OpenCloudOS-Kernel/drivers/media/i2c/mt9v111.c

1279 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* V4L2 sensor driver for Aptina MT9V111 image sensor
* Copyright (C) 2018 Jacopo Mondi <jacopo@jmondi.org>
*
* Based on mt9v032 driver
* Copyright (C) 2010, Laurent Pinchart <laurent.pinchart@ideasonboard.com>
* Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
*
* Based on mt9v011 driver
* Copyright (c) 2009 Mauro Carvalho Chehab <mchehab@kernel.org>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/videodev2.h>
#include <linux/v4l2-mediabus.h>
#include <linux/module.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-image-sizes.h>
#include <media/v4l2-subdev.h>
/*
* MT9V111 is a 1/4-Inch CMOS digital image sensor with an integrated
* Image Flow Processing (IFP) engine and a sensor core loosely based on
* MT9V011.
*
* The IFP can produce several output image formats from the sensor core
* output. This driver currently supports only YUYV format permutations.
*
* The driver allows manual frame rate control through s_frame_interval subdev
* operation or V4L2_CID_V/HBLANK controls, but it is known that the
* auto-exposure algorithm might modify the programmed frame rate. While the
* driver initially programs the sensor with auto-exposure and
* auto-white-balancing enabled, it is possible to disable them and more
* precisely control the frame rate.
*
* While it seems possible to instruct the auto-exposure control algorithm to
* respect a programmed frame rate when adjusting the pixel integration time,
* registers controlling this feature are not documented in the public
* available sensor manual used to develop this driver (09005aef80e90084,
* MT9V111_1.fm - Rev. G 1/05 EN).
*/
#define MT9V111_CHIP_ID_HIGH 0x82
#define MT9V111_CHIP_ID_LOW 0x3a
#define MT9V111_R01_ADDR_SPACE 0x01
#define MT9V111_R01_IFP 0x01
#define MT9V111_R01_CORE 0x04
#define MT9V111_IFP_R06_OPMODE_CTRL 0x06
#define MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN BIT(1)
#define MT9V111_IFP_R06_OPMODE_CTRL_AE_EN BIT(14)
#define MT9V111_IFP_R07_IFP_RESET 0x07
#define MT9V111_IFP_R07_IFP_RESET_MASK BIT(0)
#define MT9V111_IFP_R08_OUTFMT_CTRL 0x08
#define MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER BIT(11)
#define MT9V111_IFP_R08_OUTFMT_CTRL_PCLK BIT(5)
#define MT9V111_IFP_R3A_OUTFMT_CTRL2 0x3a
#define MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR BIT(0)
#define MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC BIT(1)
#define MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_MASK GENMASK(2, 0)
#define MT9V111_IFP_RA5_HPAN 0xa5
#define MT9V111_IFP_RA6_HZOOM 0xa6
#define MT9V111_IFP_RA7_HOUT 0xa7
#define MT9V111_IFP_RA8_VPAN 0xa8
#define MT9V111_IFP_RA9_VZOOM 0xa9
#define MT9V111_IFP_RAA_VOUT 0xaa
#define MT9V111_IFP_DECIMATION_MASK GENMASK(9, 0)
#define MT9V111_IFP_DECIMATION_FREEZE BIT(15)
#define MT9V111_CORE_R03_WIN_HEIGHT 0x03
#define MT9V111_CORE_R03_WIN_V_OFFS 2
#define MT9V111_CORE_R04_WIN_WIDTH 0x04
#define MT9V111_CORE_R04_WIN_H_OFFS 114
#define MT9V111_CORE_R05_HBLANK 0x05
#define MT9V111_CORE_R05_MIN_HBLANK 0x09
#define MT9V111_CORE_R05_MAX_HBLANK GENMASK(9, 0)
#define MT9V111_CORE_R05_DEF_HBLANK 0x26
#define MT9V111_CORE_R06_VBLANK 0x06
#define MT9V111_CORE_R06_MIN_VBLANK 0x03
#define MT9V111_CORE_R06_MAX_VBLANK GENMASK(11, 0)
#define MT9V111_CORE_R06_DEF_VBLANK 0x04
#define MT9V111_CORE_R07_OUT_CTRL 0x07
#define MT9V111_CORE_R07_OUT_CTRL_SAMPLE BIT(4)
#define MT9V111_CORE_R09_PIXEL_INT 0x09
#define MT9V111_CORE_R09_PIXEL_INT_MASK GENMASK(11, 0)
#define MT9V111_CORE_R0D_CORE_RESET 0x0d
#define MT9V111_CORE_R0D_CORE_RESET_MASK BIT(0)
#define MT9V111_CORE_RFF_CHIP_VER 0xff
#define MT9V111_PIXEL_ARRAY_WIDTH 640
#define MT9V111_PIXEL_ARRAY_HEIGHT 480
#define MT9V111_MAX_CLKIN 27000000
/* The default sensor configuration at startup time. */
static const struct v4l2_mbus_framefmt mt9v111_def_fmt = {
.width = 640,
.height = 480,
.code = MEDIA_BUS_FMT_UYVY8_2X8,
.field = V4L2_FIELD_NONE,
.colorspace = V4L2_COLORSPACE_SRGB,
.ycbcr_enc = V4L2_YCBCR_ENC_601,
.quantization = V4L2_QUANTIZATION_LIM_RANGE,
.xfer_func = V4L2_XFER_FUNC_SRGB,
};
struct mt9v111_dev {
struct device *dev;
struct i2c_client *client;
u8 addr_space;
struct v4l2_subdev sd;
#if IS_ENABLED(CONFIG_MEDIA_CONTROLLER)
struct media_pad pad;
#endif
struct v4l2_ctrl *auto_awb;
struct v4l2_ctrl *auto_exp;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *vblank;
struct v4l2_ctrl_handler ctrls;
/* Output image format and sizes. */
struct v4l2_mbus_framefmt fmt;
unsigned int fps;
/* Protects power up/down sequences. */
struct mutex pwr_mutex;
int pwr_count;
/* Protects stream on/off sequences. */
struct mutex stream_mutex;
bool streaming;
/* Flags to mark HW settings as not yet applied. */
bool pending;
/* Clock provider and system clock frequency. */
struct clk *clk;
u32 sysclk;
struct gpio_desc *oe;
struct gpio_desc *standby;
struct gpio_desc *reset;
};
#define sd_to_mt9v111(__sd) container_of((__sd), struct mt9v111_dev, sd)
/*
* mt9v111_mbus_fmt - List all media bus formats supported by the driver.
*
* Only list the media bus code here. The image sizes are freely configurable
* in the pixel array sizes range.
*
* The desired frame interval, in the supported frame interval range, is
* obtained by configuring blanking as the sensor does not have a PLL but
* only a fixed clock divider that generates the output pixel clock.
*/
static struct mt9v111_mbus_fmt {
u32 code;
} mt9v111_formats[] = {
{
.code = MEDIA_BUS_FMT_UYVY8_2X8,
},
{
.code = MEDIA_BUS_FMT_YUYV8_2X8,
},
{
.code = MEDIA_BUS_FMT_VYUY8_2X8,
},
{
.code = MEDIA_BUS_FMT_YVYU8_2X8,
},
};
static u32 mt9v111_frame_intervals[] = {5, 10, 15, 20, 30};
/*
* mt9v111_frame_sizes - List sensor's supported resolutions.
*
* Resolution generated through decimation in the IFP block from the
* full VGA pixel array.
*/
static struct v4l2_rect mt9v111_frame_sizes[] = {
{
.width = 640,
.height = 480,
},
{
.width = 352,
.height = 288
},
{
.width = 320,
.height = 240,
},
{
.width = 176,
.height = 144,
},
{
.width = 160,
.height = 120,
},
};
/* --- Device I/O access --- */
static int __mt9v111_read(struct i2c_client *c, u8 reg, u16 *val)
{
struct i2c_msg msg[2];
__be16 buf;
int ret;
msg[0].addr = c->addr;
msg[0].flags = 0;
msg[0].len = 1;
msg[0].buf = &reg;
msg[1].addr = c->addr;
msg[1].flags = I2C_M_RD;
msg[1].len = 2;
msg[1].buf = (char *)&buf;
ret = i2c_transfer(c->adapter, msg, 2);
if (ret < 0) {
dev_err(&c->dev, "i2c read transfer error: %d\n", ret);
return ret;
}
*val = be16_to_cpu(buf);
dev_dbg(&c->dev, "%s: %x=%x\n", __func__, reg, *val);
return 0;
}
static int __mt9v111_write(struct i2c_client *c, u8 reg, u16 val)
{
struct i2c_msg msg;
u8 buf[3] = { 0 };
int ret;
buf[0] = reg;
buf[1] = val >> 8;
buf[2] = val & 0xff;
msg.addr = c->addr;
msg.flags = 0;
msg.len = 3;
msg.buf = (char *)buf;
dev_dbg(&c->dev, "%s: %x = %x%x\n", __func__, reg, buf[1], buf[2]);
ret = i2c_transfer(c->adapter, &msg, 1);
if (ret < 0) {
dev_err(&c->dev, "i2c write transfer error: %d\n", ret);
return ret;
}
return 0;
}
static int __mt9v111_addr_space_select(struct i2c_client *c, u16 addr_space)
{
struct v4l2_subdev *sd = i2c_get_clientdata(c);
struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
u16 val;
int ret;
if (mt9v111->addr_space == addr_space)
return 0;
ret = __mt9v111_write(c, MT9V111_R01_ADDR_SPACE, addr_space);
if (ret)
return ret;
/* Verify address space has been updated */
ret = __mt9v111_read(c, MT9V111_R01_ADDR_SPACE, &val);
if (ret)
return ret;
if (val != addr_space)
return -EINVAL;
mt9v111->addr_space = addr_space;
return 0;
}
static int mt9v111_read(struct i2c_client *c, u8 addr_space, u8 reg, u16 *val)
{
int ret;
/* Select register address space first. */
ret = __mt9v111_addr_space_select(c, addr_space);
if (ret)
return ret;
ret = __mt9v111_read(c, reg, val);
if (ret)
return ret;
return 0;
}
static int mt9v111_write(struct i2c_client *c, u8 addr_space, u8 reg, u16 val)
{
int ret;
/* Select register address space first. */
ret = __mt9v111_addr_space_select(c, addr_space);
if (ret)
return ret;
ret = __mt9v111_write(c, reg, val);
if (ret)
return ret;
return 0;
}
static int mt9v111_update(struct i2c_client *c, u8 addr_space, u8 reg,
u16 mask, u16 val)
{
u16 current_val;
int ret;
/* Select register address space first. */
ret = __mt9v111_addr_space_select(c, addr_space);
if (ret)
return ret;
/* Read the current register value, then update it. */
ret = __mt9v111_read(c, reg, &current_val);
if (ret)
return ret;
current_val &= ~mask;
current_val |= (val & mask);
ret = __mt9v111_write(c, reg, current_val);
if (ret)
return ret;
return 0;
}
/* --- Sensor HW operations --- */
static int __mt9v111_power_on(struct v4l2_subdev *sd)
{
struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
int ret;
ret = clk_prepare_enable(mt9v111->clk);
if (ret)
return ret;
clk_set_rate(mt9v111->clk, mt9v111->sysclk);
gpiod_set_value(mt9v111->standby, 0);
usleep_range(500, 1000);
gpiod_set_value(mt9v111->oe, 1);
usleep_range(500, 1000);
return 0;
}
static int __mt9v111_power_off(struct v4l2_subdev *sd)
{
struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
gpiod_set_value(mt9v111->oe, 0);
usleep_range(500, 1000);
gpiod_set_value(mt9v111->standby, 1);
usleep_range(500, 1000);
clk_disable_unprepare(mt9v111->clk);
return 0;
}
static int __mt9v111_hw_reset(struct mt9v111_dev *mt9v111)
{
if (!mt9v111->reset)
return -EINVAL;
gpiod_set_value(mt9v111->reset, 1);
usleep_range(500, 1000);
gpiod_set_value(mt9v111->reset, 0);
usleep_range(500, 1000);
return 0;
}
static int __mt9v111_sw_reset(struct mt9v111_dev *mt9v111)
{
struct i2c_client *c = mt9v111->client;
int ret;
/* Software reset core and IFP blocks. */
ret = mt9v111_update(c, MT9V111_R01_CORE,
MT9V111_CORE_R0D_CORE_RESET,
MT9V111_CORE_R0D_CORE_RESET_MASK, 1);
if (ret)
return ret;
usleep_range(500, 1000);
ret = mt9v111_update(c, MT9V111_R01_CORE,
MT9V111_CORE_R0D_CORE_RESET,
MT9V111_CORE_R0D_CORE_RESET_MASK, 0);
if (ret)
return ret;
usleep_range(500, 1000);
ret = mt9v111_update(c, MT9V111_R01_IFP,
MT9V111_IFP_R07_IFP_RESET,
MT9V111_IFP_R07_IFP_RESET_MASK, 1);
if (ret)
return ret;
usleep_range(500, 1000);
ret = mt9v111_update(c, MT9V111_R01_IFP,
MT9V111_IFP_R07_IFP_RESET,
MT9V111_IFP_R07_IFP_RESET_MASK, 0);
if (ret)
return ret;
usleep_range(500, 1000);
return 0;
}
static int mt9v111_calc_frame_rate(struct mt9v111_dev *mt9v111,
struct v4l2_fract *tpf)
{
unsigned int fps = tpf->numerator ?
tpf->denominator / tpf->numerator :
tpf->denominator;
unsigned int best_diff;
unsigned int frm_cols;
unsigned int row_pclk;
unsigned int best_fps;
unsigned int pclk;
unsigned int diff;
unsigned int idx;
unsigned int hb;
unsigned int vb;
unsigned int i;
int ret;
/* Approximate to the closest supported frame interval. */
best_diff = ~0L;
for (i = 0, idx = 0; i < ARRAY_SIZE(mt9v111_frame_intervals); i++) {
diff = abs(fps - mt9v111_frame_intervals[i]);
if (diff < best_diff) {
idx = i;
best_diff = diff;
}
}
fps = mt9v111_frame_intervals[idx];
/*
* The sensor does not provide a PLL circuitry and pixel clock is
* generated dividing the master clock source by two.
*
* Trow = (W + Hblank + 114) * 2 * (1 / SYSCLK)
* TFrame = Trow * (H + Vblank + 2)
*
* FPS = (SYSCLK / 2) / (Trow * (H + Vblank + 2))
*
* This boils down to tune H and V blanks to best approximate the
* above equation.
*
* Test all available H/V blank values, until we reach the
* desired frame rate.
*/
best_fps = vb = hb = 0;
pclk = DIV_ROUND_CLOSEST(mt9v111->sysclk, 2);
row_pclk = MT9V111_PIXEL_ARRAY_WIDTH + 7 + MT9V111_CORE_R04_WIN_H_OFFS;
frm_cols = MT9V111_PIXEL_ARRAY_HEIGHT + 7 + MT9V111_CORE_R03_WIN_V_OFFS;
best_diff = ~0L;
for (vb = MT9V111_CORE_R06_MIN_VBLANK;
vb < MT9V111_CORE_R06_MAX_VBLANK; vb++) {
for (hb = MT9V111_CORE_R05_MIN_HBLANK;
hb < MT9V111_CORE_R05_MAX_HBLANK; hb += 10) {
unsigned int t_frame = (row_pclk + hb) *
(frm_cols + vb);
unsigned int t_fps = DIV_ROUND_CLOSEST(pclk, t_frame);
diff = abs(fps - t_fps);
if (diff < best_diff) {
best_diff = diff;
best_fps = t_fps;
if (diff == 0)
break;
}
}
if (diff == 0)
break;
}
ret = v4l2_ctrl_s_ctrl_int64(mt9v111->hblank, hb);
if (ret)
return ret;
ret = v4l2_ctrl_s_ctrl_int64(mt9v111->vblank, vb);
if (ret)
return ret;
tpf->numerator = 1;
tpf->denominator = best_fps;
return 0;
}
static int mt9v111_hw_config(struct mt9v111_dev *mt9v111)
{
struct i2c_client *c = mt9v111->client;
unsigned int ret;
u16 outfmtctrl2;
/* Force device reset. */
ret = __mt9v111_hw_reset(mt9v111);
if (ret == -EINVAL)
ret = __mt9v111_sw_reset(mt9v111);
if (ret)
return ret;
/* Configure internal clock sample rate. */
ret = mt9v111->sysclk < DIV_ROUND_CLOSEST(MT9V111_MAX_CLKIN, 2) ?
mt9v111_update(c, MT9V111_R01_CORE,
MT9V111_CORE_R07_OUT_CTRL,
MT9V111_CORE_R07_OUT_CTRL_SAMPLE, 1) :
mt9v111_update(c, MT9V111_R01_CORE,
MT9V111_CORE_R07_OUT_CTRL,
MT9V111_CORE_R07_OUT_CTRL_SAMPLE, 0);
if (ret)
return ret;
/*
* Configure output image format components ordering.
*
* TODO: IFP block can also output several RGB permutations, we only
* support YUYV permutations at the moment.
*/
switch (mt9v111->fmt.code) {
case MEDIA_BUS_FMT_YUYV8_2X8:
outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC;
break;
case MEDIA_BUS_FMT_VYUY8_2X8:
outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR;
break;
case MEDIA_BUS_FMT_YVYU8_2X8:
outfmtctrl2 = MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_YC |
MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_CBCR;
break;
case MEDIA_BUS_FMT_UYVY8_2X8:
default:
outfmtctrl2 = 0;
break;
}
ret = mt9v111_update(c, MT9V111_R01_IFP, MT9V111_IFP_R3A_OUTFMT_CTRL2,
MT9V111_IFP_R3A_OUTFMT_CTRL2_SWAP_MASK,
outfmtctrl2);
if (ret)
return ret;
/*
* Do not change default sensor's core configuration:
* output the whole 640x480 pixel array, skip 18 columns and 6 rows.
*
* Instead, control the output image size through IFP block.
*
* TODO: No zoom&pan support. Currently we control the output image
* size only through decimation, with no zoom support.
*/
ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA5_HPAN,
MT9V111_IFP_DECIMATION_FREEZE);
if (ret)
return ret;
ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA8_VPAN,
MT9V111_IFP_DECIMATION_FREEZE);
if (ret)
return ret;
ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA6_HZOOM,
MT9V111_IFP_DECIMATION_FREEZE |
MT9V111_PIXEL_ARRAY_WIDTH);
if (ret)
return ret;
ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA9_VZOOM,
MT9V111_IFP_DECIMATION_FREEZE |
MT9V111_PIXEL_ARRAY_HEIGHT);
if (ret)
return ret;
ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RA7_HOUT,
MT9V111_IFP_DECIMATION_FREEZE |
mt9v111->fmt.width);
if (ret)
return ret;
ret = mt9v111_write(c, MT9V111_R01_IFP, MT9V111_IFP_RAA_VOUT,
mt9v111->fmt.height);
if (ret)
return ret;
/* Apply controls to set auto exp, auto awb and timings */
ret = v4l2_ctrl_handler_setup(&mt9v111->ctrls);
if (ret)
return ret;
/*
* Set pixel integration time to the whole frame time.
* This value controls the the shutter delay when running with AE
* disabled. If longer than frame time, it affects the output
* frame rate.
*/
return mt9v111_write(c, MT9V111_R01_CORE, MT9V111_CORE_R09_PIXEL_INT,
MT9V111_PIXEL_ARRAY_HEIGHT);
}
/* --- V4L2 subdev operations --- */
static int mt9v111_s_power(struct v4l2_subdev *sd, int on)
{
struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
int pwr_count;
int ret = 0;
mutex_lock(&mt9v111->pwr_mutex);
/*
* Make sure we're transitioning from 0 to 1, or viceversa,
* before actually changing the power state.
*/
pwr_count = mt9v111->pwr_count;
pwr_count += on ? 1 : -1;
if (pwr_count == !!on) {
ret = on ? __mt9v111_power_on(sd) :
__mt9v111_power_off(sd);
if (!ret)
/* All went well, updated power counter. */
mt9v111->pwr_count = pwr_count;
mutex_unlock(&mt9v111->pwr_mutex);
return ret;
}
/*
* Update power counter to keep track of how many nested calls we
* received.
*/
WARN_ON(pwr_count < 0 || pwr_count > 1);
mt9v111->pwr_count = pwr_count;
mutex_unlock(&mt9v111->pwr_mutex);
return ret;
}
static int mt9v111_s_stream(struct v4l2_subdev *subdev, int enable)
{
struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
int ret;
mutex_lock(&mt9v111->stream_mutex);
if (mt9v111->streaming == enable) {
mutex_unlock(&mt9v111->stream_mutex);
return 0;
}
ret = mt9v111_s_power(subdev, enable);
if (ret)
goto error_unlock;
if (enable && mt9v111->pending) {
ret = mt9v111_hw_config(mt9v111);
if (ret)
goto error_unlock;
/*
* No need to update control here as far as only H/VBLANK are
* supported and immediately programmed to registers in .s_ctrl
*/
mt9v111->pending = false;
}
mt9v111->streaming = enable ? true : false;
mutex_unlock(&mt9v111->stream_mutex);
return 0;
error_unlock:
mutex_unlock(&mt9v111->stream_mutex);
return ret;
}
static int mt9v111_s_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *ival)
{
struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
struct v4l2_fract *tpf = &ival->interval;
unsigned int fps = tpf->numerator ?
tpf->denominator / tpf->numerator :
tpf->denominator;
unsigned int max_fps;
if (!tpf->numerator)
tpf->numerator = 1;
mutex_lock(&mt9v111->stream_mutex);
if (mt9v111->streaming) {
mutex_unlock(&mt9v111->stream_mutex);
return -EBUSY;
}
if (mt9v111->fps == fps) {
mutex_unlock(&mt9v111->stream_mutex);
return 0;
}
/* Make sure frame rate/image sizes constraints are respected. */
if (mt9v111->fmt.width < QVGA_WIDTH &&
mt9v111->fmt.height < QVGA_HEIGHT)
max_fps = 90;
else if (mt9v111->fmt.width < CIF_WIDTH &&
mt9v111->fmt.height < CIF_HEIGHT)
max_fps = 60;
else
max_fps = mt9v111->sysclk <
DIV_ROUND_CLOSEST(MT9V111_MAX_CLKIN, 2) ? 15 :
30;
if (fps > max_fps) {
mutex_unlock(&mt9v111->stream_mutex);
return -EINVAL;
}
mt9v111_calc_frame_rate(mt9v111, tpf);
mt9v111->fps = fps;
mt9v111->pending = true;
mutex_unlock(&mt9v111->stream_mutex);
return 0;
}
static int mt9v111_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *ival)
{
struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
struct v4l2_fract *tpf = &ival->interval;
mutex_lock(&mt9v111->stream_mutex);
tpf->numerator = 1;
tpf->denominator = mt9v111->fps;
mutex_unlock(&mt9v111->stream_mutex);
return 0;
}
static struct v4l2_mbus_framefmt *__mt9v111_get_pad_format(
struct mt9v111_dev *mt9v111,
struct v4l2_subdev_state *sd_state,
unsigned int pad,
enum v4l2_subdev_format_whence which)
{
switch (which) {
case V4L2_SUBDEV_FORMAT_TRY:
#if IS_ENABLED(CONFIG_VIDEO_V4L2_SUBDEV_API)
return v4l2_subdev_get_try_format(&mt9v111->sd, sd_state, pad);
#else
return &sd_state->pads->try_fmt;
#endif
case V4L2_SUBDEV_FORMAT_ACTIVE:
return &mt9v111->fmt;
default:
return NULL;
}
}
static int mt9v111_enum_mbus_code(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->pad || code->index > ARRAY_SIZE(mt9v111_formats) - 1)
return -EINVAL;
code->code = mt9v111_formats[code->index].code;
return 0;
}
static int mt9v111_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
{
unsigned int i;
if (fie->pad || fie->index >= ARRAY_SIZE(mt9v111_frame_intervals))
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(mt9v111_frame_sizes); i++)
if (fie->width == mt9v111_frame_sizes[i].width &&
fie->height == mt9v111_frame_sizes[i].height)
break;
if (i == ARRAY_SIZE(mt9v111_frame_sizes))
return -EINVAL;
fie->interval.numerator = 1;
fie->interval.denominator = mt9v111_frame_intervals[fie->index];
return 0;
}
static int mt9v111_enum_frame_size(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->pad || fse->index >= ARRAY_SIZE(mt9v111_frame_sizes))
return -EINVAL;
fse->min_width = mt9v111_frame_sizes[fse->index].width;
fse->max_width = mt9v111_frame_sizes[fse->index].width;
fse->min_height = mt9v111_frame_sizes[fse->index].height;
fse->max_height = mt9v111_frame_sizes[fse->index].height;
return 0;
}
static int mt9v111_get_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
if (format->pad)
return -EINVAL;
mutex_lock(&mt9v111->stream_mutex);
format->format = *__mt9v111_get_pad_format(mt9v111, sd_state,
format->pad,
format->which);
mutex_unlock(&mt9v111->stream_mutex);
return 0;
}
static int mt9v111_set_format(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *format)
{
struct mt9v111_dev *mt9v111 = sd_to_mt9v111(subdev);
struct v4l2_mbus_framefmt new_fmt;
struct v4l2_mbus_framefmt *__fmt;
unsigned int best_fit = ~0L;
unsigned int idx = 0;
unsigned int i;
mutex_lock(&mt9v111->stream_mutex);
if (mt9v111->streaming) {
mutex_unlock(&mt9v111->stream_mutex);
return -EBUSY;
}
if (format->pad) {
mutex_unlock(&mt9v111->stream_mutex);
return -EINVAL;
}
/* Update mbus format code and sizes. */
for (i = 0; i < ARRAY_SIZE(mt9v111_formats); i++) {
if (format->format.code == mt9v111_formats[i].code) {
new_fmt.code = mt9v111_formats[i].code;
break;
}
}
if (i == ARRAY_SIZE(mt9v111_formats))
new_fmt.code = mt9v111_formats[0].code;
for (i = 0; i < ARRAY_SIZE(mt9v111_frame_sizes); i++) {
unsigned int fit = abs(mt9v111_frame_sizes[i].width -
format->format.width) +
abs(mt9v111_frame_sizes[i].height -
format->format.height);
if (fit < best_fit) {
best_fit = fit;
idx = i;
if (fit == 0)
break;
}
}
new_fmt.width = mt9v111_frame_sizes[idx].width;
new_fmt.height = mt9v111_frame_sizes[idx].height;
/* Update the device (or pad) format if it has changed. */
__fmt = __mt9v111_get_pad_format(mt9v111, sd_state, format->pad,
format->which);
/* Format hasn't changed, stop here. */
if (__fmt->code == new_fmt.code &&
__fmt->width == new_fmt.width &&
__fmt->height == new_fmt.height)
goto done;
/* Update the format and sizes, then mark changes as pending. */
__fmt->code = new_fmt.code;
__fmt->width = new_fmt.width;
__fmt->height = new_fmt.height;
if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
mt9v111->pending = true;
dev_dbg(mt9v111->dev, "%s: mbus_code: %x - (%ux%u)\n",
__func__, __fmt->code, __fmt->width, __fmt->height);
done:
format->format = *__fmt;
mutex_unlock(&mt9v111->stream_mutex);
return 0;
}
static int mt9v111_init_cfg(struct v4l2_subdev *subdev,
struct v4l2_subdev_state *sd_state)
{
sd_state->pads->try_fmt = mt9v111_def_fmt;
return 0;
}
static const struct v4l2_subdev_core_ops mt9v111_core_ops = {
.s_power = mt9v111_s_power,
};
static const struct v4l2_subdev_video_ops mt9v111_video_ops = {
.s_stream = mt9v111_s_stream,
.s_frame_interval = mt9v111_s_frame_interval,
.g_frame_interval = mt9v111_g_frame_interval,
};
static const struct v4l2_subdev_pad_ops mt9v111_pad_ops = {
.init_cfg = mt9v111_init_cfg,
.enum_mbus_code = mt9v111_enum_mbus_code,
.enum_frame_size = mt9v111_enum_frame_size,
.enum_frame_interval = mt9v111_enum_frame_interval,
.get_fmt = mt9v111_get_format,
.set_fmt = mt9v111_set_format,
};
static const struct v4l2_subdev_ops mt9v111_ops = {
.core = &mt9v111_core_ops,
.video = &mt9v111_video_ops,
.pad = &mt9v111_pad_ops,
};
#if IS_ENABLED(CONFIG_MEDIA_CONTROLLER)
static const struct media_entity_operations mt9v111_subdev_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
#endif
/* --- V4L2 ctrl --- */
static int mt9v111_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct mt9v111_dev *mt9v111 = container_of(ctrl->handler,
struct mt9v111_dev,
ctrls);
int ret;
mutex_lock(&mt9v111->pwr_mutex);
/*
* If sensor is powered down, just cache new control values,
* no actual register access.
*/
if (!mt9v111->pwr_count) {
mt9v111->pending = true;
mutex_unlock(&mt9v111->pwr_mutex);
return 0;
}
mutex_unlock(&mt9v111->pwr_mutex);
/*
* Flickering control gets disabled if both auto exp and auto awb
* are disabled too. If any of the two is enabled, enable it.
*
* Disabling flickering when ae and awb are off allows a more precise
* control of the programmed frame rate.
*/
if (mt9v111->auto_exp->is_new || mt9v111->auto_awb->is_new) {
if (mt9v111->auto_exp->val == V4L2_EXPOSURE_MANUAL &&
mt9v111->auto_awb->val == V4L2_WHITE_BALANCE_MANUAL)
ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
MT9V111_IFP_R08_OUTFMT_CTRL,
MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER,
0);
else
ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
MT9V111_IFP_R08_OUTFMT_CTRL,
MT9V111_IFP_R08_OUTFMT_CTRL_FLICKER,
1);
if (ret)
return ret;
}
ret = -EINVAL;
switch (ctrl->id) {
case V4L2_CID_AUTO_WHITE_BALANCE:
ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
MT9V111_IFP_R06_OPMODE_CTRL,
MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN,
ctrl->val == V4L2_WHITE_BALANCE_AUTO ?
MT9V111_IFP_R06_OPMODE_CTRL_AWB_EN : 0);
break;
case V4L2_CID_EXPOSURE_AUTO:
ret = mt9v111_update(mt9v111->client, MT9V111_R01_IFP,
MT9V111_IFP_R06_OPMODE_CTRL,
MT9V111_IFP_R06_OPMODE_CTRL_AE_EN,
ctrl->val == V4L2_EXPOSURE_AUTO ?
MT9V111_IFP_R06_OPMODE_CTRL_AE_EN : 0);
break;
case V4L2_CID_HBLANK:
ret = mt9v111_update(mt9v111->client, MT9V111_R01_CORE,
MT9V111_CORE_R05_HBLANK,
MT9V111_CORE_R05_MAX_HBLANK,
mt9v111->hblank->val);
break;
case V4L2_CID_VBLANK:
ret = mt9v111_update(mt9v111->client, MT9V111_R01_CORE,
MT9V111_CORE_R06_VBLANK,
MT9V111_CORE_R06_MAX_VBLANK,
mt9v111->vblank->val);
break;
}
return ret;
}
static const struct v4l2_ctrl_ops mt9v111_ctrl_ops = {
.s_ctrl = mt9v111_s_ctrl,
};
static int mt9v111_chip_probe(struct mt9v111_dev *mt9v111)
{
int ret;
u16 val;
ret = __mt9v111_power_on(&mt9v111->sd);
if (ret)
return ret;
ret = mt9v111_read(mt9v111->client, MT9V111_R01_CORE,
MT9V111_CORE_RFF_CHIP_VER, &val);
if (ret)
goto power_off;
if ((val >> 8) != MT9V111_CHIP_ID_HIGH &&
(val & 0xff) != MT9V111_CHIP_ID_LOW) {
dev_err(mt9v111->dev,
"Unable to identify MT9V111 chip: 0x%2x%2x\n",
val >> 8, val & 0xff);
ret = -EIO;
goto power_off;
}
dev_dbg(mt9v111->dev, "Chip identified: 0x%2x%2x\n",
val >> 8, val & 0xff);
power_off:
__mt9v111_power_off(&mt9v111->sd);
return ret;
}
static int mt9v111_probe(struct i2c_client *client)
{
struct mt9v111_dev *mt9v111;
struct v4l2_fract tpf;
int ret;
mt9v111 = devm_kzalloc(&client->dev, sizeof(*mt9v111), GFP_KERNEL);
if (!mt9v111)
return -ENOMEM;
mt9v111->dev = &client->dev;
mt9v111->client = client;
mt9v111->clk = devm_clk_get(&client->dev, NULL);
if (IS_ERR(mt9v111->clk))
return PTR_ERR(mt9v111->clk);
mt9v111->sysclk = clk_get_rate(mt9v111->clk);
if (mt9v111->sysclk > MT9V111_MAX_CLKIN)
return -EINVAL;
mt9v111->oe = devm_gpiod_get_optional(&client->dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(mt9v111->oe)) {
dev_err(&client->dev, "Unable to get GPIO \"enable\": %ld\n",
PTR_ERR(mt9v111->oe));
return PTR_ERR(mt9v111->oe);
}
mt9v111->standby = devm_gpiod_get_optional(&client->dev, "standby",
GPIOD_OUT_HIGH);
if (IS_ERR(mt9v111->standby)) {
dev_err(&client->dev, "Unable to get GPIO \"standby\": %ld\n",
PTR_ERR(mt9v111->standby));
return PTR_ERR(mt9v111->standby);
}
mt9v111->reset = devm_gpiod_get_optional(&client->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(mt9v111->reset)) {
dev_err(&client->dev, "Unable to get GPIO \"reset\": %ld\n",
PTR_ERR(mt9v111->reset));
return PTR_ERR(mt9v111->reset);
}
mutex_init(&mt9v111->pwr_mutex);
mutex_init(&mt9v111->stream_mutex);
v4l2_ctrl_handler_init(&mt9v111->ctrls, 5);
mt9v111->auto_awb = v4l2_ctrl_new_std(&mt9v111->ctrls,
&mt9v111_ctrl_ops,
V4L2_CID_AUTO_WHITE_BALANCE,
0, 1, 1,
V4L2_WHITE_BALANCE_AUTO);
mt9v111->auto_exp = v4l2_ctrl_new_std_menu(&mt9v111->ctrls,
&mt9v111_ctrl_ops,
V4L2_CID_EXPOSURE_AUTO,
V4L2_EXPOSURE_MANUAL,
0, V4L2_EXPOSURE_AUTO);
mt9v111->hblank = v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
V4L2_CID_HBLANK,
MT9V111_CORE_R05_MIN_HBLANK,
MT9V111_CORE_R05_MAX_HBLANK, 1,
MT9V111_CORE_R05_DEF_HBLANK);
mt9v111->vblank = v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
V4L2_CID_VBLANK,
MT9V111_CORE_R06_MIN_VBLANK,
MT9V111_CORE_R06_MAX_VBLANK, 1,
MT9V111_CORE_R06_DEF_VBLANK);
/* PIXEL_RATE is fixed: just expose it to user space. */
v4l2_ctrl_new_std(&mt9v111->ctrls, &mt9v111_ctrl_ops,
V4L2_CID_PIXEL_RATE, 0,
DIV_ROUND_CLOSEST(mt9v111->sysclk, 2), 1,
DIV_ROUND_CLOSEST(mt9v111->sysclk, 2));
if (mt9v111->ctrls.error) {
ret = mt9v111->ctrls.error;
goto error_free_ctrls;
}
mt9v111->sd.ctrl_handler = &mt9v111->ctrls;
/* Start with default configuration: 640x480 UYVY. */
mt9v111->fmt = mt9v111_def_fmt;
/* Re-calculate blankings for 640x480@15fps. */
mt9v111->fps = 15;
tpf.numerator = 1;
tpf.denominator = mt9v111->fps;
mt9v111_calc_frame_rate(mt9v111, &tpf);
mt9v111->pwr_count = 0;
mt9v111->addr_space = MT9V111_R01_IFP;
mt9v111->pending = true;
v4l2_i2c_subdev_init(&mt9v111->sd, client, &mt9v111_ops);
#if IS_ENABLED(CONFIG_MEDIA_CONTROLLER)
mt9v111->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
mt9v111->sd.entity.ops = &mt9v111_subdev_entity_ops;
mt9v111->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
mt9v111->pad.flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&mt9v111->sd.entity, 1, &mt9v111->pad);
if (ret)
goto error_free_entity;
#endif
ret = mt9v111_chip_probe(mt9v111);
if (ret)
goto error_free_entity;
ret = v4l2_async_register_subdev(&mt9v111->sd);
if (ret)
goto error_free_entity;
return 0;
error_free_entity:
#if IS_ENABLED(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&mt9v111->sd.entity);
#endif
error_free_ctrls:
v4l2_ctrl_handler_free(&mt9v111->ctrls);
mutex_destroy(&mt9v111->pwr_mutex);
mutex_destroy(&mt9v111->stream_mutex);
return ret;
}
static int mt9v111_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct mt9v111_dev *mt9v111 = sd_to_mt9v111(sd);
v4l2_async_unregister_subdev(sd);
#if IS_ENABLED(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
v4l2_ctrl_handler_free(&mt9v111->ctrls);
mutex_destroy(&mt9v111->pwr_mutex);
mutex_destroy(&mt9v111->stream_mutex);
return 0;
}
static const struct of_device_id mt9v111_of_match[] = {
{ .compatible = "aptina,mt9v111", },
{ /* sentinel */ },
};
static struct i2c_driver mt9v111_driver = {
.driver = {
.name = "mt9v111",
.of_match_table = mt9v111_of_match,
},
.probe_new = mt9v111_probe,
.remove = mt9v111_remove,
};
module_i2c_driver(mt9v111_driver);
MODULE_DESCRIPTION("V4L2 sensor driver for Aptina MT9V111");
MODULE_AUTHOR("Jacopo Mondi <jacopo@jmondi.org>");
MODULE_LICENSE("GPL v2");