OpenCloudOS-Kernel/drivers/iio/accel/st_accel_core.c

1267 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* STMicroelectronics accelerometers driver
*
* Copyright 2012-2013 STMicroelectronics Inc.
*
* Denis Ciocca <denis.ciocca@st.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/irq.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/buffer.h>
#include <linux/iio/common/st_sensors.h>
#include "st_accel.h"
#define ST_ACCEL_NUMBER_DATA_CHANNELS 3
/* DEFAULT VALUE FOR SENSORS */
#define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28
#define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a
#define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c
/* FULLSCALE */
#define ST_ACCEL_FS_AVL_2G 2
#define ST_ACCEL_FS_AVL_4G 4
#define ST_ACCEL_FS_AVL_6G 6
#define ST_ACCEL_FS_AVL_8G 8
#define ST_ACCEL_FS_AVL_16G 16
#define ST_ACCEL_FS_AVL_100G 100
#define ST_ACCEL_FS_AVL_200G 200
#define ST_ACCEL_FS_AVL_400G 400
static const struct iio_chan_spec st_accel_8bit_channels[] = {
ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8,
ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1),
ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8,
ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1),
ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8,
ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1),
IIO_CHAN_SOFT_TIMESTAMP(3)
};
static const struct iio_chan_spec st_accel_12bit_channels[] = {
ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16,
ST_ACCEL_DEFAULT_OUT_X_L_ADDR),
ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16,
ST_ACCEL_DEFAULT_OUT_Y_L_ADDR),
ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16,
ST_ACCEL_DEFAULT_OUT_Z_L_ADDR),
IIO_CHAN_SOFT_TIMESTAMP(3)
};
static const struct iio_chan_spec st_accel_16bit_channels[] = {
ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16,
ST_ACCEL_DEFAULT_OUT_X_L_ADDR),
ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16,
ST_ACCEL_DEFAULT_OUT_Y_L_ADDR),
ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16,
ST_ACCEL_DEFAULT_OUT_Z_L_ADDR),
IIO_CHAN_SOFT_TIMESTAMP(3)
};
static const struct st_sensor_settings st_accel_sensors_settings[] = {
{
.wai = 0x33,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS3DH_ACCEL_DEV_NAME,
[1] = LSM303DLHC_ACCEL_DEV_NAME,
[2] = LSM330D_ACCEL_DEV_NAME,
[3] = LSM330DL_ACCEL_DEV_NAME,
[4] = LSM330DLC_ACCEL_DEV_NAME,
[5] = LSM303AGR_ACCEL_DEV_NAME,
[6] = LIS2DH12_ACCEL_DEV_NAME,
[7] = LIS3DE_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = 0x20,
.mask = 0xf0,
.odr_avl = {
{ .hz = 1, .value = 0x01, },
{ .hz = 10, .value = 0x02, },
{ .hz = 25, .value = 0x03, },
{ .hz = 50, .value = 0x04, },
{ .hz = 100, .value = 0x05, },
{ .hz = 200, .value = 0x06, },
{ .hz = 400, .value = 0x07, },
{ .hz = 1600, .value = 0x08, },
},
},
.pw = {
.addr = 0x20,
.mask = 0xf0,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
.addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(1000),
},
[1] = {
.num = ST_ACCEL_FS_AVL_4G,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(2000),
},
[2] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = 0x02,
.gain = IIO_G_TO_M_S_2(4000),
},
[3] = {
.num = ST_ACCEL_FS_AVL_16G,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(12000),
},
},
},
.bdu = {
.addr = 0x23,
.mask = 0x80,
},
.drdy_irq = {
.int1 = {
.addr = 0x22,
.mask = 0x10,
},
.addr_ihl = 0x25,
.mask_ihl = 0x02,
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x07,
},
},
.sim = {
.addr = 0x23,
.value = BIT(0),
},
.multi_read_bit = true,
.bootime = 2,
},
{
.wai = 0x32,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS331DLH_ACCEL_DEV_NAME,
[1] = LSM303DL_ACCEL_DEV_NAME,
[2] = LSM303DLH_ACCEL_DEV_NAME,
[3] = LSM303DLM_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = 0x20,
.mask = 0x18,
.odr_avl = {
{ .hz = 50, .value = 0x00, },
{ .hz = 100, .value = 0x01, },
{ .hz = 400, .value = 0x02, },
{ .hz = 1000, .value = 0x03, },
},
},
.pw = {
.addr = 0x20,
.mask = 0xe0,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
.addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(1000),
},
[1] = {
.num = ST_ACCEL_FS_AVL_4G,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(2000),
},
[2] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(3900),
},
},
},
.bdu = {
.addr = 0x23,
.mask = 0x80,
},
.drdy_irq = {
.int1 = {
.addr = 0x22,
.mask = 0x02,
.addr_od = 0x22,
.mask_od = 0x40,
},
.int2 = {
.addr = 0x22,
.mask = 0x10,
.addr_od = 0x22,
.mask_od = 0x40,
},
.addr_ihl = 0x22,
.mask_ihl = 0x80,
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x07,
},
},
.sim = {
.addr = 0x23,
.value = BIT(0),
},
.multi_read_bit = true,
.bootime = 2,
},
{
.wai = 0x40,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LSM330_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_16bit_channels,
.odr = {
.addr = 0x20,
.mask = 0xf0,
.odr_avl = {
{ .hz = 3, .value = 0x01, },
{ .hz = 6, .value = 0x02, },
{ .hz = 12, .value = 0x03, },
{ .hz = 25, .value = 0x04, },
{ .hz = 50, .value = 0x05, },
{ .hz = 100, .value = 0x06, },
{ .hz = 200, .value = 0x07, },
{ .hz = 400, .value = 0x08, },
{ .hz = 800, .value = 0x09, },
{ .hz = 1600, .value = 0x0a, },
},
},
.pw = {
.addr = 0x20,
.mask = 0xf0,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
.addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = 0x24,
.mask = 0x38,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(61),
},
[1] = {
.num = ST_ACCEL_FS_AVL_4G,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(122),
},
[2] = {
.num = ST_ACCEL_FS_AVL_6G,
.value = 0x02,
.gain = IIO_G_TO_M_S_2(183),
},
[3] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(244),
},
[4] = {
.num = ST_ACCEL_FS_AVL_16G,
.value = 0x04,
.gain = IIO_G_TO_M_S_2(732),
},
},
},
.bdu = {
.addr = 0x20,
.mask = 0x08,
},
.drdy_irq = {
.int1 = {
.addr = 0x23,
.mask = 0x80,
},
.addr_ihl = 0x23,
.mask_ihl = 0x40,
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x07,
},
.ig1 = {
.en_addr = 0x23,
.en_mask = 0x08,
},
},
.sim = {
.addr = 0x24,
.value = BIT(0),
},
.multi_read_bit = false,
.bootime = 2,
},
{
.wai = 0x3a,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS3LV02DL_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = 0x20,
.mask = 0x30, /* DF1 and DF0 */
.odr_avl = {
{ .hz = 40, .value = 0x00, },
{ .hz = 160, .value = 0x01, },
{ .hz = 640, .value = 0x02, },
{ .hz = 2560, .value = 0x03, },
},
},
.pw = {
.addr = 0x20,
.mask = 0xc0,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
.addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = 0x21,
.mask = 0x80,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(1000),
},
[1] = {
.num = ST_ACCEL_FS_AVL_6G,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(3000),
},
},
},
.bdu = {
.addr = 0x21,
.mask = 0x40,
},
/*
* Data Alignment Setting - needs to be set to get
* left-justified data like all other sensors.
*/
.das = {
.addr = 0x21,
.mask = 0x01,
},
.drdy_irq = {
.int1 = {
.addr = 0x21,
.mask = 0x04,
},
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x07,
},
},
.sim = {
.addr = 0x21,
.value = BIT(1),
},
.multi_read_bit = true,
.bootime = 2, /* guess */
},
{
.wai = 0x3b,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS331DL_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_8bit_channels,
.odr = {
.addr = 0x20,
.mask = 0x80,
.odr_avl = {
{ .hz = 100, .value = 0x00, },
{ .hz = 400, .value = 0x01, },
},
},
.pw = {
.addr = 0x20,
.mask = 0x40,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
.addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = 0x20,
.mask = 0x20,
/*
* TODO: check these resulting gain settings, these are
* not in the datsheet
*/
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(18000),
},
[1] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(72000),
},
},
},
.drdy_irq = {
.int1 = {
.addr = 0x22,
.mask = 0x04,
.addr_od = 0x22,
.mask_od = 0x40,
},
.int2 = {
.addr = 0x22,
.mask = 0x20,
.addr_od = 0x22,
.mask_od = 0x40,
},
.addr_ihl = 0x22,
.mask_ihl = 0x80,
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x07,
},
},
.sim = {
.addr = 0x21,
.value = BIT(7),
},
.multi_read_bit = false,
.bootime = 2, /* guess */
},
{
.wai = 0x32,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = H3LIS331DL_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = 0x20,
.mask = 0x18,
.odr_avl = {
{ .hz = 50, .value = 0x00, },
{ .hz = 100, .value = 0x01, },
{ .hz = 400, .value = 0x02, },
{ .hz = 1000, .value = 0x03, },
},
},
.pw = {
.addr = 0x20,
.mask = 0x20,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
.addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_100G,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(49000),
},
[1] = {
.num = ST_ACCEL_FS_AVL_200G,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(98000),
},
[2] = {
.num = ST_ACCEL_FS_AVL_400G,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(195000),
},
},
},
.bdu = {
.addr = 0x23,
.mask = 0x80,
},
.drdy_irq = {
.int1 = {
.addr = 0x22,
.mask = 0x02,
},
.int2 = {
.addr = 0x22,
.mask = 0x10,
},
.addr_ihl = 0x22,
.mask_ihl = 0x80,
},
.sim = {
.addr = 0x23,
.value = BIT(0),
},
.multi_read_bit = true,
.bootime = 2,
},
{
/* No WAI register present */
.sensors_supported = {
[0] = LIS3L02DQ_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = 0x20,
.mask = 0x30,
.odr_avl = {
{ .hz = 280, .value = 0x00, },
{ .hz = 560, .value = 0x01, },
{ .hz = 1120, .value = 0x02, },
{ .hz = 4480, .value = 0x03, },
},
},
.pw = {
.addr = 0x20,
.mask = 0xc0,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
.addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.gain = IIO_G_TO_M_S_2(488),
},
},
},
/*
* The part has a BDU bit but if set the data is never
* updated so don't set it.
*/
.bdu = {
},
.drdy_irq = {
.int1 = {
.addr = 0x21,
.mask = 0x04,
},
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x07,
},
},
.sim = {
.addr = 0x21,
.value = BIT(1),
},
.multi_read_bit = false,
.bootime = 2,
},
{
.wai = 0x33,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LNG2DM_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_8bit_channels,
.odr = {
.addr = 0x20,
.mask = 0xf0,
.odr_avl = {
{ .hz = 1, .value = 0x01, },
{ .hz = 10, .value = 0x02, },
{ .hz = 25, .value = 0x03, },
{ .hz = 50, .value = 0x04, },
{ .hz = 100, .value = 0x05, },
{ .hz = 200, .value = 0x06, },
{ .hz = 400, .value = 0x07, },
{ .hz = 1600, .value = 0x08, },
},
},
.pw = {
.addr = 0x20,
.mask = 0xf0,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
.addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(15600),
},
[1] = {
.num = ST_ACCEL_FS_AVL_4G,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(31200),
},
[2] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = 0x02,
.gain = IIO_G_TO_M_S_2(62500),
},
[3] = {
.num = ST_ACCEL_FS_AVL_16G,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(187500),
},
},
},
.drdy_irq = {
.int1 = {
.addr = 0x22,
.mask = 0x10,
},
.addr_ihl = 0x25,
.mask_ihl = 0x02,
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x07,
},
},
.sim = {
.addr = 0x23,
.value = BIT(0),
},
.multi_read_bit = true,
.bootime = 2,
},
{
.wai = 0x44,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS2DW12_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_12bit_channels,
.odr = {
.addr = 0x20,
.mask = 0xf0,
.odr_avl = {
{ .hz = 1, .value = 0x01, },
{ .hz = 12, .value = 0x02, },
{ .hz = 25, .value = 0x03, },
{ .hz = 50, .value = 0x04, },
{ .hz = 100, .value = 0x05, },
{ .hz = 200, .value = 0x06, },
},
},
.pw = {
.addr = 0x20,
.mask = 0xf0,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
.addr = 0x25,
.mask = 0x30,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(976),
},
[1] = {
.num = ST_ACCEL_FS_AVL_4G,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(1952),
},
[2] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = 0x02,
.gain = IIO_G_TO_M_S_2(3904),
},
[3] = {
.num = ST_ACCEL_FS_AVL_16G,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(7808),
},
},
},
.bdu = {
.addr = 0x21,
.mask = 0x08,
},
.drdy_irq = {
.int1 = {
.addr = 0x23,
.mask = 0x01,
.addr_od = 0x22,
.mask_od = 0x20,
},
.int2 = {
.addr = 0x24,
.mask = 0x01,
.addr_od = 0x22,
.mask_od = 0x20,
},
.addr_ihl = 0x22,
.mask_ihl = 0x08,
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x01,
},
},
.sim = {
.addr = 0x21,
.value = BIT(0),
},
.multi_read_bit = false,
.bootime = 2,
},
{
.wai = 0x11,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS3DHH_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_16bit_channels,
.odr = {
/* just ODR = 1100Hz available */
.odr_avl = {
{ .hz = 1100, .value = 0x00, },
},
},
.pw = {
.addr = 0x20,
.mask = 0x80,
.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.fs = {
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.gain = IIO_G_TO_M_S_2(76),
},
},
},
.bdu = {
.addr = 0x20,
.mask = 0x01,
},
.drdy_irq = {
.int1 = {
.addr = 0x21,
.mask = 0x80,
.addr_od = 0x23,
.mask_od = 0x04,
},
.int2 = {
.addr = 0x22,
.mask = 0x80,
.addr_od = 0x23,
.mask_od = 0x08,
},
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x07,
},
},
.multi_read_bit = false,
.bootime = 2,
},
{
.wai = 0x33,
.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
.sensors_supported = {
[0] = LIS2DE12_ACCEL_DEV_NAME,
},
.ch = (struct iio_chan_spec *)st_accel_8bit_channels,
.odr = {
.addr = 0x20,
.mask = 0xf0,
.odr_avl = {
{ .hz = 1, .value = 0x01, },
{ .hz = 10, .value = 0x02, },
{ .hz = 25, .value = 0x03, },
{ .hz = 50, .value = 0x04, },
{ .hz = 100, .value = 0x05, },
{ .hz = 200, .value = 0x06, },
{ .hz = 400, .value = 0x07, },
{ .hz = 1620, .value = 0x08, },
{ .hz = 5376, .value = 0x09, },
},
},
.pw = {
.addr = 0x20,
.mask = 0xf0,
.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
},
.enable_axis = {
.addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
.mask = ST_SENSORS_DEFAULT_AXIS_MASK,
},
.fs = {
.addr = 0x23,
.mask = 0x30,
.fs_avl = {
[0] = {
.num = ST_ACCEL_FS_AVL_2G,
.value = 0x00,
.gain = IIO_G_TO_M_S_2(15600),
},
[1] = {
.num = ST_ACCEL_FS_AVL_4G,
.value = 0x01,
.gain = IIO_G_TO_M_S_2(31200),
},
[2] = {
.num = ST_ACCEL_FS_AVL_8G,
.value = 0x02,
.gain = IIO_G_TO_M_S_2(62500),
},
[3] = {
.num = ST_ACCEL_FS_AVL_16G,
.value = 0x03,
.gain = IIO_G_TO_M_S_2(187500),
},
},
},
.drdy_irq = {
.int1 = {
.addr = 0x22,
.mask = 0x10,
},
.addr_ihl = 0x25,
.mask_ihl = 0x02,
.stat_drdy = {
.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
.mask = 0x07,
},
},
.sim = {
.addr = 0x23,
.value = BIT(0),
},
.multi_read_bit = true,
.bootime = 2,
},
};
static int st_accel_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *ch, int *val,
int *val2, long mask)
{
int err;
struct st_sensor_data *adata = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
err = st_sensors_read_info_raw(indio_dev, ch, val);
if (err < 0)
goto read_error;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = adata->current_fullscale->gain / 1000000;
*val2 = adata->current_fullscale->gain % 1000000;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = adata->odr;
return IIO_VAL_INT;
default:
return -EINVAL;
}
read_error:
return err;
}
static int st_accel_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val, int val2, long mask)
{
int err;
switch (mask) {
case IIO_CHAN_INFO_SCALE: {
int gain;
gain = val * 1000000 + val2;
err = st_sensors_set_fullscale_by_gain(indio_dev, gain);
break;
}
case IIO_CHAN_INFO_SAMP_FREQ:
if (val2)
return -EINVAL;
mutex_lock(&indio_dev->mlock);
err = st_sensors_set_odr(indio_dev, val);
mutex_unlock(&indio_dev->mlock);
return err;
default:
return -EINVAL;
}
return err;
}
static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available);
static struct attribute *st_accel_attributes[] = {
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
&iio_dev_attr_in_accel_scale_available.dev_attr.attr,
NULL,
};
static const struct attribute_group st_accel_attribute_group = {
.attrs = st_accel_attributes,
};
static const struct iio_info accel_info = {
.attrs = &st_accel_attribute_group,
.read_raw = &st_accel_read_raw,
.write_raw = &st_accel_write_raw,
.debugfs_reg_access = &st_sensors_debugfs_reg_access,
};
#ifdef CONFIG_IIO_TRIGGER
static const struct iio_trigger_ops st_accel_trigger_ops = {
.set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE,
.validate_device = st_sensors_validate_device,
};
#define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops)
#else
#define ST_ACCEL_TRIGGER_OPS NULL
#endif
#ifdef CONFIG_ACPI
static const struct iio_mount_matrix *
get_mount_matrix(const struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct st_sensor_data *adata = iio_priv(indio_dev);
return adata->mount_matrix;
}
static const struct iio_chan_spec_ext_info mount_matrix_ext_info[] = {
IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, get_mount_matrix),
{ },
};
/* Read ST-specific _ONT orientation data from ACPI and generate an
* appropriate mount matrix.
*/
static int apply_acpi_orientation(struct iio_dev *indio_dev,
struct iio_chan_spec *channels)
{
struct st_sensor_data *adata = iio_priv(indio_dev);
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
struct acpi_device *adev;
union acpi_object *ont;
union acpi_object *elements;
acpi_status status;
int ret = -EINVAL;
unsigned int val;
int i, j;
int final_ont[3][3] = { { 0 }, };
/* For some reason, ST's _ONT translation does not apply directly
* to the data read from the sensor. Another translation must be
* performed first, as described by the matrix below. Perhaps
* ST required this specific translation for the first product
* where the device was mounted?
*/
const int default_ont[3][3] = {
{ 0, 1, 0 },
{ -1, 0, 0 },
{ 0, 0, -1 },
};
adev = ACPI_COMPANION(adata->dev);
if (!adev)
return 0;
/* Read _ONT data, which should be a package of 6 integers. */
status = acpi_evaluate_object(adev->handle, "_ONT", NULL, &buffer);
if (status == AE_NOT_FOUND) {
return 0;
} else if (ACPI_FAILURE(status)) {
dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n",
status);
return status;
}
ont = buffer.pointer;
if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6)
goto out;
/* The first 3 integers provide axis order information.
* e.g. 0 1 2 would indicate normal X,Y,Z ordering.
* e.g. 1 0 2 indicates that data arrives in order Y,X,Z.
*/
elements = ont->package.elements;
for (i = 0; i < 3; i++) {
if (elements[i].type != ACPI_TYPE_INTEGER)
goto out;
val = elements[i].integer.value;
if (val > 2)
goto out;
/* Avoiding full matrix multiplication, we simply reorder the
* columns in the default_ont matrix according to the
* ordering provided by _ONT.
*/
final_ont[0][i] = default_ont[0][val];
final_ont[1][i] = default_ont[1][val];
final_ont[2][i] = default_ont[2][val];
}
/* The final 3 integers provide sign flip information.
* 0 means no change, 1 means flip.
* e.g. 0 0 1 means that Z data should be sign-flipped.
* This is applied after the axis reordering from above.
*/
elements += 3;
for (i = 0; i < 3; i++) {
if (elements[i].type != ACPI_TYPE_INTEGER)
goto out;
val = elements[i].integer.value;
if (val != 0 && val != 1)
goto out;
if (!val)
continue;
/* Flip the values in the indicated column */
final_ont[0][i] *= -1;
final_ont[1][i] *= -1;
final_ont[2][i] *= -1;
}
/* Convert our integer matrix to a string-based iio_mount_matrix */
adata->mount_matrix = devm_kmalloc(&indio_dev->dev,
sizeof(*adata->mount_matrix),
GFP_KERNEL);
if (!adata->mount_matrix) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
int matrix_val = final_ont[i][j];
char *str_value;
switch (matrix_val) {
case -1:
str_value = "-1";
break;
case 0:
str_value = "0";
break;
case 1:
str_value = "1";
break;
default:
goto out;
}
adata->mount_matrix->rotation[i * 3 + j] = str_value;
}
}
/* Expose the mount matrix via ext_info */
for (i = 0; i < indio_dev->num_channels; i++)
channels[i].ext_info = mount_matrix_ext_info;
ret = 0;
dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n");
out:
kfree(buffer.pointer);
return ret;
}
#else /* !CONFIG_ACPI */
static int apply_acpi_orientation(struct iio_dev *indio_dev,
struct iio_chan_spec *channels)
{
return 0;
}
#endif
/*
* st_accel_get_settings() - get sensor settings from device name
* @name: device name buffer reference.
*
* Return: valid reference on success, NULL otherwise.
*/
const struct st_sensor_settings *st_accel_get_settings(const char *name)
{
int index = st_sensors_get_settings_index(name,
st_accel_sensors_settings,
ARRAY_SIZE(st_accel_sensors_settings));
if (index < 0)
return NULL;
return &st_accel_sensors_settings[index];
}
EXPORT_SYMBOL(st_accel_get_settings);
int st_accel_common_probe(struct iio_dev *indio_dev)
{
struct st_sensor_data *adata = iio_priv(indio_dev);
struct st_sensors_platform_data *pdata =
(struct st_sensors_platform_data *)adata->dev->platform_data;
struct iio_chan_spec *channels;
size_t channels_size;
int err;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &accel_info;
err = st_sensors_power_enable(indio_dev);
if (err)
return err;
err = st_sensors_verify_id(indio_dev);
if (err < 0)
goto st_accel_power_off;
adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS;
indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS;
channels_size = indio_dev->num_channels * sizeof(struct iio_chan_spec);
channels = devm_kmemdup(&indio_dev->dev,
adata->sensor_settings->ch,
channels_size, GFP_KERNEL);
if (!channels) {
err = -ENOMEM;
goto st_accel_power_off;
}
if (apply_acpi_orientation(indio_dev, channels))
dev_warn(&indio_dev->dev,
"failed to apply ACPI orientation data: %d\n", err);
indio_dev->channels = channels;
adata->current_fullscale = (struct st_sensor_fullscale_avl *)
&adata->sensor_settings->fs.fs_avl[0];
adata->odr = adata->sensor_settings->odr.odr_avl[0].hz;
if (!pdata)
pdata = (struct st_sensors_platform_data *)&default_accel_pdata;
err = st_sensors_init_sensor(indio_dev, pdata);
if (err < 0)
goto st_accel_power_off;
err = st_accel_allocate_ring(indio_dev);
if (err < 0)
goto st_accel_power_off;
if (adata->irq > 0) {
err = st_sensors_allocate_trigger(indio_dev,
ST_ACCEL_TRIGGER_OPS);
if (err < 0)
goto st_accel_probe_trigger_error;
}
err = iio_device_register(indio_dev);
if (err)
goto st_accel_device_register_error;
dev_info(&indio_dev->dev, "registered accelerometer %s\n",
indio_dev->name);
return 0;
st_accel_device_register_error:
if (adata->irq > 0)
st_sensors_deallocate_trigger(indio_dev);
st_accel_probe_trigger_error:
st_accel_deallocate_ring(indio_dev);
st_accel_power_off:
st_sensors_power_disable(indio_dev);
return err;
}
EXPORT_SYMBOL(st_accel_common_probe);
void st_accel_common_remove(struct iio_dev *indio_dev)
{
struct st_sensor_data *adata = iio_priv(indio_dev);
st_sensors_power_disable(indio_dev);
iio_device_unregister(indio_dev);
if (adata->irq > 0)
st_sensors_deallocate_trigger(indio_dev);
st_accel_deallocate_ring(indio_dev);
}
EXPORT_SYMBOL(st_accel_common_remove);
MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
MODULE_DESCRIPTION("STMicroelectronics accelerometers driver");
MODULE_LICENSE("GPL v2");