OpenCloudOS-Kernel/drivers/gpu/drm/i915/i915_gem.c

4441 lines
110 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/shmem_fs.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/pci.h>
#include <linux/dma-buf.h>
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
unsigned alignment,
bool map_and_fenceable,
bool nonblocking);
static int i915_gem_phys_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file);
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable);
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
struct shrink_control *sc);
static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
if (obj->tiling_mode)
i915_gem_release_mmap(obj);
/* As we do not have an associated fence register, we will force
* a tiling change if we ever need to acquire one.
*/
obj->fence_dirty = false;
obj->fence_reg = I915_FENCE_REG_NONE;
}
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
size_t size)
{
dev_priv->mm.object_count++;
dev_priv->mm.object_memory += size;
}
static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
size_t size)
{
dev_priv->mm.object_count--;
dev_priv->mm.object_memory -= size;
}
static int
i915_gem_wait_for_error(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct completion *x = &dev_priv->error_completion;
unsigned long flags;
int ret;
if (!atomic_read(&dev_priv->mm.wedged))
return 0;
/*
* Only wait 10 seconds for the gpu reset to complete to avoid hanging
* userspace. If it takes that long something really bad is going on and
* we should simply try to bail out and fail as gracefully as possible.
*/
ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
if (ret == 0) {
DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
return -EIO;
} else if (ret < 0) {
return ret;
}
if (atomic_read(&dev_priv->mm.wedged)) {
/* GPU is hung, bump the completion count to account for
* the token we just consumed so that we never hit zero and
* end up waiting upon a subsequent completion event that
* will never happen.
*/
spin_lock_irqsave(&x->wait.lock, flags);
x->done++;
spin_unlock_irqrestore(&x->wait.lock, flags);
}
return 0;
}
int i915_mutex_lock_interruptible(struct drm_device *dev)
{
int ret;
ret = i915_gem_wait_for_error(dev);
if (ret)
return ret;
ret = mutex_lock_interruptible(&dev->struct_mutex);
if (ret)
return ret;
WARN_ON(i915_verify_lists(dev));
return 0;
}
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
{
return obj->gtt_space && !obj->active;
}
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_init *args = data;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return -ENODEV;
if (args->gtt_start >= args->gtt_end ||
(args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
return -EINVAL;
/* GEM with user mode setting was never supported on ilk and later. */
if (INTEL_INFO(dev)->gen >= 5)
return -ENODEV;
mutex_lock(&dev->struct_mutex);
i915_gem_init_global_gtt(dev, args->gtt_start,
args->gtt_end, args->gtt_end);
mutex_unlock(&dev->struct_mutex);
return 0;
}
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_get_aperture *args = data;
struct drm_i915_gem_object *obj;
size_t pinned;
pinned = 0;
mutex_lock(&dev->struct_mutex);
list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
if (obj->pin_count)
pinned += obj->gtt_space->size;
mutex_unlock(&dev->struct_mutex);
args->aper_size = dev_priv->mm.gtt_total;
args->aper_available_size = args->aper_size - pinned;
return 0;
}
static int
i915_gem_create(struct drm_file *file,
struct drm_device *dev,
uint64_t size,
uint32_t *handle_p)
{
struct drm_i915_gem_object *obj;
int ret;
u32 handle;
size = roundup(size, PAGE_SIZE);
if (size == 0)
return -EINVAL;
/* Allocate the new object */
obj = i915_gem_alloc_object(dev, size);
if (obj == NULL)
return -ENOMEM;
ret = drm_gem_handle_create(file, &obj->base, &handle);
if (ret) {
drm_gem_object_release(&obj->base);
i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
kfree(obj);
return ret;
}
/* drop reference from allocate - handle holds it now */
drm_gem_object_unreference(&obj->base);
trace_i915_gem_object_create(obj);
*handle_p = handle;
return 0;
}
int
i915_gem_dumb_create(struct drm_file *file,
struct drm_device *dev,
struct drm_mode_create_dumb *args)
{
/* have to work out size/pitch and return them */
args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
args->size = args->pitch * args->height;
return i915_gem_create(file, dev,
args->size, &args->handle);
}
int i915_gem_dumb_destroy(struct drm_file *file,
struct drm_device *dev,
uint32_t handle)
{
return drm_gem_handle_delete(file, handle);
}
/**
* Creates a new mm object and returns a handle to it.
*/
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_create *args = data;
return i915_gem_create(file, dev,
args->size, &args->handle);
}
static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
obj->tiling_mode != I915_TILING_NONE;
}
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
const char *gpu_vaddr, int gpu_offset,
int length)
{
int ret, cpu_offset = 0;
while (length > 0) {
int cacheline_end = ALIGN(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
ret = __copy_to_user(cpu_vaddr + cpu_offset,
gpu_vaddr + swizzled_gpu_offset,
this_length);
if (ret)
return ret + length;
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
return 0;
}
static inline int
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
const char __user *cpu_vaddr,
int length)
{
int ret, cpu_offset = 0;
while (length > 0) {
int cacheline_end = ALIGN(gpu_offset + 1, 64);
int this_length = min(cacheline_end - gpu_offset, length);
int swizzled_gpu_offset = gpu_offset ^ 64;
ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
cpu_vaddr + cpu_offset,
this_length);
if (ret)
return ret + length;
cpu_offset += this_length;
gpu_offset += this_length;
length -= this_length;
}
return 0;
}
/* Per-page copy function for the shmem pread fastpath.
* Flushes invalid cachelines before reading the target if
* needs_clflush is set. */
static int
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling, bool needs_clflush)
{
char *vaddr;
int ret;
if (unlikely(page_do_bit17_swizzling))
return -EINVAL;
vaddr = kmap_atomic(page);
if (needs_clflush)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
ret = __copy_to_user_inatomic(user_data,
vaddr + shmem_page_offset,
page_length);
kunmap_atomic(vaddr);
return ret ? -EFAULT : 0;
}
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
bool swizzled)
{
if (unlikely(swizzled)) {
unsigned long start = (unsigned long) addr;
unsigned long end = (unsigned long) addr + length;
/* For swizzling simply ensure that we always flush both
* channels. Lame, but simple and it works. Swizzled
* pwrite/pread is far from a hotpath - current userspace
* doesn't use it at all. */
start = round_down(start, 128);
end = round_up(end, 128);
drm_clflush_virt_range((void *)start, end - start);
} else {
drm_clflush_virt_range(addr, length);
}
}
/* Only difference to the fast-path function is that this can handle bit17
* and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling, bool needs_clflush)
{
char *vaddr;
int ret;
vaddr = kmap(page);
if (needs_clflush)
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
if (page_do_bit17_swizzling)
ret = __copy_to_user_swizzled(user_data,
vaddr, shmem_page_offset,
page_length);
else
ret = __copy_to_user(user_data,
vaddr + shmem_page_offset,
page_length);
kunmap(page);
return ret ? - EFAULT : 0;
}
static int
i915_gem_shmem_pread(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pread *args,
struct drm_file *file)
{
char __user *user_data;
ssize_t remain;
loff_t offset;
int shmem_page_offset, page_length, ret = 0;
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
int hit_slowpath = 0;
int prefaulted = 0;
int needs_clflush = 0;
struct scatterlist *sg;
int i;
user_data = (char __user *) (uintptr_t) args->data_ptr;
remain = args->size;
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
/* If we're not in the cpu read domain, set ourself into the gtt
* read domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will dirty the data
* anyway again before the next pread happens. */
if (obj->cache_level == I915_CACHE_NONE)
needs_clflush = 1;
if (obj->gtt_space) {
ret = i915_gem_object_set_to_gtt_domain(obj, false);
if (ret)
return ret;
}
}
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
offset = args->offset;
for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
struct page *page;
if (i < offset >> PAGE_SHIFT)
continue;
if (remain <= 0)
break;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
page = sg_page(sg);
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
(page_to_phys(page) & (1 << 17)) != 0;
ret = shmem_pread_fast(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
needs_clflush);
if (ret == 0)
goto next_page;
hit_slowpath = 1;
mutex_unlock(&dev->struct_mutex);
if (!prefaulted) {
ret = fault_in_multipages_writeable(user_data, remain);
/* Userspace is tricking us, but we've already clobbered
* its pages with the prefault and promised to write the
* data up to the first fault. Hence ignore any errors
* and just continue. */
(void)ret;
prefaulted = 1;
}
ret = shmem_pread_slow(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
needs_clflush);
mutex_lock(&dev->struct_mutex);
next_page:
mark_page_accessed(page);
if (ret)
goto out;
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out:
i915_gem_object_unpin_pages(obj);
if (hit_slowpath) {
/* Fixup: Kill any reinstated backing storage pages */
if (obj->madv == __I915_MADV_PURGED)
i915_gem_object_truncate(obj);
}
return ret;
}
/**
* Reads data from the object referenced by handle.
*
* On error, the contents of *data are undefined.
*/
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pread *args = data;
struct drm_i915_gem_object *obj;
int ret = 0;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_WRITE,
(char __user *)(uintptr_t)args->data_ptr,
args->size))
return -EFAULT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Bounds check source. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto out;
}
/* prime objects have no backing filp to GEM pread/pwrite
* pages from.
*/
if (!obj->base.filp) {
ret = -EINVAL;
goto out;
}
trace_i915_gem_object_pread(obj, args->offset, args->size);
ret = i915_gem_shmem_pread(dev, obj, args, file);
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/* This is the fast write path which cannot handle
* page faults in the source data
*/
static inline int
fast_user_write(struct io_mapping *mapping,
loff_t page_base, int page_offset,
char __user *user_data,
int length)
{
void __iomem *vaddr_atomic;
void *vaddr;
unsigned long unwritten;
vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
/* We can use the cpu mem copy function because this is X86. */
vaddr = (void __force*)vaddr_atomic + page_offset;
unwritten = __copy_from_user_inatomic_nocache(vaddr,
user_data, length);
io_mapping_unmap_atomic(vaddr_atomic);
return unwritten;
}
/**
* This is the fast pwrite path, where we copy the data directly from the
* user into the GTT, uncached.
*/
static int
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
drm_i915_private_t *dev_priv = dev->dev_private;
ssize_t remain;
loff_t offset, page_base;
char __user *user_data;
int page_offset, page_length, ret;
ret = i915_gem_object_pin(obj, 0, true, true);
if (ret)
goto out;
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
goto out_unpin;
ret = i915_gem_object_put_fence(obj);
if (ret)
goto out_unpin;
user_data = (char __user *) (uintptr_t) args->data_ptr;
remain = args->size;
offset = obj->gtt_offset + args->offset;
while (remain > 0) {
/* Operation in this page
*
* page_base = page offset within aperture
* page_offset = offset within page
* page_length = bytes to copy for this page
*/
page_base = offset & PAGE_MASK;
page_offset = offset_in_page(offset);
page_length = remain;
if ((page_offset + remain) > PAGE_SIZE)
page_length = PAGE_SIZE - page_offset;
/* If we get a fault while copying data, then (presumably) our
* source page isn't available. Return the error and we'll
* retry in the slow path.
*/
if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
page_offset, user_data, page_length)) {
ret = -EFAULT;
goto out_unpin;
}
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out_unpin:
i915_gem_object_unpin(obj);
out:
return ret;
}
/* Per-page copy function for the shmem pwrite fastpath.
* Flushes invalid cachelines before writing to the target if
* needs_clflush_before is set and flushes out any written cachelines after
* writing if needs_clflush is set. */
static int
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
int ret;
if (unlikely(page_do_bit17_swizzling))
return -EINVAL;
vaddr = kmap_atomic(page);
if (needs_clflush_before)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
user_data,
page_length);
if (needs_clflush_after)
drm_clflush_virt_range(vaddr + shmem_page_offset,
page_length);
kunmap_atomic(vaddr);
return ret ? -EFAULT : 0;
}
/* Only difference to the fast-path function is that this can handle bit17
* and uses non-atomic copy and kmap functions. */
static int
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
char __user *user_data,
bool page_do_bit17_swizzling,
bool needs_clflush_before,
bool needs_clflush_after)
{
char *vaddr;
int ret;
vaddr = kmap(page);
if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
if (page_do_bit17_swizzling)
ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
user_data,
page_length);
else
ret = __copy_from_user(vaddr + shmem_page_offset,
user_data,
page_length);
if (needs_clflush_after)
shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
page_length,
page_do_bit17_swizzling);
kunmap(page);
return ret ? -EFAULT : 0;
}
static int
i915_gem_shmem_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file)
{
ssize_t remain;
loff_t offset;
char __user *user_data;
int shmem_page_offset, page_length, ret = 0;
int obj_do_bit17_swizzling, page_do_bit17_swizzling;
int hit_slowpath = 0;
int needs_clflush_after = 0;
int needs_clflush_before = 0;
int i;
struct scatterlist *sg;
user_data = (char __user *) (uintptr_t) args->data_ptr;
remain = args->size;
obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
/* If we're not in the cpu write domain, set ourself into the gtt
* write domain and manually flush cachelines (if required). This
* optimizes for the case when the gpu will use the data
* right away and we therefore have to clflush anyway. */
if (obj->cache_level == I915_CACHE_NONE)
needs_clflush_after = 1;
if (obj->gtt_space) {
ret = i915_gem_object_set_to_gtt_domain(obj, true);
if (ret)
return ret;
}
}
/* Same trick applies for invalidate partially written cachelines before
* writing. */
if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
&& obj->cache_level == I915_CACHE_NONE)
needs_clflush_before = 1;
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
i915_gem_object_pin_pages(obj);
offset = args->offset;
obj->dirty = 1;
for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
struct page *page;
int partial_cacheline_write;
if (i < offset >> PAGE_SHIFT)
continue;
if (remain <= 0)
break;
/* Operation in this page
*
* shmem_page_offset = offset within page in shmem file
* page_length = bytes to copy for this page
*/
shmem_page_offset = offset_in_page(offset);
page_length = remain;
if ((shmem_page_offset + page_length) > PAGE_SIZE)
page_length = PAGE_SIZE - shmem_page_offset;
/* If we don't overwrite a cacheline completely we need to be
* careful to have up-to-date data by first clflushing. Don't
* overcomplicate things and flush the entire patch. */
partial_cacheline_write = needs_clflush_before &&
((shmem_page_offset | page_length)
& (boot_cpu_data.x86_clflush_size - 1));
page = sg_page(sg);
page_do_bit17_swizzling = obj_do_bit17_swizzling &&
(page_to_phys(page) & (1 << 17)) != 0;
ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
partial_cacheline_write,
needs_clflush_after);
if (ret == 0)
goto next_page;
hit_slowpath = 1;
mutex_unlock(&dev->struct_mutex);
ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
user_data, page_do_bit17_swizzling,
partial_cacheline_write,
needs_clflush_after);
mutex_lock(&dev->struct_mutex);
next_page:
set_page_dirty(page);
mark_page_accessed(page);
if (ret)
goto out;
remain -= page_length;
user_data += page_length;
offset += page_length;
}
out:
i915_gem_object_unpin_pages(obj);
if (hit_slowpath) {
/* Fixup: Kill any reinstated backing storage pages */
if (obj->madv == __I915_MADV_PURGED)
i915_gem_object_truncate(obj);
/* and flush dirty cachelines in case the object isn't in the cpu write
* domain anymore. */
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
i915_gem_clflush_object(obj);
intel_gtt_chipset_flush();
}
}
if (needs_clflush_after)
intel_gtt_chipset_flush();
return ret;
}
/**
* Writes data to the object referenced by handle.
*
* On error, the contents of the buffer that were to be modified are undefined.
*/
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pwrite *args = data;
struct drm_i915_gem_object *obj;
int ret;
if (args->size == 0)
return 0;
if (!access_ok(VERIFY_READ,
(char __user *)(uintptr_t)args->data_ptr,
args->size))
return -EFAULT;
ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
args->size);
if (ret)
return -EFAULT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Bounds check destination. */
if (args->offset > obj->base.size ||
args->size > obj->base.size - args->offset) {
ret = -EINVAL;
goto out;
}
/* prime objects have no backing filp to GEM pread/pwrite
* pages from.
*/
if (!obj->base.filp) {
ret = -EINVAL;
goto out;
}
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
ret = -EFAULT;
/* We can only do the GTT pwrite on untiled buffers, as otherwise
* it would end up going through the fenced access, and we'll get
* different detiling behavior between reading and writing.
* pread/pwrite currently are reading and writing from the CPU
* perspective, requiring manual detiling by the client.
*/
if (obj->phys_obj) {
ret = i915_gem_phys_pwrite(dev, obj, args, file);
goto out;
}
if (obj->cache_level == I915_CACHE_NONE &&
obj->tiling_mode == I915_TILING_NONE &&
obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
/* Note that the gtt paths might fail with non-page-backed user
* pointers (e.g. gtt mappings when moving data between
* textures). Fallback to the shmem path in that case. */
}
if (ret == -EFAULT || ret == -ENOSPC)
ret = i915_gem_shmem_pwrite(dev, obj, args, file);
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_check_wedge(struct drm_i915_private *dev_priv,
bool interruptible)
{
if (atomic_read(&dev_priv->mm.wedged)) {
struct completion *x = &dev_priv->error_completion;
bool recovery_complete;
unsigned long flags;
/* Give the error handler a chance to run. */
spin_lock_irqsave(&x->wait.lock, flags);
recovery_complete = x->done > 0;
spin_unlock_irqrestore(&x->wait.lock, flags);
/* Non-interruptible callers can't handle -EAGAIN, hence return
* -EIO unconditionally for these. */
if (!interruptible)
return -EIO;
/* Recovery complete, but still wedged means reset failure. */
if (recovery_complete)
return -EIO;
return -EAGAIN;
}
return 0;
}
/*
* Compare seqno against outstanding lazy request. Emit a request if they are
* equal.
*/
static int
i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
{
int ret;
BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
ret = 0;
if (seqno == ring->outstanding_lazy_request)
ret = i915_add_request(ring, NULL, NULL);
return ret;
}
/**
* __wait_seqno - wait until execution of seqno has finished
* @ring: the ring expected to report seqno
* @seqno: duh!
* @interruptible: do an interruptible wait (normally yes)
* @timeout: in - how long to wait (NULL forever); out - how much time remaining
*
* Returns 0 if the seqno was found within the alloted time. Else returns the
* errno with remaining time filled in timeout argument.
*/
static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
bool interruptible, struct timespec *timeout)
{
drm_i915_private_t *dev_priv = ring->dev->dev_private;
struct timespec before, now, wait_time={1,0};
unsigned long timeout_jiffies;
long end;
bool wait_forever = true;
int ret;
if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
return 0;
trace_i915_gem_request_wait_begin(ring, seqno);
if (timeout != NULL) {
wait_time = *timeout;
wait_forever = false;
}
timeout_jiffies = timespec_to_jiffies(&wait_time);
if (WARN_ON(!ring->irq_get(ring)))
return -ENODEV;
/* Record current time in case interrupted by signal, or wedged * */
getrawmonotonic(&before);
#define EXIT_COND \
(i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
atomic_read(&dev_priv->mm.wedged))
do {
if (interruptible)
end = wait_event_interruptible_timeout(ring->irq_queue,
EXIT_COND,
timeout_jiffies);
else
end = wait_event_timeout(ring->irq_queue, EXIT_COND,
timeout_jiffies);
ret = i915_gem_check_wedge(dev_priv, interruptible);
if (ret)
end = ret;
} while (end == 0 && wait_forever);
getrawmonotonic(&now);
ring->irq_put(ring);
trace_i915_gem_request_wait_end(ring, seqno);
#undef EXIT_COND
if (timeout) {
struct timespec sleep_time = timespec_sub(now, before);
*timeout = timespec_sub(*timeout, sleep_time);
}
switch (end) {
case -EIO:
case -EAGAIN: /* Wedged */
case -ERESTARTSYS: /* Signal */
return (int)end;
case 0: /* Timeout */
if (timeout)
set_normalized_timespec(timeout, 0, 0);
return -ETIME;
default: /* Completed */
WARN_ON(end < 0); /* We're not aware of other errors */
return 0;
}
}
/**
* Waits for a sequence number to be signaled, and cleans up the
* request and object lists appropriately for that event.
*/
int
i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
{
struct drm_device *dev = ring->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool interruptible = dev_priv->mm.interruptible;
int ret;
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
BUG_ON(seqno == 0);
ret = i915_gem_check_wedge(dev_priv, interruptible);
if (ret)
return ret;
ret = i915_gem_check_olr(ring, seqno);
if (ret)
return ret;
return __wait_seqno(ring, seqno, interruptible, NULL);
}
/**
* Ensures that all rendering to the object has completed and the object is
* safe to unbind from the GTT or access from the CPU.
*/
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
bool readonly)
{
struct intel_ring_buffer *ring = obj->ring;
u32 seqno;
int ret;
seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
if (seqno == 0)
return 0;
ret = i915_wait_seqno(ring, seqno);
if (ret)
return ret;
i915_gem_retire_requests_ring(ring);
/* Manually manage the write flush as we may have not yet
* retired the buffer.
*/
if (obj->last_write_seqno &&
i915_seqno_passed(seqno, obj->last_write_seqno)) {
obj->last_write_seqno = 0;
obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
}
return 0;
}
/* A nonblocking variant of the above wait. This is a highly dangerous routine
* as the object state may change during this call.
*/
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
bool readonly)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring = obj->ring;
u32 seqno;
int ret;
BUG_ON(!mutex_is_locked(&dev->struct_mutex));
BUG_ON(!dev_priv->mm.interruptible);
seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
if (seqno == 0)
return 0;
ret = i915_gem_check_wedge(dev_priv, true);
if (ret)
return ret;
ret = i915_gem_check_olr(ring, seqno);
if (ret)
return ret;
mutex_unlock(&dev->struct_mutex);
ret = __wait_seqno(ring, seqno, true, NULL);
mutex_lock(&dev->struct_mutex);
i915_gem_retire_requests_ring(ring);
/* Manually manage the write flush as we may have not yet
* retired the buffer.
*/
if (obj->last_write_seqno &&
i915_seqno_passed(seqno, obj->last_write_seqno)) {
obj->last_write_seqno = 0;
obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
}
return ret;
}
/**
* Called when user space prepares to use an object with the CPU, either
* through the mmap ioctl's mapping or a GTT mapping.
*/
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_set_domain *args = data;
struct drm_i915_gem_object *obj;
uint32_t read_domains = args->read_domains;
uint32_t write_domain = args->write_domain;
int ret;
/* Only handle setting domains to types used by the CPU. */
if (write_domain & I915_GEM_GPU_DOMAINS)
return -EINVAL;
if (read_domains & I915_GEM_GPU_DOMAINS)
return -EINVAL;
/* Having something in the write domain implies it's in the read
* domain, and only that read domain. Enforce that in the request.
*/
if (write_domain != 0 && read_domains != write_domain)
return -EINVAL;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Try to flush the object off the GPU without holding the lock.
* We will repeat the flush holding the lock in the normal manner
* to catch cases where we are gazumped.
*/
ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
if (ret)
goto unref;
if (read_domains & I915_GEM_DOMAIN_GTT) {
ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
/* Silently promote "you're not bound, there was nothing to do"
* to success, since the client was just asking us to
* make sure everything was done.
*/
if (ret == -EINVAL)
ret = 0;
} else {
ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
}
unref:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Called when user space has done writes to this buffer
*/
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_sw_finish *args = data;
struct drm_i915_gem_object *obj;
int ret = 0;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Pinned buffers may be scanout, so flush the cache */
if (obj->pin_count)
i915_gem_object_flush_cpu_write_domain(obj);
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* Maps the contents of an object, returning the address it is mapped
* into.
*
* While the mapping holds a reference on the contents of the object, it doesn't
* imply a ref on the object itself.
*/
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap *args = data;
struct drm_gem_object *obj;
unsigned long addr;
obj = drm_gem_object_lookup(dev, file, args->handle);
if (obj == NULL)
return -ENOENT;
/* prime objects have no backing filp to GEM mmap
* pages from.
*/
if (!obj->filp) {
drm_gem_object_unreference_unlocked(obj);
return -EINVAL;
}
addr = vm_mmap(obj->filp, 0, args->size,
PROT_READ | PROT_WRITE, MAP_SHARED,
args->offset);
drm_gem_object_unreference_unlocked(obj);
if (IS_ERR((void *)addr))
return addr;
args->addr_ptr = (uint64_t) addr;
return 0;
}
/**
* i915_gem_fault - fault a page into the GTT
* vma: VMA in question
* vmf: fault info
*
* The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
* from userspace. The fault handler takes care of binding the object to
* the GTT (if needed), allocating and programming a fence register (again,
* only if needed based on whether the old reg is still valid or the object
* is tiled) and inserting a new PTE into the faulting process.
*
* Note that the faulting process may involve evicting existing objects
* from the GTT and/or fence registers to make room. So performance may
* suffer if the GTT working set is large or there are few fence registers
* left.
*/
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
pgoff_t page_offset;
unsigned long pfn;
int ret = 0;
bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
/* We don't use vmf->pgoff since that has the fake offset */
page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
PAGE_SHIFT;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
goto out;
trace_i915_gem_object_fault(obj, page_offset, true, write);
/* Now bind it into the GTT if needed */
if (!obj->map_and_fenceable) {
ret = i915_gem_object_unbind(obj);
if (ret)
goto unlock;
}
if (!obj->gtt_space) {
ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
if (ret)
goto unlock;
ret = i915_gem_object_set_to_gtt_domain(obj, write);
if (ret)
goto unlock;
}
if (!obj->has_global_gtt_mapping)
i915_gem_gtt_bind_object(obj, obj->cache_level);
ret = i915_gem_object_get_fence(obj);
if (ret)
goto unlock;
if (i915_gem_object_is_inactive(obj))
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
obj->fault_mappable = true;
pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
page_offset;
/* Finally, remap it using the new GTT offset */
ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
unlock:
mutex_unlock(&dev->struct_mutex);
out:
switch (ret) {
case -EIO:
/* If this -EIO is due to a gpu hang, give the reset code a
* chance to clean up the mess. Otherwise return the proper
* SIGBUS. */
if (!atomic_read(&dev_priv->mm.wedged))
return VM_FAULT_SIGBUS;
case -EAGAIN:
/* Give the error handler a chance to run and move the
* objects off the GPU active list. Next time we service the
* fault, we should be able to transition the page into the
* GTT without touching the GPU (and so avoid further
* EIO/EGAIN). If the GPU is wedged, then there is no issue
* with coherency, just lost writes.
*/
set_need_resched();
case 0:
case -ERESTARTSYS:
case -EINTR:
case -EBUSY:
/*
* EBUSY is ok: this just means that another thread
* already did the job.
*/
return VM_FAULT_NOPAGE;
case -ENOMEM:
return VM_FAULT_OOM;
default:
WARN_ON_ONCE(ret);
return VM_FAULT_SIGBUS;
}
}
/**
* i915_gem_release_mmap - remove physical page mappings
* @obj: obj in question
*
* Preserve the reservation of the mmapping with the DRM core code, but
* relinquish ownership of the pages back to the system.
*
* It is vital that we remove the page mapping if we have mapped a tiled
* object through the GTT and then lose the fence register due to
* resource pressure. Similarly if the object has been moved out of the
* aperture, than pages mapped into userspace must be revoked. Removing the
* mapping will then trigger a page fault on the next user access, allowing
* fixup by i915_gem_fault().
*/
void
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
{
if (!obj->fault_mappable)
return;
if (obj->base.dev->dev_mapping)
unmap_mapping_range(obj->base.dev->dev_mapping,
(loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
obj->base.size, 1);
obj->fault_mappable = false;
}
static uint32_t
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
{
uint32_t gtt_size;
if (INTEL_INFO(dev)->gen >= 4 ||
tiling_mode == I915_TILING_NONE)
return size;
/* Previous chips need a power-of-two fence region when tiling */
if (INTEL_INFO(dev)->gen == 3)
gtt_size = 1024*1024;
else
gtt_size = 512*1024;
while (gtt_size < size)
gtt_size <<= 1;
return gtt_size;
}
/**
* i915_gem_get_gtt_alignment - return required GTT alignment for an object
* @obj: object to check
*
* Return the required GTT alignment for an object, taking into account
* potential fence register mapping.
*/
static uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev,
uint32_t size,
int tiling_mode)
{
/*
* Minimum alignment is 4k (GTT page size), but might be greater
* if a fence register is needed for the object.
*/
if (INTEL_INFO(dev)->gen >= 4 ||
tiling_mode == I915_TILING_NONE)
return 4096;
/*
* Previous chips need to be aligned to the size of the smallest
* fence register that can contain the object.
*/
return i915_gem_get_gtt_size(dev, size, tiling_mode);
}
/**
* i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
* unfenced object
* @dev: the device
* @size: size of the object
* @tiling_mode: tiling mode of the object
*
* Return the required GTT alignment for an object, only taking into account
* unfenced tiled surface requirements.
*/
uint32_t
i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
uint32_t size,
int tiling_mode)
{
/*
* Minimum alignment is 4k (GTT page size) for sane hw.
*/
if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
tiling_mode == I915_TILING_NONE)
return 4096;
/* Previous hardware however needs to be aligned to a power-of-two
* tile height. The simplest method for determining this is to reuse
* the power-of-tile object size.
*/
return i915_gem_get_gtt_size(dev, size, tiling_mode);
}
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int ret;
if (obj->base.map_list.map)
return 0;
ret = drm_gem_create_mmap_offset(&obj->base);
if (ret != -ENOSPC)
return ret;
/* Badly fragmented mmap space? The only way we can recover
* space is by destroying unwanted objects. We can't randomly release
* mmap_offsets as userspace expects them to be persistent for the
* lifetime of the objects. The closest we can is to release the
* offsets on purgeable objects by truncating it and marking it purged,
* which prevents userspace from ever using that object again.
*/
i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
ret = drm_gem_create_mmap_offset(&obj->base);
if (ret != -ENOSPC)
return ret;
i915_gem_shrink_all(dev_priv);
return drm_gem_create_mmap_offset(&obj->base);
}
static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
if (!obj->base.map_list.map)
return;
drm_gem_free_mmap_offset(&obj->base);
}
int
i915_gem_mmap_gtt(struct drm_file *file,
struct drm_device *dev,
uint32_t handle,
uint64_t *offset)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
ret = -E2BIG;
goto out;
}
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to mmap a purgeable buffer\n");
ret = -EINVAL;
goto out;
}
ret = i915_gem_object_create_mmap_offset(obj);
if (ret)
goto out;
*offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
* @dev: DRM device
* @data: GTT mapping ioctl data
* @file: GEM object info
*
* Simply returns the fake offset to userspace so it can mmap it.
* The mmap call will end up in drm_gem_mmap(), which will set things
* up so we can get faults in the handler above.
*
* The fault handler will take care of binding the object into the GTT
* (since it may have been evicted to make room for something), allocating
* a fence register, and mapping the appropriate aperture address into
* userspace.
*/
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_mmap_gtt *args = data;
return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
}
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
{
struct inode *inode;
i915_gem_object_free_mmap_offset(obj);
if (obj->base.filp == NULL)
return;
/* Our goal here is to return as much of the memory as
* is possible back to the system as we are called from OOM.
* To do this we must instruct the shmfs to drop all of its
* backing pages, *now*.
*/
inode = obj->base.filp->f_path.dentry->d_inode;
shmem_truncate_range(inode, 0, (loff_t)-1);
obj->madv = __I915_MADV_PURGED;
}
static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
{
return obj->madv == I915_MADV_DONTNEED;
}
static void
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
{
int page_count = obj->base.size / PAGE_SIZE;
struct scatterlist *sg;
int ret, i;
BUG_ON(obj->madv == __I915_MADV_PURGED);
ret = i915_gem_object_set_to_cpu_domain(obj, true);
if (ret) {
/* In the event of a disaster, abandon all caches and
* hope for the best.
*/
WARN_ON(ret != -EIO);
i915_gem_clflush_object(obj);
obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_save_bit_17_swizzle(obj);
if (obj->madv == I915_MADV_DONTNEED)
obj->dirty = 0;
for_each_sg(obj->pages->sgl, sg, page_count, i) {
struct page *page = sg_page(sg);
if (obj->dirty)
set_page_dirty(page);
if (obj->madv == I915_MADV_WILLNEED)
mark_page_accessed(page);
page_cache_release(page);
}
obj->dirty = 0;
sg_free_table(obj->pages);
kfree(obj->pages);
}
static int
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
const struct drm_i915_gem_object_ops *ops = obj->ops;
if (obj->pages == NULL)
return 0;
BUG_ON(obj->gtt_space);
if (obj->pages_pin_count)
return -EBUSY;
ops->put_pages(obj);
obj->pages = NULL;
list_del(&obj->gtt_list);
if (i915_gem_object_is_purgeable(obj))
i915_gem_object_truncate(obj);
return 0;
}
static long
i915_gem_purge(struct drm_i915_private *dev_priv, long target)
{
struct drm_i915_gem_object *obj, *next;
long count = 0;
list_for_each_entry_safe(obj, next,
&dev_priv->mm.unbound_list,
gtt_list) {
if (i915_gem_object_is_purgeable(obj) &&
i915_gem_object_put_pages(obj) == 0) {
count += obj->base.size >> PAGE_SHIFT;
if (count >= target)
return count;
}
}
list_for_each_entry_safe(obj, next,
&dev_priv->mm.inactive_list,
mm_list) {
if (i915_gem_object_is_purgeable(obj) &&
i915_gem_object_unbind(obj) == 0 &&
i915_gem_object_put_pages(obj) == 0) {
count += obj->base.size >> PAGE_SHIFT;
if (count >= target)
return count;
}
}
return count;
}
static void
i915_gem_shrink_all(struct drm_i915_private *dev_priv)
{
struct drm_i915_gem_object *obj, *next;
i915_gem_evict_everything(dev_priv->dev);
list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
i915_gem_object_put_pages(obj);
}
static int
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int page_count, i;
struct address_space *mapping;
struct sg_table *st;
struct scatterlist *sg;
struct page *page;
gfp_t gfp;
/* Assert that the object is not currently in any GPU domain. As it
* wasn't in the GTT, there shouldn't be any way it could have been in
* a GPU cache
*/
BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (st == NULL)
return -ENOMEM;
page_count = obj->base.size / PAGE_SIZE;
if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
sg_free_table(st);
kfree(st);
return -ENOMEM;
}
/* Get the list of pages out of our struct file. They'll be pinned
* at this point until we release them.
*
* Fail silently without starting the shrinker
*/
mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
gfp = mapping_gfp_mask(mapping);
gfp |= __GFP_NORETRY | __GFP_NOWARN;
gfp &= ~(__GFP_IO | __GFP_WAIT);
for_each_sg(st->sgl, sg, page_count, i) {
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
if (IS_ERR(page)) {
i915_gem_purge(dev_priv, page_count);
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
}
if (IS_ERR(page)) {
/* We've tried hard to allocate the memory by reaping
* our own buffer, now let the real VM do its job and
* go down in flames if truly OOM.
*/
gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
gfp |= __GFP_IO | __GFP_WAIT;
i915_gem_shrink_all(dev_priv);
page = shmem_read_mapping_page_gfp(mapping, i, gfp);
if (IS_ERR(page))
goto err_pages;
gfp |= __GFP_NORETRY | __GFP_NOWARN;
gfp &= ~(__GFP_IO | __GFP_WAIT);
}
sg_set_page(sg, page, PAGE_SIZE, 0);
}
if (i915_gem_object_needs_bit17_swizzle(obj))
i915_gem_object_do_bit_17_swizzle(obj);
obj->pages = st;
return 0;
err_pages:
for_each_sg(st->sgl, sg, i, page_count)
page_cache_release(sg_page(sg));
sg_free_table(st);
kfree(st);
return PTR_ERR(page);
}
/* Ensure that the associated pages are gathered from the backing storage
* and pinned into our object. i915_gem_object_get_pages() may be called
* multiple times before they are released by a single call to
* i915_gem_object_put_pages() - once the pages are no longer referenced
* either as a result of memory pressure (reaping pages under the shrinker)
* or as the object is itself released.
*/
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
const struct drm_i915_gem_object_ops *ops = obj->ops;
int ret;
if (obj->pages)
return 0;
BUG_ON(obj->pages_pin_count);
ret = ops->get_pages(obj);
if (ret)
return ret;
list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
return 0;
}
void
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *ring,
u32 seqno)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
BUG_ON(ring == NULL);
obj->ring = ring;
/* Add a reference if we're newly entering the active list. */
if (!obj->active) {
drm_gem_object_reference(&obj->base);
obj->active = 1;
}
/* Move from whatever list we were on to the tail of execution. */
list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
list_move_tail(&obj->ring_list, &ring->active_list);
obj->last_read_seqno = seqno;
if (obj->fenced_gpu_access) {
obj->last_fenced_seqno = seqno;
/* Bump MRU to take account of the delayed flush */
if (obj->fence_reg != I915_FENCE_REG_NONE) {
struct drm_i915_fence_reg *reg;
reg = &dev_priv->fence_regs[obj->fence_reg];
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
}
}
}
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
BUG_ON(!obj->active);
if (obj->pin_count) /* are we a framebuffer? */
intel_mark_fb_idle(obj);
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
list_del_init(&obj->ring_list);
obj->ring = NULL;
obj->last_read_seqno = 0;
obj->last_write_seqno = 0;
obj->base.write_domain = 0;
obj->last_fenced_seqno = 0;
obj->fenced_gpu_access = false;
obj->active = 0;
drm_gem_object_unreference(&obj->base);
WARN_ON(i915_verify_lists(dev));
}
static u32
i915_gem_get_seqno(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 seqno = dev_priv->next_seqno;
/* reserve 0 for non-seqno */
if (++dev_priv->next_seqno == 0)
dev_priv->next_seqno = 1;
return seqno;
}
u32
i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
{
if (ring->outstanding_lazy_request == 0)
ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
return ring->outstanding_lazy_request;
}
int
i915_add_request(struct intel_ring_buffer *ring,
struct drm_file *file,
u32 *out_seqno)
{
drm_i915_private_t *dev_priv = ring->dev->dev_private;
struct drm_i915_gem_request *request;
u32 request_ring_position;
u32 seqno;
int was_empty;
int ret;
/*
* Emit any outstanding flushes - execbuf can fail to emit the flush
* after having emitted the batchbuffer command. Hence we need to fix
* things up similar to emitting the lazy request. The difference here
* is that the flush _must_ happen before the next request, no matter
* what.
*/
ret = intel_ring_flush_all_caches(ring);
if (ret)
return ret;
request = kmalloc(sizeof(*request), GFP_KERNEL);
if (request == NULL)
return -ENOMEM;
seqno = i915_gem_next_request_seqno(ring);
/* Record the position of the start of the request so that
* should we detect the updated seqno part-way through the
* GPU processing the request, we never over-estimate the
* position of the head.
*/
request_ring_position = intel_ring_get_tail(ring);
ret = ring->add_request(ring, &seqno);
if (ret) {
kfree(request);
return ret;
}
trace_i915_gem_request_add(ring, seqno);
request->seqno = seqno;
request->ring = ring;
request->tail = request_ring_position;
request->emitted_jiffies = jiffies;
was_empty = list_empty(&ring->request_list);
list_add_tail(&request->list, &ring->request_list);
request->file_priv = NULL;
if (file) {
struct drm_i915_file_private *file_priv = file->driver_priv;
spin_lock(&file_priv->mm.lock);
request->file_priv = file_priv;
list_add_tail(&request->client_list,
&file_priv->mm.request_list);
spin_unlock(&file_priv->mm.lock);
}
ring->outstanding_lazy_request = 0;
if (!dev_priv->mm.suspended) {
if (i915_enable_hangcheck) {
mod_timer(&dev_priv->hangcheck_timer,
round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
}
if (was_empty) {
queue_delayed_work(dev_priv->wq,
&dev_priv->mm.retire_work,
round_jiffies_up_relative(HZ));
intel_mark_busy(dev_priv->dev);
}
}
if (out_seqno)
*out_seqno = seqno;
return 0;
}
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
{
struct drm_i915_file_private *file_priv = request->file_priv;
if (!file_priv)
return;
spin_lock(&file_priv->mm.lock);
if (request->file_priv) {
list_del(&request->client_list);
request->file_priv = NULL;
}
spin_unlock(&file_priv->mm.lock);
}
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
struct intel_ring_buffer *ring)
{
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
list_del(&request->list);
i915_gem_request_remove_from_client(request);
kfree(request);
}
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list);
i915_gem_object_move_to_inactive(obj);
}
}
static void i915_gem_reset_fences(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int i;
for (i = 0; i < dev_priv->num_fence_regs; i++) {
struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
i915_gem_write_fence(dev, i, NULL);
if (reg->obj)
i915_gem_object_fence_lost(reg->obj);
reg->pin_count = 0;
reg->obj = NULL;
INIT_LIST_HEAD(&reg->lru_list);
}
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
}
void i915_gem_reset(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
struct intel_ring_buffer *ring;
int i;
for_each_ring(ring, dev_priv, i)
i915_gem_reset_ring_lists(dev_priv, ring);
/* Move everything out of the GPU domains to ensure we do any
* necessary invalidation upon reuse.
*/
list_for_each_entry(obj,
&dev_priv->mm.inactive_list,
mm_list)
{
obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
}
/* The fence registers are invalidated so clear them out */
i915_gem_reset_fences(dev);
}
/**
* This function clears the request list as sequence numbers are passed.
*/
void
i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
{
uint32_t seqno;
int i;
if (list_empty(&ring->request_list))
return;
WARN_ON(i915_verify_lists(ring->dev));
seqno = ring->get_seqno(ring, true);
for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
if (seqno >= ring->sync_seqno[i])
ring->sync_seqno[i] = 0;
while (!list_empty(&ring->request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&ring->request_list,
struct drm_i915_gem_request,
list);
if (!i915_seqno_passed(seqno, request->seqno))
break;
trace_i915_gem_request_retire(ring, request->seqno);
/* We know the GPU must have read the request to have
* sent us the seqno + interrupt, so use the position
* of tail of the request to update the last known position
* of the GPU head.
*/
ring->last_retired_head = request->tail;
list_del(&request->list);
i915_gem_request_remove_from_client(request);
kfree(request);
}
/* Move any buffers on the active list that are no longer referenced
* by the ringbuffer to the flushing/inactive lists as appropriate.
*/
while (!list_empty(&ring->active_list)) {
struct drm_i915_gem_object *obj;
obj = list_first_entry(&ring->active_list,
struct drm_i915_gem_object,
ring_list);
if (!i915_seqno_passed(seqno, obj->last_read_seqno))
break;
i915_gem_object_move_to_inactive(obj);
}
if (unlikely(ring->trace_irq_seqno &&
i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
ring->irq_put(ring);
ring->trace_irq_seqno = 0;
}
WARN_ON(i915_verify_lists(ring->dev));
}
void
i915_gem_retire_requests(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
for_each_ring(ring, dev_priv, i)
i915_gem_retire_requests_ring(ring);
}
static void
i915_gem_retire_work_handler(struct work_struct *work)
{
drm_i915_private_t *dev_priv;
struct drm_device *dev;
struct intel_ring_buffer *ring;
bool idle;
int i;
dev_priv = container_of(work, drm_i915_private_t,
mm.retire_work.work);
dev = dev_priv->dev;
/* Come back later if the device is busy... */
if (!mutex_trylock(&dev->struct_mutex)) {
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
round_jiffies_up_relative(HZ));
return;
}
i915_gem_retire_requests(dev);
/* Send a periodic flush down the ring so we don't hold onto GEM
* objects indefinitely.
*/
idle = true;
for_each_ring(ring, dev_priv, i) {
if (ring->gpu_caches_dirty)
i915_add_request(ring, NULL, NULL);
idle &= list_empty(&ring->request_list);
}
if (!dev_priv->mm.suspended && !idle)
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
round_jiffies_up_relative(HZ));
if (idle)
intel_mark_idle(dev);
mutex_unlock(&dev->struct_mutex);
}
/**
* Ensures that an object will eventually get non-busy by flushing any required
* write domains, emitting any outstanding lazy request and retiring and
* completed requests.
*/
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
int ret;
if (obj->active) {
ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
if (ret)
return ret;
i915_gem_retire_requests_ring(obj->ring);
}
return 0;
}
/**
* i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
* @DRM_IOCTL_ARGS: standard ioctl arguments
*
* Returns 0 if successful, else an error is returned with the remaining time in
* the timeout parameter.
* -ETIME: object is still busy after timeout
* -ERESTARTSYS: signal interrupted the wait
* -ENONENT: object doesn't exist
* Also possible, but rare:
* -EAGAIN: GPU wedged
* -ENOMEM: damn
* -ENODEV: Internal IRQ fail
* -E?: The add request failed
*
* The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
* non-zero timeout parameter the wait ioctl will wait for the given number of
* nanoseconds on an object becoming unbusy. Since the wait itself does so
* without holding struct_mutex the object may become re-busied before this
* function completes. A similar but shorter * race condition exists in the busy
* ioctl
*/
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
struct drm_i915_gem_wait *args = data;
struct drm_i915_gem_object *obj;
struct intel_ring_buffer *ring = NULL;
struct timespec timeout_stack, *timeout = NULL;
u32 seqno = 0;
int ret = 0;
if (args->timeout_ns >= 0) {
timeout_stack = ns_to_timespec(args->timeout_ns);
timeout = &timeout_stack;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
if (&obj->base == NULL) {
mutex_unlock(&dev->struct_mutex);
return -ENOENT;
}
/* Need to make sure the object gets inactive eventually. */
ret = i915_gem_object_flush_active(obj);
if (ret)
goto out;
if (obj->active) {
seqno = obj->last_read_seqno;
ring = obj->ring;
}
if (seqno == 0)
goto out;
/* Do this after OLR check to make sure we make forward progress polling
* on this IOCTL with a 0 timeout (like busy ioctl)
*/
if (!args->timeout_ns) {
ret = -ETIME;
goto out;
}
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
ret = __wait_seqno(ring, seqno, true, timeout);
if (timeout) {
WARN_ON(!timespec_valid(timeout));
args->timeout_ns = timespec_to_ns(timeout);
}
return ret;
out:
drm_gem_object_unreference(&obj->base);
mutex_unlock(&dev->struct_mutex);
return ret;
}
/**
* i915_gem_object_sync - sync an object to a ring.
*
* @obj: object which may be in use on another ring.
* @to: ring we wish to use the object on. May be NULL.
*
* This code is meant to abstract object synchronization with the GPU.
* Calling with NULL implies synchronizing the object with the CPU
* rather than a particular GPU ring.
*
* Returns 0 if successful, else propagates up the lower layer error.
*/
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
struct intel_ring_buffer *to)
{
struct intel_ring_buffer *from = obj->ring;
u32 seqno;
int ret, idx;
if (from == NULL || to == from)
return 0;
if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
return i915_gem_object_wait_rendering(obj, false);
idx = intel_ring_sync_index(from, to);
seqno = obj->last_read_seqno;
if (seqno <= from->sync_seqno[idx])
return 0;
ret = i915_gem_check_olr(obj->ring, seqno);
if (ret)
return ret;
ret = to->sync_to(to, from, seqno);
if (!ret)
from->sync_seqno[idx] = seqno;
return ret;
}
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
u32 old_write_domain, old_read_domains;
/* Act a barrier for all accesses through the GTT */
mb();
/* Force a pagefault for domain tracking on next user access */
i915_gem_release_mmap(obj);
if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
return;
old_read_domains = obj->base.read_domains;
old_write_domain = obj->base.write_domain;
obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
}
/**
* Unbinds an object from the GTT aperture.
*/
int
i915_gem_object_unbind(struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
int ret = 0;
if (obj->gtt_space == NULL)
return 0;
if (obj->pin_count)
return -EBUSY;
BUG_ON(obj->pages == NULL);
ret = i915_gem_object_finish_gpu(obj);
if (ret)
return ret;
/* Continue on if we fail due to EIO, the GPU is hung so we
* should be safe and we need to cleanup or else we might
* cause memory corruption through use-after-free.
*/
i915_gem_object_finish_gtt(obj);
/* release the fence reg _after_ flushing */
ret = i915_gem_object_put_fence(obj);
if (ret)
return ret;
trace_i915_gem_object_unbind(obj);
if (obj->has_global_gtt_mapping)
i915_gem_gtt_unbind_object(obj);
if (obj->has_aliasing_ppgtt_mapping) {
i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
obj->has_aliasing_ppgtt_mapping = 0;
}
i915_gem_gtt_finish_object(obj);
list_del(&obj->mm_list);
list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
/* Avoid an unnecessary call to unbind on rebind. */
obj->map_and_fenceable = true;
drm_mm_put_block(obj->gtt_space);
obj->gtt_space = NULL;
obj->gtt_offset = 0;
return 0;
}
static int i915_ring_idle(struct intel_ring_buffer *ring)
{
if (list_empty(&ring->active_list))
return 0;
return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
}
int i915_gpu_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int ret, i;
/* Flush everything onto the inactive list. */
for_each_ring(ring, dev_priv, i) {
ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
if (ret)
return ret;
ret = i915_ring_idle(ring);
if (ret)
return ret;
}
return 0;
}
static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint64_t val;
if (obj) {
u32 size = obj->gtt_space->size;
val = (uint64_t)((obj->gtt_offset + size - 4096) &
0xfffff000) << 32;
val |= obj->gtt_offset & 0xfffff000;
val |= (uint64_t)((obj->stride / 128) - 1) <<
SANDYBRIDGE_FENCE_PITCH_SHIFT;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
} else
val = 0;
I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
}
static void i965_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint64_t val;
if (obj) {
u32 size = obj->gtt_space->size;
val = (uint64_t)((obj->gtt_offset + size - 4096) &
0xfffff000) << 32;
val |= obj->gtt_offset & 0xfffff000;
val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I965_FENCE_TILING_Y_SHIFT;
val |= I965_FENCE_REG_VALID;
} else
val = 0;
I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
POSTING_READ(FENCE_REG_965_0 + reg * 8);
}
static void i915_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 val;
if (obj) {
u32 size = obj->gtt_space->size;
int pitch_val;
int tile_width;
WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
(size & -size) != size ||
(obj->gtt_offset & (size - 1)),
"object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
obj->gtt_offset, obj->map_and_fenceable, size);
if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
tile_width = 128;
else
tile_width = 512;
/* Note: pitch better be a power of two tile widths */
pitch_val = obj->stride / tile_width;
pitch_val = ffs(pitch_val) - 1;
val = obj->gtt_offset;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I915_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
if (reg < 8)
reg = FENCE_REG_830_0 + reg * 4;
else
reg = FENCE_REG_945_8 + (reg - 8) * 4;
I915_WRITE(reg, val);
POSTING_READ(reg);
}
static void i830_write_fence_reg(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t val;
if (obj) {
u32 size = obj->gtt_space->size;
uint32_t pitch_val;
WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
(size & -size) != size ||
(obj->gtt_offset & (size - 1)),
"object 0x%08x not 512K or pot-size 0x%08x aligned\n",
obj->gtt_offset, size);
pitch_val = obj->stride / 128;
pitch_val = ffs(pitch_val) - 1;
val = obj->gtt_offset;
if (obj->tiling_mode == I915_TILING_Y)
val |= 1 << I830_FENCE_TILING_Y_SHIFT;
val |= I830_FENCE_SIZE_BITS(size);
val |= pitch_val << I830_FENCE_PITCH_SHIFT;
val |= I830_FENCE_REG_VALID;
} else
val = 0;
I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
POSTING_READ(FENCE_REG_830_0 + reg * 4);
}
static void i915_gem_write_fence(struct drm_device *dev, int reg,
struct drm_i915_gem_object *obj)
{
switch (INTEL_INFO(dev)->gen) {
case 7:
case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
case 5:
case 4: i965_write_fence_reg(dev, reg, obj); break;
case 3: i915_write_fence_reg(dev, reg, obj); break;
case 2: i830_write_fence_reg(dev, reg, obj); break;
default: break;
}
}
static inline int fence_number(struct drm_i915_private *dev_priv,
struct drm_i915_fence_reg *fence)
{
return fence - dev_priv->fence_regs;
}
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
struct drm_i915_fence_reg *fence,
bool enable)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int reg = fence_number(dev_priv, fence);
i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
if (enable) {
obj->fence_reg = reg;
fence->obj = obj;
list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
} else {
obj->fence_reg = I915_FENCE_REG_NONE;
fence->obj = NULL;
list_del_init(&fence->lru_list);
}
}
static int
i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
{
if (obj->last_fenced_seqno) {
int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
if (ret)
return ret;
obj->last_fenced_seqno = 0;
}
/* Ensure that all CPU reads are completed before installing a fence
* and all writes before removing the fence.
*/
if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
mb();
obj->fenced_gpu_access = false;
return 0;
}
int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
int ret;
ret = i915_gem_object_flush_fence(obj);
if (ret)
return ret;
if (obj->fence_reg == I915_FENCE_REG_NONE)
return 0;
i915_gem_object_update_fence(obj,
&dev_priv->fence_regs[obj->fence_reg],
false);
i915_gem_object_fence_lost(obj);
return 0;
}
static struct drm_i915_fence_reg *
i915_find_fence_reg(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_fence_reg *reg, *avail;
int i;
/* First try to find a free reg */
avail = NULL;
for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
reg = &dev_priv->fence_regs[i];
if (!reg->obj)
return reg;
if (!reg->pin_count)
avail = reg;
}
if (avail == NULL)
return NULL;
/* None available, try to steal one or wait for a user to finish */
list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
if (reg->pin_count)
continue;
return reg;
}
return NULL;
}
/**
* i915_gem_object_get_fence - set up fencing for an object
* @obj: object to map through a fence reg
*
* When mapping objects through the GTT, userspace wants to be able to write
* to them without having to worry about swizzling if the object is tiled.
* This function walks the fence regs looking for a free one for @obj,
* stealing one if it can't find any.
*
* It then sets up the reg based on the object's properties: address, pitch
* and tiling format.
*
* For an untiled surface, this removes any existing fence.
*/
int
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
{
struct drm_device *dev = obj->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
bool enable = obj->tiling_mode != I915_TILING_NONE;
struct drm_i915_fence_reg *reg;
int ret;
/* Have we updated the tiling parameters upon the object and so
* will need to serialise the write to the associated fence register?
*/
if (obj->fence_dirty) {
ret = i915_gem_object_flush_fence(obj);
if (ret)
return ret;
}
/* Just update our place in the LRU if our fence is getting reused. */
if (obj->fence_reg != I915_FENCE_REG_NONE) {
reg = &dev_priv->fence_regs[obj->fence_reg];
if (!obj->fence_dirty) {
list_move_tail(&reg->lru_list,
&dev_priv->mm.fence_list);
return 0;
}
} else if (enable) {
reg = i915_find_fence_reg(dev);
if (reg == NULL)
return -EDEADLK;
if (reg->obj) {
struct drm_i915_gem_object *old = reg->obj;
ret = i915_gem_object_flush_fence(old);
if (ret)
return ret;
i915_gem_object_fence_lost(old);
}
} else
return 0;
i915_gem_object_update_fence(obj, reg, enable);
obj->fence_dirty = false;
return 0;
}
static bool i915_gem_valid_gtt_space(struct drm_device *dev,
struct drm_mm_node *gtt_space,
unsigned long cache_level)
{
struct drm_mm_node *other;
/* On non-LLC machines we have to be careful when putting differing
* types of snoopable memory together to avoid the prefetcher
* crossing memory domains and dieing.
*/
if (HAS_LLC(dev))
return true;
if (gtt_space == NULL)
return true;
if (list_empty(&gtt_space->node_list))
return true;
other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
if (other->allocated && !other->hole_follows && other->color != cache_level)
return false;
other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
return false;
return true;
}
static void i915_gem_verify_gtt(struct drm_device *dev)
{
#if WATCH_GTT
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj;
int err = 0;
list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
if (obj->gtt_space == NULL) {
printk(KERN_ERR "object found on GTT list with no space reserved\n");
err++;
continue;
}
if (obj->cache_level != obj->gtt_space->color) {
printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
obj->gtt_space->start,
obj->gtt_space->start + obj->gtt_space->size,
obj->cache_level,
obj->gtt_space->color);
err++;
continue;
}
if (!i915_gem_valid_gtt_space(dev,
obj->gtt_space,
obj->cache_level)) {
printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
obj->gtt_space->start,
obj->gtt_space->start + obj->gtt_space->size,
obj->cache_level);
err++;
continue;
}
}
WARN_ON(err);
#endif
}
/**
* Finds free space in the GTT aperture and binds the object there.
*/
static int
i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
unsigned alignment,
bool map_and_fenceable,
bool nonblocking)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_mm_node *free_space;
u32 size, fence_size, fence_alignment, unfenced_alignment;
bool mappable, fenceable;
int ret;
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to bind a purgeable object\n");
return -EINVAL;
}
fence_size = i915_gem_get_gtt_size(dev,
obj->base.size,
obj->tiling_mode);
fence_alignment = i915_gem_get_gtt_alignment(dev,
obj->base.size,
obj->tiling_mode);
unfenced_alignment =
i915_gem_get_unfenced_gtt_alignment(dev,
obj->base.size,
obj->tiling_mode);
if (alignment == 0)
alignment = map_and_fenceable ? fence_alignment :
unfenced_alignment;
if (map_and_fenceable && alignment & (fence_alignment - 1)) {
DRM_ERROR("Invalid object alignment requested %u\n", alignment);
return -EINVAL;
}
size = map_and_fenceable ? fence_size : obj->base.size;
/* If the object is bigger than the entire aperture, reject it early
* before evicting everything in a vain attempt to find space.
*/
if (obj->base.size >
(map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
DRM_ERROR("Attempting to bind an object larger than the aperture\n");
return -E2BIG;
}
ret = i915_gem_object_get_pages(obj);
if (ret)
return ret;
search_free:
if (map_and_fenceable)
free_space =
drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
size, alignment, obj->cache_level,
0, dev_priv->mm.gtt_mappable_end,
false);
else
free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
size, alignment, obj->cache_level,
false);
if (free_space != NULL) {
if (map_and_fenceable)
obj->gtt_space =
drm_mm_get_block_range_generic(free_space,
size, alignment, obj->cache_level,
0, dev_priv->mm.gtt_mappable_end,
false);
else
obj->gtt_space =
drm_mm_get_block_generic(free_space,
size, alignment, obj->cache_level,
false);
}
if (obj->gtt_space == NULL) {
ret = i915_gem_evict_something(dev, size, alignment,
obj->cache_level,
map_and_fenceable,
nonblocking);
if (ret)
return ret;
goto search_free;
}
if (WARN_ON(!i915_gem_valid_gtt_space(dev,
obj->gtt_space,
obj->cache_level))) {
drm_mm_put_block(obj->gtt_space);
obj->gtt_space = NULL;
return -EINVAL;
}
ret = i915_gem_gtt_prepare_object(obj);
if (ret) {
drm_mm_put_block(obj->gtt_space);
obj->gtt_space = NULL;
return ret;
}
if (!dev_priv->mm.aliasing_ppgtt)
i915_gem_gtt_bind_object(obj, obj->cache_level);
list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
obj->gtt_offset = obj->gtt_space->start;
fenceable =
obj->gtt_space->size == fence_size &&
(obj->gtt_space->start & (fence_alignment - 1)) == 0;
mappable =
obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
obj->map_and_fenceable = mappable && fenceable;
trace_i915_gem_object_bind(obj, map_and_fenceable);
i915_gem_verify_gtt(dev);
return 0;
}
void
i915_gem_clflush_object(struct drm_i915_gem_object *obj)
{
/* If we don't have a page list set up, then we're not pinned
* to GPU, and we can ignore the cache flush because it'll happen
* again at bind time.
*/
if (obj->pages == NULL)
return;
/* If the GPU is snooping the contents of the CPU cache,
* we do not need to manually clear the CPU cache lines. However,
* the caches are only snooped when the render cache is
* flushed/invalidated. As we always have to emit invalidations
* and flushes when moving into and out of the RENDER domain, correct
* snooping behaviour occurs naturally as the result of our domain
* tracking.
*/
if (obj->cache_level != I915_CACHE_NONE)
return;
trace_i915_gem_object_clflush(obj);
drm_clflush_sg(obj->pages);
}
/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
{
uint32_t old_write_domain;
if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
return;
/* No actual flushing is required for the GTT write domain. Writes
* to it immediately go to main memory as far as we know, so there's
* no chipset flush. It also doesn't land in render cache.
*
* However, we do have to enforce the order so that all writes through
* the GTT land before any writes to the device, such as updates to
* the GATT itself.
*/
wmb();
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
old_write_domain);
}
/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
{
uint32_t old_write_domain;
if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
return;
i915_gem_clflush_object(obj);
intel_gtt_chipset_flush();
old_write_domain = obj->base.write_domain;
obj->base.write_domain = 0;
trace_i915_gem_object_change_domain(obj,
obj->base.read_domains,
old_write_domain);
}
/**
* Moves a single object to the GTT read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
{
drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
uint32_t old_write_domain, old_read_domains;
int ret;
/* Not valid to be called on unbound objects. */
if (obj->gtt_space == NULL)
return -EINVAL;
if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
return 0;
ret = i915_gem_object_wait_rendering(obj, !write);
if (ret)
return ret;
i915_gem_object_flush_cpu_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_GTT;
obj->base.write_domain = I915_GEM_DOMAIN_GTT;
obj->dirty = 1;
}
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
/* And bump the LRU for this access */
if (i915_gem_object_is_inactive(obj))
list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
return 0;
}
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
enum i915_cache_level cache_level)
{
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (obj->cache_level == cache_level)
return 0;
if (obj->pin_count) {
DRM_DEBUG("can not change the cache level of pinned objects\n");
return -EBUSY;
}
if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
ret = i915_gem_object_unbind(obj);
if (ret)
return ret;
}
if (obj->gtt_space) {
ret = i915_gem_object_finish_gpu(obj);
if (ret)
return ret;
i915_gem_object_finish_gtt(obj);
/* Before SandyBridge, you could not use tiling or fence
* registers with snooped memory, so relinquish any fences
* currently pointing to our region in the aperture.
*/
if (INTEL_INFO(dev)->gen < 6) {
ret = i915_gem_object_put_fence(obj);
if (ret)
return ret;
}
if (obj->has_global_gtt_mapping)
i915_gem_gtt_bind_object(obj, cache_level);
if (obj->has_aliasing_ppgtt_mapping)
i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
obj, cache_level);
obj->gtt_space->color = cache_level;
}
if (cache_level == I915_CACHE_NONE) {
u32 old_read_domains, old_write_domain;
/* If we're coming from LLC cached, then we haven't
* actually been tracking whether the data is in the
* CPU cache or not, since we only allow one bit set
* in obj->write_domain and have been skipping the clflushes.
* Just set it to the CPU cache for now.
*/
WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
old_read_domains = obj->base.read_domains;
old_write_domain = obj->base.write_domain;
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
}
obj->cache_level = cache_level;
i915_gem_verify_gtt(dev);
return 0;
}
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
args->caching = obj->cache_level != I915_CACHE_NONE;
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_caching *args = data;
struct drm_i915_gem_object *obj;
enum i915_cache_level level;
int ret;
switch (args->caching) {
case I915_CACHING_NONE:
level = I915_CACHE_NONE;
break;
case I915_CACHING_CACHED:
level = I915_CACHE_LLC;
break;
default:
return -EINVAL;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
ret = i915_gem_object_set_cache_level(obj, level);
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
/*
* Prepare buffer for display plane (scanout, cursors, etc).
* Can be called from an uninterruptible phase (modesetting) and allows
* any flushes to be pipelined (for pageflips).
*/
int
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
u32 alignment,
struct intel_ring_buffer *pipelined)
{
u32 old_read_domains, old_write_domain;
int ret;
if (pipelined != obj->ring) {
ret = i915_gem_object_sync(obj, pipelined);
if (ret)
return ret;
}
/* The display engine is not coherent with the LLC cache on gen6. As
* a result, we make sure that the pinning that is about to occur is
* done with uncached PTEs. This is lowest common denominator for all
* chipsets.
*
* However for gen6+, we could do better by using the GFDT bit instead
* of uncaching, which would allow us to flush all the LLC-cached data
* with that bit in the PTE to main memory with just one PIPE_CONTROL.
*/
ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
if (ret)
return ret;
/* As the user may map the buffer once pinned in the display plane
* (e.g. libkms for the bootup splash), we have to ensure that we
* always use map_and_fenceable for all scanout buffers.
*/
ret = i915_gem_object_pin(obj, alignment, true, false);
if (ret)
return ret;
i915_gem_object_flush_cpu_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
obj->base.write_domain = 0;
obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
}
int
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
{
int ret;
if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
return 0;
ret = i915_gem_object_wait_rendering(obj, false);
if (ret)
return ret;
/* Ensure that we invalidate the GPU's caches and TLBs. */
obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
return 0;
}
/**
* Moves a single object to the CPU read, and possibly write domain.
*
* This function returns when the move is complete, including waiting on
* flushes to occur.
*/
int
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
{
uint32_t old_write_domain, old_read_domains;
int ret;
if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
return 0;
ret = i915_gem_object_wait_rendering(obj, !write);
if (ret)
return ret;
i915_gem_object_flush_gtt_write_domain(obj);
old_write_domain = obj->base.write_domain;
old_read_domains = obj->base.read_domains;
/* Flush the CPU cache if it's still invalid. */
if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
i915_gem_clflush_object(obj);
obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
}
/* It should now be out of any other write domains, and we can update
* the domain values for our changes.
*/
BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
/* If we're writing through the CPU, then the GPU read domains will
* need to be invalidated at next use.
*/
if (write) {
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}
trace_i915_gem_object_change_domain(obj,
old_read_domains,
old_write_domain);
return 0;
}
/* Throttle our rendering by waiting until the ring has completed our requests
* emitted over 20 msec ago.
*
* Note that if we were to use the current jiffies each time around the loop,
* we wouldn't escape the function with any frames outstanding if the time to
* render a frame was over 20ms.
*
* This should get us reasonable parallelism between CPU and GPU but also
* relatively low latency when blocking on a particular request to finish.
*/
static int
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_i915_file_private *file_priv = file->driver_priv;
unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
struct drm_i915_gem_request *request;
struct intel_ring_buffer *ring = NULL;
u32 seqno = 0;
int ret;
if (atomic_read(&dev_priv->mm.wedged))
return -EIO;
spin_lock(&file_priv->mm.lock);
list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
if (time_after_eq(request->emitted_jiffies, recent_enough))
break;
ring = request->ring;
seqno = request->seqno;
}
spin_unlock(&file_priv->mm.lock);
if (seqno == 0)
return 0;
ret = __wait_seqno(ring, seqno, true, NULL);
if (ret == 0)
queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
return ret;
}
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
uint32_t alignment,
bool map_and_fenceable,
bool nonblocking)
{
int ret;
if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
return -EBUSY;
if (obj->gtt_space != NULL) {
if ((alignment && obj->gtt_offset & (alignment - 1)) ||
(map_and_fenceable && !obj->map_and_fenceable)) {
WARN(obj->pin_count,
"bo is already pinned with incorrect alignment:"
" offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
" obj->map_and_fenceable=%d\n",
obj->gtt_offset, alignment,
map_and_fenceable,
obj->map_and_fenceable);
ret = i915_gem_object_unbind(obj);
if (ret)
return ret;
}
}
if (obj->gtt_space == NULL) {
ret = i915_gem_object_bind_to_gtt(obj, alignment,
map_and_fenceable,
nonblocking);
if (ret)
return ret;
}
if (!obj->has_global_gtt_mapping && map_and_fenceable)
i915_gem_gtt_bind_object(obj, obj->cache_level);
obj->pin_count++;
obj->pin_mappable |= map_and_fenceable;
return 0;
}
void
i915_gem_object_unpin(struct drm_i915_gem_object *obj)
{
BUG_ON(obj->pin_count == 0);
BUG_ON(obj->gtt_space == NULL);
if (--obj->pin_count == 0)
obj->pin_mappable = false;
}
int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pin *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->madv != I915_MADV_WILLNEED) {
DRM_ERROR("Attempting to pin a purgeable buffer\n");
ret = -EINVAL;
goto out;
}
if (obj->pin_filp != NULL && obj->pin_filp != file) {
DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
args->handle);
ret = -EINVAL;
goto out;
}
obj->user_pin_count++;
obj->pin_filp = file;
if (obj->user_pin_count == 1) {
ret = i915_gem_object_pin(obj, args->alignment, true, false);
if (ret)
goto out;
}
/* XXX - flush the CPU caches for pinned objects
* as the X server doesn't manage domains yet
*/
i915_gem_object_flush_cpu_write_domain(obj);
args->offset = obj->gtt_offset;
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_pin *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->pin_filp != file) {
DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
args->handle);
ret = -EINVAL;
goto out;
}
obj->user_pin_count--;
if (obj->user_pin_count == 0) {
obj->pin_filp = NULL;
i915_gem_object_unpin(obj);
}
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct drm_i915_gem_busy *args = data;
struct drm_i915_gem_object *obj;
int ret;
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
/* Count all active objects as busy, even if they are currently not used
* by the gpu. Users of this interface expect objects to eventually
* become non-busy without any further actions, therefore emit any
* necessary flushes here.
*/
ret = i915_gem_object_flush_active(obj);
args->busy = obj->active;
if (obj->ring) {
BUILD_BUG_ON(I915_NUM_RINGS > 16);
args->busy |= intel_ring_flag(obj->ring) << 16;
}
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
return i915_gem_ring_throttle(dev, file_priv);
}
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_i915_gem_madvise *args = data;
struct drm_i915_gem_object *obj;
int ret;
switch (args->madv) {
case I915_MADV_DONTNEED:
case I915_MADV_WILLNEED:
break;
default:
return -EINVAL;
}
ret = i915_mutex_lock_interruptible(dev);
if (ret)
return ret;
obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
if (&obj->base == NULL) {
ret = -ENOENT;
goto unlock;
}
if (obj->pin_count) {
ret = -EINVAL;
goto out;
}
if (obj->madv != __I915_MADV_PURGED)
obj->madv = args->madv;
/* if the object is no longer attached, discard its backing storage */
if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
i915_gem_object_truncate(obj);
args->retained = obj->madv != __I915_MADV_PURGED;
out:
drm_gem_object_unreference(&obj->base);
unlock:
mutex_unlock(&dev->struct_mutex);
return ret;
}
void i915_gem_object_init(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_object_ops *ops)
{
INIT_LIST_HEAD(&obj->mm_list);
INIT_LIST_HEAD(&obj->gtt_list);
INIT_LIST_HEAD(&obj->ring_list);
INIT_LIST_HEAD(&obj->exec_list);
obj->ops = ops;
obj->fence_reg = I915_FENCE_REG_NONE;
obj->madv = I915_MADV_WILLNEED;
/* Avoid an unnecessary call to unbind on the first bind. */
obj->map_and_fenceable = true;
i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
.get_pages = i915_gem_object_get_pages_gtt,
.put_pages = i915_gem_object_put_pages_gtt,
};
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
size_t size)
{
struct drm_i915_gem_object *obj;
struct address_space *mapping;
u32 mask;
obj = kzalloc(sizeof(*obj), GFP_KERNEL);
if (obj == NULL)
return NULL;
if (drm_gem_object_init(dev, &obj->base, size) != 0) {
kfree(obj);
return NULL;
}
mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
/* 965gm cannot relocate objects above 4GiB. */
mask &= ~__GFP_HIGHMEM;
mask |= __GFP_DMA32;
}
mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
mapping_set_gfp_mask(mapping, mask);
i915_gem_object_init(obj, &i915_gem_object_ops);
obj->base.write_domain = I915_GEM_DOMAIN_CPU;
obj->base.read_domains = I915_GEM_DOMAIN_CPU;
if (HAS_LLC(dev)) {
/* On some devices, we can have the GPU use the LLC (the CPU
* cache) for about a 10% performance improvement
* compared to uncached. Graphics requests other than
* display scanout are coherent with the CPU in
* accessing this cache. This means in this mode we
* don't need to clflush on the CPU side, and on the
* GPU side we only need to flush internal caches to
* get data visible to the CPU.
*
* However, we maintain the display planes as UC, and so
* need to rebind when first used as such.
*/
obj->cache_level = I915_CACHE_LLC;
} else
obj->cache_level = I915_CACHE_NONE;
return obj;
}
int i915_gem_init_object(struct drm_gem_object *obj)
{
BUG();
return 0;
}
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
struct drm_device *dev = obj->base.dev;
drm_i915_private_t *dev_priv = dev->dev_private;
trace_i915_gem_object_destroy(obj);
if (obj->phys_obj)
i915_gem_detach_phys_object(dev, obj);
obj->pin_count = 0;
if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
bool was_interruptible;
was_interruptible = dev_priv->mm.interruptible;
dev_priv->mm.interruptible = false;
WARN_ON(i915_gem_object_unbind(obj));
dev_priv->mm.interruptible = was_interruptible;
}
obj->pages_pin_count = 0;
i915_gem_object_put_pages(obj);
i915_gem_object_free_mmap_offset(obj);
BUG_ON(obj->pages);
if (obj->base.import_attach)
drm_prime_gem_destroy(&obj->base, NULL);
drm_gem_object_release(&obj->base);
i915_gem_info_remove_obj(dev_priv, obj->base.size);
kfree(obj->bit_17);
kfree(obj);
}
int
i915_gem_idle(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
mutex_lock(&dev->struct_mutex);
if (dev_priv->mm.suspended) {
mutex_unlock(&dev->struct_mutex);
return 0;
}
ret = i915_gpu_idle(dev);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
i915_gem_retire_requests(dev);
/* Under UMS, be paranoid and evict. */
if (!drm_core_check_feature(dev, DRIVER_MODESET))
i915_gem_evict_everything(dev);
i915_gem_reset_fences(dev);
/* Hack! Don't let anybody do execbuf while we don't control the chip.
* We need to replace this with a semaphore, or something.
* And not confound mm.suspended!
*/
dev_priv->mm.suspended = 1;
del_timer_sync(&dev_priv->hangcheck_timer);
i915_kernel_lost_context(dev);
i915_gem_cleanup_ringbuffer(dev);
mutex_unlock(&dev->struct_mutex);
/* Cancel the retire work handler, which should be idle now. */
cancel_delayed_work_sync(&dev_priv->mm.retire_work);
return 0;
}
void i915_gem_l3_remap(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
u32 misccpctl;
int i;
if (!IS_IVYBRIDGE(dev))
return;
if (!dev_priv->mm.l3_remap_info)
return;
misccpctl = I915_READ(GEN7_MISCCPCTL);
I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
POSTING_READ(GEN7_MISCCPCTL);
for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
DRM_DEBUG("0x%x was already programmed to %x\n",
GEN7_L3LOG_BASE + i, remap);
if (remap && !dev_priv->mm.l3_remap_info[i/4])
DRM_DEBUG_DRIVER("Clearing remapped register\n");
I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
}
/* Make sure all the writes land before disabling dop clock gating */
POSTING_READ(GEN7_L3LOG_BASE);
I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}
void i915_gem_init_swizzling(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
if (INTEL_INFO(dev)->gen < 5 ||
dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
return;
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
DISP_TILE_SURFACE_SWIZZLING);
if (IS_GEN5(dev))
return;
I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
if (IS_GEN6(dev))
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
else
I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
}
void i915_gem_init_ppgtt(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
uint32_t pd_offset;
struct intel_ring_buffer *ring;
struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
uint32_t __iomem *pd_addr;
uint32_t pd_entry;
int i;
if (!dev_priv->mm.aliasing_ppgtt)
return;
pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
for (i = 0; i < ppgtt->num_pd_entries; i++) {
dma_addr_t pt_addr;
if (dev_priv->mm.gtt->needs_dmar)
pt_addr = ppgtt->pt_dma_addr[i];
else
pt_addr = page_to_phys(ppgtt->pt_pages[i]);
pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
pd_entry |= GEN6_PDE_VALID;
writel(pd_entry, pd_addr + i);
}
readl(pd_addr);
pd_offset = ppgtt->pd_offset;
pd_offset /= 64; /* in cachelines, */
pd_offset <<= 16;
if (INTEL_INFO(dev)->gen == 6) {
uint32_t ecochk, gab_ctl, ecobits;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
gab_ctl = I915_READ(GAB_CTL);
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
ecochk = I915_READ(GAM_ECOCHK);
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
ECOCHK_PPGTT_CACHE64B);
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
} else if (INTEL_INFO(dev)->gen >= 7) {
I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
/* GFX_MODE is per-ring on gen7+ */
}
for_each_ring(ring, dev_priv, i) {
if (INTEL_INFO(dev)->gen >= 7)
I915_WRITE(RING_MODE_GEN7(ring),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
}
}
static bool
intel_enable_blt(struct drm_device *dev)
{
if (!HAS_BLT(dev))
return false;
/* The blitter was dysfunctional on early prototypes */
if (IS_GEN6(dev) && dev->pdev->revision < 8) {
DRM_INFO("BLT not supported on this pre-production hardware;"
" graphics performance will be degraded.\n");
return false;
}
return true;
}
int
i915_gem_init_hw(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (!intel_enable_gtt())
return -EIO;
if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
i915_gem_l3_remap(dev);
i915_gem_init_swizzling(dev);
ret = intel_init_render_ring_buffer(dev);
if (ret)
return ret;
if (HAS_BSD(dev)) {
ret = intel_init_bsd_ring_buffer(dev);
if (ret)
goto cleanup_render_ring;
}
if (intel_enable_blt(dev)) {
ret = intel_init_blt_ring_buffer(dev);
if (ret)
goto cleanup_bsd_ring;
}
dev_priv->next_seqno = 1;
/*
* XXX: There was some w/a described somewhere suggesting loading
* contexts before PPGTT.
*/
i915_gem_context_init(dev);
i915_gem_init_ppgtt(dev);
return 0;
cleanup_bsd_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
return ret;
}
static bool
intel_enable_ppgtt(struct drm_device *dev)
{
if (i915_enable_ppgtt >= 0)
return i915_enable_ppgtt;
#ifdef CONFIG_INTEL_IOMMU
/* Disable ppgtt on SNB if VT-d is on. */
if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
return false;
#endif
return true;
}
int i915_gem_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long gtt_size, mappable_size;
int ret;
gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
mutex_lock(&dev->struct_mutex);
if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
/* PPGTT pdes are stolen from global gtt ptes, so shrink the
* aperture accordingly when using aliasing ppgtt. */
gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
ret = i915_gem_init_aliasing_ppgtt(dev);
if (ret) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
} else {
/* Let GEM Manage all of the aperture.
*
* However, leave one page at the end still bound to the scratch
* page. There are a number of places where the hardware
* apparently prefetches past the end of the object, and we've
* seen multiple hangs with the GPU head pointer stuck in a
* batchbuffer bound at the last page of the aperture. One page
* should be enough to keep any prefetching inside of the
* aperture.
*/
i915_gem_init_global_gtt(dev, 0, mappable_size,
gtt_size);
}
ret = i915_gem_init_hw(dev);
mutex_unlock(&dev->struct_mutex);
if (ret) {
i915_gem_cleanup_aliasing_ppgtt(dev);
return ret;
}
/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
if (!drm_core_check_feature(dev, DRIVER_MODESET))
dev_priv->dri1.allow_batchbuffer = 1;
return 0;
}
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct intel_ring_buffer *ring;
int i;
for_each_ring(ring, dev_priv, i)
intel_cleanup_ring_buffer(ring);
}
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
drm_i915_private_t *dev_priv = dev->dev_private;
int ret;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
if (atomic_read(&dev_priv->mm.wedged)) {
DRM_ERROR("Reenabling wedged hardware, good luck\n");
atomic_set(&dev_priv->mm.wedged, 0);
}
mutex_lock(&dev->struct_mutex);
dev_priv->mm.suspended = 0;
ret = i915_gem_init_hw(dev);
if (ret != 0) {
mutex_unlock(&dev->struct_mutex);
return ret;
}
BUG_ON(!list_empty(&dev_priv->mm.active_list));
mutex_unlock(&dev->struct_mutex);
ret = drm_irq_install(dev);
if (ret)
goto cleanup_ringbuffer;
return 0;
cleanup_ringbuffer:
mutex_lock(&dev->struct_mutex);
i915_gem_cleanup_ringbuffer(dev);
dev_priv->mm.suspended = 1;
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
if (drm_core_check_feature(dev, DRIVER_MODESET))
return 0;
drm_irq_uninstall(dev);
return i915_gem_idle(dev);
}
void
i915_gem_lastclose(struct drm_device *dev)
{
int ret;
if (drm_core_check_feature(dev, DRIVER_MODESET))
return;
ret = i915_gem_idle(dev);
if (ret)
DRM_ERROR("failed to idle hardware: %d\n", ret);
}
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
INIT_LIST_HEAD(&ring->active_list);
INIT_LIST_HEAD(&ring->request_list);
}
void
i915_gem_load(struct drm_device *dev)
{
int i;
drm_i915_private_t *dev_priv = dev->dev_private;
INIT_LIST_HEAD(&dev_priv->mm.active_list);
INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
INIT_LIST_HEAD(&dev_priv->mm.bound_list);
INIT_LIST_HEAD(&dev_priv->mm.fence_list);
for (i = 0; i < I915_NUM_RINGS; i++)
init_ring_lists(&dev_priv->ring[i]);
for (i = 0; i < I915_MAX_NUM_FENCES; i++)
INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
i915_gem_retire_work_handler);
init_completion(&dev_priv->error_completion);
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
if (IS_GEN3(dev)) {
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
}
dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
/* Old X drivers will take 0-2 for front, back, depth buffers */
if (!drm_core_check_feature(dev, DRIVER_MODESET))
dev_priv->fence_reg_start = 3;
if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
dev_priv->num_fence_regs = 16;
else
dev_priv->num_fence_regs = 8;
/* Initialize fence registers to zero */
i915_gem_reset_fences(dev);
i915_gem_detect_bit_6_swizzle(dev);
init_waitqueue_head(&dev_priv->pending_flip_queue);
dev_priv->mm.interruptible = true;
dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
register_shrinker(&dev_priv->mm.inactive_shrinker);
}
/*
* Create a physically contiguous memory object for this object
* e.g. for cursor + overlay regs
*/
static int i915_gem_init_phys_object(struct drm_device *dev,
int id, int size, int align)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_phys_object *phys_obj;
int ret;
if (dev_priv->mm.phys_objs[id - 1] || !size)
return 0;
phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
if (!phys_obj)
return -ENOMEM;
phys_obj->id = id;
phys_obj->handle = drm_pci_alloc(dev, size, align);
if (!phys_obj->handle) {
ret = -ENOMEM;
goto kfree_obj;
}
#ifdef CONFIG_X86
set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
dev_priv->mm.phys_objs[id - 1] = phys_obj;
return 0;
kfree_obj:
kfree(phys_obj);
return ret;
}
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_phys_object *phys_obj;
if (!dev_priv->mm.phys_objs[id - 1])
return;
phys_obj = dev_priv->mm.phys_objs[id - 1];
if (phys_obj->cur_obj) {
i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
}
#ifdef CONFIG_X86
set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
drm_pci_free(dev, phys_obj->handle);
kfree(phys_obj);
dev_priv->mm.phys_objs[id - 1] = NULL;
}
void i915_gem_free_all_phys_object(struct drm_device *dev)
{
int i;
for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
i915_gem_free_phys_object(dev, i);
}
void i915_gem_detach_phys_object(struct drm_device *dev,
struct drm_i915_gem_object *obj)
{
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
char *vaddr;
int i;
int page_count;
if (!obj->phys_obj)
return;
vaddr = obj->phys_obj->handle->vaddr;
page_count = obj->base.size / PAGE_SIZE;
for (i = 0; i < page_count; i++) {
struct page *page = shmem_read_mapping_page(mapping, i);
if (!IS_ERR(page)) {
char *dst = kmap_atomic(page);
memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
kunmap_atomic(dst);
drm_clflush_pages(&page, 1);
set_page_dirty(page);
mark_page_accessed(page);
page_cache_release(page);
}
}
intel_gtt_chipset_flush();
obj->phys_obj->cur_obj = NULL;
obj->phys_obj = NULL;
}
int
i915_gem_attach_phys_object(struct drm_device *dev,
struct drm_i915_gem_object *obj,
int id,
int align)
{
struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
drm_i915_private_t *dev_priv = dev->dev_private;
int ret = 0;
int page_count;
int i;
if (id > I915_MAX_PHYS_OBJECT)
return -EINVAL;
if (obj->phys_obj) {
if (obj->phys_obj->id == id)
return 0;
i915_gem_detach_phys_object(dev, obj);
}
/* create a new object */
if (!dev_priv->mm.phys_objs[id - 1]) {
ret = i915_gem_init_phys_object(dev, id,
obj->base.size, align);
if (ret) {
DRM_ERROR("failed to init phys object %d size: %zu\n",
id, obj->base.size);
return ret;
}
}
/* bind to the object */
obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
obj->phys_obj->cur_obj = obj;
page_count = obj->base.size / PAGE_SIZE;
for (i = 0; i < page_count; i++) {
struct page *page;
char *dst, *src;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
return PTR_ERR(page);
src = kmap_atomic(page);
dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
memcpy(dst, src, PAGE_SIZE);
kunmap_atomic(src);
mark_page_accessed(page);
page_cache_release(page);
}
return 0;
}
static int
i915_gem_phys_pwrite(struct drm_device *dev,
struct drm_i915_gem_object *obj,
struct drm_i915_gem_pwrite *args,
struct drm_file *file_priv)
{
void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
unsigned long unwritten;
/* The physical object once assigned is fixed for the lifetime
* of the obj, so we can safely drop the lock and continue
* to access vaddr.
*/
mutex_unlock(&dev->struct_mutex);
unwritten = copy_from_user(vaddr, user_data, args->size);
mutex_lock(&dev->struct_mutex);
if (unwritten)
return -EFAULT;
}
intel_gtt_chipset_flush();
return 0;
}
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
{
struct drm_i915_file_private *file_priv = file->driver_priv;
/* Clean up our request list when the client is going away, so that
* later retire_requests won't dereference our soon-to-be-gone
* file_priv.
*/
spin_lock(&file_priv->mm.lock);
while (!list_empty(&file_priv->mm.request_list)) {
struct drm_i915_gem_request *request;
request = list_first_entry(&file_priv->mm.request_list,
struct drm_i915_gem_request,
client_list);
list_del(&request->client_list);
request->file_priv = NULL;
}
spin_unlock(&file_priv->mm.lock);
}
static int
i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
{
struct drm_i915_private *dev_priv =
container_of(shrinker,
struct drm_i915_private,
mm.inactive_shrinker);
struct drm_device *dev = dev_priv->dev;
struct drm_i915_gem_object *obj;
int nr_to_scan = sc->nr_to_scan;
int cnt;
if (!mutex_trylock(&dev->struct_mutex))
return 0;
if (nr_to_scan) {
nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
if (nr_to_scan > 0)
i915_gem_shrink_all(dev_priv);
}
cnt = 0;
list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
if (obj->pages_pin_count == 0)
cnt += obj->base.size >> PAGE_SHIFT;
list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
if (obj->pin_count == 0 && obj->pages_pin_count == 0)
cnt += obj->base.size >> PAGE_SHIFT;
mutex_unlock(&dev->struct_mutex);
return cnt;
}