|
|
ssize_t ret, r;
|
|
unsigned long n;
|
|
struct kvm *kvm;
|
|
unsigned long gpa;
|
|
pgd_t *pgt;
|
|
struct kvm_nested_guest *nested;
|
|
pgd_t *pgdp;
|
|
p4d_t p4d, *p4dp;
|
|
pud_t pud, *pudp;
|
|
pmd_t pmd, *pmdp;
|
|
pte_t *ptep;
|
|
int shift;
|
|
unsigned long pte;
|
|
|
|
kvm = p->kvm;
|
|
if (!kvm_is_radix(kvm))
|
|
return 0;
|
|
|
|
ret = mutex_lock_interruptible(&p->mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (p->chars_left) {
|
|
n = p->chars_left;
|
|
if (n > len)
|
|
n = len;
|
|
r = copy_to_user(buf, p->buf + p->buf_index, n);
|
|
n -= r;
|
|
p->chars_left -= n;
|
|
p->buf_index += n;
|
|
buf += n;
|
|
len -= n;
|
|
ret = n;
|
|
if (r) {
|
|
if (!n)
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
gpa = p->gpa;
|
|
nested = NULL;
|
|
pgt = NULL;
|
|
while (len != 0 && p->lpid >= 0) {
|
|
if (gpa >= RADIX_PGTABLE_RANGE) {
|
|
gpa = 0;
|
|
pgt = NULL;
|
|
if (nested) {
|
|
kvmhv_put_nested(nested);
|
|
nested = NULL;
|
|
}
|
|
p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid);
|
|
p->hdr = 0;
|
|
if (p->lpid < 0)
|
|
break;
|
|
}
|
|
if (!pgt) {
|
|
if (p->lpid == 0) {
|
|
pgt = kvm->arch.pgtable;
|
|
} else {
|
|
nested = kvmhv_get_nested(kvm, p->lpid, false);
|
|
if (!nested) {
|
|
gpa = RADIX_PGTABLE_RANGE;
|
|
continue;
|
|
}
|
|
pgt = nested->shadow_pgtable;
|
|
}
|
|
}
|
|
n = 0;
|
|
if (!p->hdr) {
|
|
if (p->lpid > 0)
|
|
n = scnprintf(p->buf, sizeof(p->buf),
|
|
"\nNested LPID %d: ", p->lpid);
|
|
n += scnprintf(p->buf + n, sizeof(p->buf) - n,
|
|
"pgdir: %lx\n", (unsigned long)pgt);
|
|
p->hdr = 1;
|
|
goto copy;
|
|
}
|
|
|
|
pgdp = pgt + pgd_index(gpa);
|
|
p4dp = p4d_offset(pgdp, gpa);
|
|
p4d = READ_ONCE(*p4dp);
|
|
if (!(p4d_val(p4d) & _PAGE_PRESENT)) {
|
|
gpa = (gpa & P4D_MASK) + P4D_SIZE;
|
|
continue;
|
|
}
|
|
|
|
pudp = pud_offset(&p4d, gpa);
|
|
pud = READ_ONCE(*pudp);
|
|
if (!(pud_val(pud) & _PAGE_PRESENT)) {
|
|
gpa = (gpa & PUD_MASK) + PUD_SIZE;
|
|
continue;
|
|
}
|
|
if (pud_val(pud) & _PAGE_PTE) {
|
|
pte = pud_val(pud);
|
|
shift = PUD_SHIFT;
|
|
goto leaf;
|
|
}
|
|
|
|
pmdp = pmd_offset(&pud, gpa);
|
|
pmd = READ_ONCE(*pmdp);
|
|
if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
|
|
gpa = (gpa & PMD_MASK) + PMD_SIZE;
|
|
continue;
|
|
}
|
|
if (pmd_val(pmd) & _PAGE_PTE) {
|
|
pte = pmd_val(pmd);
|
|
shift = PMD_SHIFT;
|
|
goto leaf;
|
|
}
|
|
|
|
ptep = pte_offset_kernel(&pmd, gpa);
|
|
pte = pte_val(READ_ONCE(*ptep));
|
|
if (!(pte & _PAGE_PRESENT)) {
|
|
gpa += PAGE_SIZE;
|
|
continue;
|
|
}
|
|
shift = PAGE_SHIFT;
|
|
leaf:
|
|
n = scnprintf(p->buf, sizeof(p->buf),
|
|
" %lx: %lx %d\n", gpa, pte, shift);
|
|
gpa += 1ul << shift;
|
|
copy:
|
|
p->chars_left = n;
|
|
if (n > len)
|
|
n = len;
|
|
r = copy_to_user(buf, p->buf, n);
|
|
n -= r;
|
|
p->chars_left -= n;
|
|
p->buf_index = n;
|
|
buf += n;
|
|
len -= n;
|
|
ret += n;
|
|
if (r) {
|
|
if (!ret)
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
}
|
|
p->gpa = gpa;
|
|
if (nested)
|
|
kvmhv_put_nested(nested);
|
|
|
|
out:
|
|
mutex_unlock(&p->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t debugfs_radix_write(struct file *file, const char __user *buf,
|
|
size_t len, loff_t *ppos)
|
|
{
|
|
return -EACCES;
|
|
}
|
|
|
|
static const struct file_operations debugfs_radix_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = debugfs_radix_open,
|
|
.release = debugfs_radix_release,
|
|
.read = debugfs_radix_read,
|
|
.write = debugfs_radix_write,
|
|
.llseek = generic_file_llseek,
|
|
};
|
|
|
|
void kvmhv_radix_debugfs_init(struct kvm *kvm)
|
|
{
|
|
debugfs_create_file("radix", 0400, kvm->arch.debugfs_dir, kvm,
|
|
&debugfs_radix_fops);
|
|
}
|
|
|
|
int kvmppc_radix_init(void)
|
|
{
|
|
unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
|
|
|
|
kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
|
|
if (!kvm_pte_cache)
|
|
return -ENOMEM;
|
|
|
|
size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
|
|
|
|
kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
|
|
if (!kvm_pmd_cache) {
|
|
kmem_cache_destroy(kvm_pte_cache);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_radix_exit(void)
|
|
{
|
|
kmem_cache_destroy(kvm_pte_cache);
|
|
kmem_cache_destroy(kvm_pmd_cache);
|
|
}
|