OpenCloudOS-Kernel/arch/powerpc/include/asm/eeh.h

386 lines
12 KiB
C

/*
* Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation.
* Copyright 2001-2012 IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef _POWERPC_EEH_H
#define _POWERPC_EEH_H
#ifdef __KERNEL__
#include <linux/init.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/time.h>
struct pci_dev;
struct pci_bus;
struct device_node;
#ifdef CONFIG_EEH
/*
* The struct is used to trace PE related EEH functionality.
* In theory, there will have one instance of the struct to
* be created against particular PE. In nature, PEs corelate
* to each other. the struct has to reflect that hierarchy in
* order to easily pick up those affected PEs when one particular
* PE has EEH errors.
*
* Also, one particular PE might be composed of PCI device, PCI
* bus and its subordinate components. The struct also need ship
* the information. Further more, one particular PE is only meaingful
* in the corresponding PHB. Therefore, the root PEs should be created
* against existing PHBs in on-to-one fashion.
*/
#define EEH_PE_INVALID (1 << 0) /* Invalid */
#define EEH_PE_PHB (1 << 1) /* PHB PE */
#define EEH_PE_DEVICE (1 << 2) /* Device PE */
#define EEH_PE_BUS (1 << 3) /* Bus PE */
#define EEH_PE_ISOLATED (1 << 0) /* Isolated PE */
#define EEH_PE_RECOVERING (1 << 1) /* Recovering PE */
#define EEH_PE_PHB_DEAD (1 << 2) /* Dead PHB */
#define EEH_PE_KEEP (1 << 8) /* Keep PE on hotplug */
struct eeh_pe {
int type; /* PE type: PHB/Bus/Device */
int state; /* PE EEH dependent mode */
int config_addr; /* Traditional PCI address */
int addr; /* PE configuration address */
struct pci_controller *phb; /* Associated PHB */
struct pci_bus *bus; /* Top PCI bus for bus PE */
int check_count; /* Times of ignored error */
int freeze_count; /* Times of froze up */
struct timeval tstamp; /* Time on first-time freeze */
int false_positives; /* Times of reported #ff's */
struct eeh_pe *parent; /* Parent PE */
struct list_head child_list; /* Link PE to the child list */
struct list_head edevs; /* Link list of EEH devices */
struct list_head child; /* Child PEs */
};
#define eeh_pe_for_each_dev(pe, edev, tmp) \
list_for_each_entry_safe(edev, tmp, &pe->edevs, list)
/*
* The struct is used to trace EEH state for the associated
* PCI device node or PCI device. In future, it might
* represent PE as well so that the EEH device to form
* another tree except the currently existing tree of PCI
* buses and PCI devices
*/
#define EEH_DEV_BRIDGE (1 << 0) /* PCI bridge */
#define EEH_DEV_ROOT_PORT (1 << 1) /* PCIe root port */
#define EEH_DEV_DS_PORT (1 << 2) /* Downstream port */
#define EEH_DEV_IRQ_DISABLED (1 << 3) /* Interrupt disabled */
#define EEH_DEV_DISCONNECTED (1 << 4) /* Removing from PE */
#define EEH_DEV_SYSFS (1 << 8) /* Sysfs created */
struct eeh_dev {
int mode; /* EEH mode */
int class_code; /* Class code of the device */
int config_addr; /* Config address */
int pe_config_addr; /* PE config address */
u32 config_space[16]; /* Saved PCI config space */
u8 pcie_cap; /* Saved PCIe capability */
struct eeh_pe *pe; /* Associated PE */
struct list_head list; /* Form link list in the PE */
struct pci_controller *phb; /* Associated PHB */
struct device_node *dn; /* Associated device node */
struct pci_dev *pdev; /* Associated PCI device */
struct pci_bus *bus; /* PCI bus for partial hotplug */
};
static inline struct device_node *eeh_dev_to_of_node(struct eeh_dev *edev)
{
return edev ? edev->dn : NULL;
}
static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
{
return edev ? edev->pdev : NULL;
}
/*
* The struct is used to trace the registered EEH operation
* callback functions. Actually, those operation callback
* functions are heavily platform dependent. That means the
* platform should register its own EEH operation callback
* functions before any EEH further operations.
*/
#define EEH_OPT_DISABLE 0 /* EEH disable */
#define EEH_OPT_ENABLE 1 /* EEH enable */
#define EEH_OPT_THAW_MMIO 2 /* MMIO enable */
#define EEH_OPT_THAW_DMA 3 /* DMA enable */
#define EEH_STATE_UNAVAILABLE (1 << 0) /* State unavailable */
#define EEH_STATE_NOT_SUPPORT (1 << 1) /* EEH not supported */
#define EEH_STATE_RESET_ACTIVE (1 << 2) /* Active reset */
#define EEH_STATE_MMIO_ACTIVE (1 << 3) /* Active MMIO */
#define EEH_STATE_DMA_ACTIVE (1 << 4) /* Active DMA */
#define EEH_STATE_MMIO_ENABLED (1 << 5) /* MMIO enabled */
#define EEH_STATE_DMA_ENABLED (1 << 6) /* DMA enabled */
#define EEH_RESET_DEACTIVATE 0 /* Deactivate the PE reset */
#define EEH_RESET_HOT 1 /* Hot reset */
#define EEH_RESET_FUNDAMENTAL 3 /* Fundamental reset */
#define EEH_LOG_TEMP 1 /* EEH temporary error log */
#define EEH_LOG_PERM 2 /* EEH permanent error log */
struct eeh_ops {
char *name;
int (*init)(void);
int (*post_init)(void);
void* (*of_probe)(struct device_node *dn, void *flag);
int (*dev_probe)(struct pci_dev *dev, void *flag);
int (*set_option)(struct eeh_pe *pe, int option);
int (*get_pe_addr)(struct eeh_pe *pe);
int (*get_state)(struct eeh_pe *pe, int *state);
int (*reset)(struct eeh_pe *pe, int option);
int (*wait_state)(struct eeh_pe *pe, int max_wait);
int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
int (*configure_bridge)(struct eeh_pe *pe);
int (*read_config)(struct device_node *dn, int where, int size, u32 *val);
int (*write_config)(struct device_node *dn, int where, int size, u32 val);
int (*next_error)(struct eeh_pe **pe);
};
extern struct eeh_ops *eeh_ops;
extern int eeh_subsystem_enabled;
extern raw_spinlock_t confirm_error_lock;
extern int eeh_probe_mode;
#define EEH_PROBE_MODE_DEV (1<<0) /* From PCI device */
#define EEH_PROBE_MODE_DEVTREE (1<<1) /* From device tree */
static inline void eeh_probe_mode_set(int flag)
{
eeh_probe_mode = flag;
}
static inline int eeh_probe_mode_devtree(void)
{
return (eeh_probe_mode == EEH_PROBE_MODE_DEVTREE);
}
static inline int eeh_probe_mode_dev(void)
{
return (eeh_probe_mode == EEH_PROBE_MODE_DEV);
}
static inline void eeh_serialize_lock(unsigned long *flags)
{
raw_spin_lock_irqsave(&confirm_error_lock, *flags);
}
static inline void eeh_serialize_unlock(unsigned long flags)
{
raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
}
/*
* Max number of EEH freezes allowed before we consider the device
* to be permanently disabled.
*/
#define EEH_MAX_ALLOWED_FREEZES 5
typedef void *(*eeh_traverse_func)(void *data, void *flag);
int eeh_phb_pe_create(struct pci_controller *phb);
struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
struct eeh_pe *eeh_pe_get(struct eeh_dev *edev);
int eeh_add_to_parent_pe(struct eeh_dev *edev);
int eeh_rmv_from_parent_pe(struct eeh_dev *edev);
void eeh_pe_update_time_stamp(struct eeh_pe *pe);
void *eeh_pe_traverse(struct eeh_pe *root,
eeh_traverse_func fn, void *flag);
void *eeh_pe_dev_traverse(struct eeh_pe *root,
eeh_traverse_func fn, void *flag);
void eeh_pe_restore_bars(struct eeh_pe *pe);
struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
void *eeh_dev_init(struct device_node *dn, void *data);
void eeh_dev_phb_init_dynamic(struct pci_controller *phb);
int eeh_init(void);
int __init eeh_ops_register(struct eeh_ops *ops);
int __exit eeh_ops_unregister(const char *name);
unsigned long eeh_check_failure(const volatile void __iomem *token,
unsigned long val);
int eeh_dev_check_failure(struct eeh_dev *edev);
void eeh_addr_cache_build(void);
void eeh_add_device_early(struct device_node *);
void eeh_add_device_tree_early(struct device_node *);
void eeh_add_device_late(struct pci_dev *);
void eeh_add_device_tree_late(struct pci_bus *);
void eeh_add_sysfs_files(struct pci_bus *);
void eeh_remove_device(struct pci_dev *);
/**
* EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
*
* If this macro yields TRUE, the caller relays to eeh_check_failure()
* which does further tests out of line.
*/
#define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0 && eeh_subsystem_enabled)
/*
* Reads from a device which has been isolated by EEH will return
* all 1s. This macro gives an all-1s value of the given size (in
* bytes: 1, 2, or 4) for comparing with the result of a read.
*/
#define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8))
#else /* !CONFIG_EEH */
static inline int eeh_init(void)
{
return 0;
}
static inline void *eeh_dev_init(struct device_node *dn, void *data)
{
return NULL;
}
static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
static inline unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
{
return val;
}
#define eeh_dev_check_failure(x) (0)
static inline void eeh_addr_cache_build(void) { }
static inline void eeh_add_device_early(struct device_node *dn) { }
static inline void eeh_add_device_tree_early(struct device_node *dn) { }
static inline void eeh_add_device_late(struct pci_dev *dev) { }
static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
static inline void eeh_add_sysfs_files(struct pci_bus *bus) { }
static inline void eeh_remove_device(struct pci_dev *dev) { }
#define EEH_POSSIBLE_ERROR(val, type) (0)
#define EEH_IO_ERROR_VALUE(size) (-1UL)
#endif /* CONFIG_EEH */
#ifdef CONFIG_PPC64
/*
* MMIO read/write operations with EEH support.
*/
static inline u8 eeh_readb(const volatile void __iomem *addr)
{
u8 val = in_8(addr);
if (EEH_POSSIBLE_ERROR(val, u8))
return eeh_check_failure(addr, val);
return val;
}
static inline u16 eeh_readw(const volatile void __iomem *addr)
{
u16 val = in_le16(addr);
if (EEH_POSSIBLE_ERROR(val, u16))
return eeh_check_failure(addr, val);
return val;
}
static inline u32 eeh_readl(const volatile void __iomem *addr)
{
u32 val = in_le32(addr);
if (EEH_POSSIBLE_ERROR(val, u32))
return eeh_check_failure(addr, val);
return val;
}
static inline u64 eeh_readq(const volatile void __iomem *addr)
{
u64 val = in_le64(addr);
if (EEH_POSSIBLE_ERROR(val, u64))
return eeh_check_failure(addr, val);
return val;
}
static inline u16 eeh_readw_be(const volatile void __iomem *addr)
{
u16 val = in_be16(addr);
if (EEH_POSSIBLE_ERROR(val, u16))
return eeh_check_failure(addr, val);
return val;
}
static inline u32 eeh_readl_be(const volatile void __iomem *addr)
{
u32 val = in_be32(addr);
if (EEH_POSSIBLE_ERROR(val, u32))
return eeh_check_failure(addr, val);
return val;
}
static inline u64 eeh_readq_be(const volatile void __iomem *addr)
{
u64 val = in_be64(addr);
if (EEH_POSSIBLE_ERROR(val, u64))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_memcpy_fromio(void *dest, const
volatile void __iomem *src,
unsigned long n)
{
_memcpy_fromio(dest, src, n);
/* Look for ffff's here at dest[n]. Assume that at least 4 bytes
* were copied. Check all four bytes.
*/
if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
eeh_check_failure(src, *((u32 *)(dest + n - 4)));
}
/* in-string eeh macros */
static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
int ns)
{
_insb(addr, buf, ns);
if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
eeh_check_failure(addr, *(u8*)buf);
}
static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
int ns)
{
_insw(addr, buf, ns);
if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
eeh_check_failure(addr, *(u16*)buf);
}
static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
int nl)
{
_insl(addr, buf, nl);
if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
eeh_check_failure(addr, *(u32*)buf);
}
#endif /* CONFIG_PPC64 */
#endif /* __KERNEL__ */
#endif /* _POWERPC_EEH_H */