OpenCloudOS-Kernel/sound/soc/soc-component.c

822 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// soc-component.c
//
// Copyright 2009-2011 Wolfson Microelectronics PLC.
// Copyright (C) 2019 Renesas Electronics Corp.
//
// Mark Brown <broonie@opensource.wolfsonmicro.com>
// Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
//
#include <linux/module.h>
#include <sound/soc.h>
#define soc_component_ret(dai, ret) _soc_component_ret(dai, __func__, ret)
static inline int _soc_component_ret(struct snd_soc_component *component,
const char *func, int ret)
{
/* Positive/Zero values are not errors */
if (ret >= 0)
return ret;
/* Negative values might be errors */
switch (ret) {
case -EPROBE_DEFER:
case -ENOTSUPP:
break;
default:
dev_err(component->dev,
"ASoC: error at %s on %s: %d\n",
func, component->name, ret);
}
return ret;
}
int snd_soc_component_initialize(struct snd_soc_component *component,
const struct snd_soc_component_driver *driver,
struct device *dev, const char *name)
{
INIT_LIST_HEAD(&component->dai_list);
INIT_LIST_HEAD(&component->dobj_list);
INIT_LIST_HEAD(&component->card_list);
mutex_init(&component->io_mutex);
component->name = name;
component->dev = dev;
component->driver = driver;
return 0;
}
void snd_soc_component_set_aux(struct snd_soc_component *component,
struct snd_soc_aux_dev *aux)
{
component->init = (aux) ? aux->init : NULL;
}
int snd_soc_component_init(struct snd_soc_component *component)
{
int ret = 0;
if (component->init)
ret = component->init(component);
return soc_component_ret(component, ret);
}
/**
* snd_soc_component_set_sysclk - configure COMPONENT system or master clock.
* @component: COMPONENT
* @clk_id: DAI specific clock ID
* @source: Source for the clock
* @freq: new clock frequency in Hz
* @dir: new clock direction - input/output.
*
* Configures the CODEC master (MCLK) or system (SYSCLK) clocking.
*/
int snd_soc_component_set_sysclk(struct snd_soc_component *component,
int clk_id, int source, unsigned int freq,
int dir)
{
int ret = -ENOTSUPP;
if (component->driver->set_sysclk)
ret = component->driver->set_sysclk(component, clk_id, source,
freq, dir);
return soc_component_ret(component, ret);
}
EXPORT_SYMBOL_GPL(snd_soc_component_set_sysclk);
/*
* snd_soc_component_set_pll - configure component PLL.
* @component: COMPONENT
* @pll_id: DAI specific PLL ID
* @source: DAI specific source for the PLL
* @freq_in: PLL input clock frequency in Hz
* @freq_out: requested PLL output clock frequency in Hz
*
* Configures and enables PLL to generate output clock based on input clock.
*/
int snd_soc_component_set_pll(struct snd_soc_component *component, int pll_id,
int source, unsigned int freq_in,
unsigned int freq_out)
{
int ret = -EINVAL;
if (component->driver->set_pll)
ret = component->driver->set_pll(component, pll_id, source,
freq_in, freq_out);
return soc_component_ret(component, ret);
}
EXPORT_SYMBOL_GPL(snd_soc_component_set_pll);
void snd_soc_component_seq_notifier(struct snd_soc_component *component,
enum snd_soc_dapm_type type, int subseq)
{
if (component->driver->seq_notifier)
component->driver->seq_notifier(component, type, subseq);
}
int snd_soc_component_stream_event(struct snd_soc_component *component,
int event)
{
int ret = 0;
if (component->driver->stream_event)
ret = component->driver->stream_event(component, event);
return soc_component_ret(component, ret);
}
int snd_soc_component_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
int ret = 0;
if (component->driver->set_bias_level)
ret = component->driver->set_bias_level(component, level);
return soc_component_ret(component, ret);
}
static int soc_component_pin(struct snd_soc_component *component,
const char *pin,
int (*pin_func)(struct snd_soc_dapm_context *dapm,
const char *pin))
{
struct snd_soc_dapm_context *dapm =
snd_soc_component_get_dapm(component);
char *full_name;
int ret;
if (!component->name_prefix) {
ret = pin_func(dapm, pin);
goto end;
}
full_name = kasprintf(GFP_KERNEL, "%s %s", component->name_prefix, pin);
if (!full_name) {
ret = -ENOMEM;
goto end;
}
ret = pin_func(dapm, full_name);
kfree(full_name);
end:
return soc_component_ret(component, ret);
}
int snd_soc_component_enable_pin(struct snd_soc_component *component,
const char *pin)
{
return soc_component_pin(component, pin, snd_soc_dapm_enable_pin);
}
EXPORT_SYMBOL_GPL(snd_soc_component_enable_pin);
int snd_soc_component_enable_pin_unlocked(struct snd_soc_component *component,
const char *pin)
{
return soc_component_pin(component, pin, snd_soc_dapm_enable_pin_unlocked);
}
EXPORT_SYMBOL_GPL(snd_soc_component_enable_pin_unlocked);
int snd_soc_component_disable_pin(struct snd_soc_component *component,
const char *pin)
{
return soc_component_pin(component, pin, snd_soc_dapm_disable_pin);
}
EXPORT_SYMBOL_GPL(snd_soc_component_disable_pin);
int snd_soc_component_disable_pin_unlocked(struct snd_soc_component *component,
const char *pin)
{
return soc_component_pin(component, pin, snd_soc_dapm_disable_pin_unlocked);
}
EXPORT_SYMBOL_GPL(snd_soc_component_disable_pin_unlocked);
int snd_soc_component_nc_pin(struct snd_soc_component *component,
const char *pin)
{
return soc_component_pin(component, pin, snd_soc_dapm_nc_pin);
}
EXPORT_SYMBOL_GPL(snd_soc_component_nc_pin);
int snd_soc_component_nc_pin_unlocked(struct snd_soc_component *component,
const char *pin)
{
return soc_component_pin(component, pin, snd_soc_dapm_nc_pin_unlocked);
}
EXPORT_SYMBOL_GPL(snd_soc_component_nc_pin_unlocked);
int snd_soc_component_get_pin_status(struct snd_soc_component *component,
const char *pin)
{
return soc_component_pin(component, pin, snd_soc_dapm_get_pin_status);
}
EXPORT_SYMBOL_GPL(snd_soc_component_get_pin_status);
int snd_soc_component_force_enable_pin(struct snd_soc_component *component,
const char *pin)
{
return soc_component_pin(component, pin, snd_soc_dapm_force_enable_pin);
}
EXPORT_SYMBOL_GPL(snd_soc_component_force_enable_pin);
int snd_soc_component_force_enable_pin_unlocked(
struct snd_soc_component *component,
const char *pin)
{
return soc_component_pin(component, pin, snd_soc_dapm_force_enable_pin_unlocked);
}
EXPORT_SYMBOL_GPL(snd_soc_component_force_enable_pin_unlocked);
/**
* snd_soc_component_set_jack - configure component jack.
* @component: COMPONENTs
* @jack: structure to use for the jack
* @data: can be used if codec driver need extra data for configuring jack
*
* Configures and enables jack detection function.
*/
int snd_soc_component_set_jack(struct snd_soc_component *component,
struct snd_soc_jack *jack, void *data)
{
int ret = -ENOTSUPP;
if (component->driver->set_jack)
ret = component->driver->set_jack(component, jack, data);
return soc_component_ret(component, ret);
}
EXPORT_SYMBOL_GPL(snd_soc_component_set_jack);
int snd_soc_component_module_get(struct snd_soc_component *component,
int upon_open)
{
int ret = 0;
if (component->driver->module_get_upon_open == !!upon_open &&
!try_module_get(component->dev->driver->owner))
ret = -ENODEV;
return soc_component_ret(component, ret);
}
void snd_soc_component_module_put(struct snd_soc_component *component,
int upon_open)
{
if (component->driver->module_get_upon_open == !!upon_open)
module_put(component->dev->driver->owner);
}
int snd_soc_component_open(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
int ret = 0;
if (component->driver->open)
ret = component->driver->open(component, substream);
return soc_component_ret(component, ret);
}
int snd_soc_component_close(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
int ret = 0;
if (component->driver->close)
ret = component->driver->close(component, substream);
return soc_component_ret(component, ret);
}
void snd_soc_component_suspend(struct snd_soc_component *component)
{
if (component->driver->suspend)
component->driver->suspend(component);
component->suspended = 1;
}
void snd_soc_component_resume(struct snd_soc_component *component)
{
if (component->driver->resume)
component->driver->resume(component);
component->suspended = 0;
}
int snd_soc_component_is_suspended(struct snd_soc_component *component)
{
return component->suspended;
}
int snd_soc_component_probe(struct snd_soc_component *component)
{
int ret = 0;
if (component->driver->probe)
ret = component->driver->probe(component);
return soc_component_ret(component, ret);
}
void snd_soc_component_remove(struct snd_soc_component *component)
{
if (component->driver->remove)
component->driver->remove(component);
}
int snd_soc_component_of_xlate_dai_id(struct snd_soc_component *component,
struct device_node *ep)
{
int ret = -ENOTSUPP;
if (component->driver->of_xlate_dai_id)
ret = component->driver->of_xlate_dai_id(component, ep);
return soc_component_ret(component, ret);
}
int snd_soc_component_of_xlate_dai_name(struct snd_soc_component *component,
struct of_phandle_args *args,
const char **dai_name)
{
int ret = -ENOTSUPP;
if (component->driver->of_xlate_dai_name)
ret = component->driver->of_xlate_dai_name(component,
args, dai_name);
return soc_component_ret(component, ret);
}
void snd_soc_component_setup_regmap(struct snd_soc_component *component)
{
int val_bytes = regmap_get_val_bytes(component->regmap);
/* Errors are legitimate for non-integer byte multiples */
if (val_bytes > 0)
component->val_bytes = val_bytes;
}
#ifdef CONFIG_REGMAP
/**
* snd_soc_component_init_regmap() - Initialize regmap instance for the
* component
* @component: The component for which to initialize the regmap instance
* @regmap: The regmap instance that should be used by the component
*
* This function allows deferred assignment of the regmap instance that is
* associated with the component. Only use this if the regmap instance is not
* yet ready when the component is registered. The function must also be called
* before the first IO attempt of the component.
*/
void snd_soc_component_init_regmap(struct snd_soc_component *component,
struct regmap *regmap)
{
component->regmap = regmap;
snd_soc_component_setup_regmap(component);
}
EXPORT_SYMBOL_GPL(snd_soc_component_init_regmap);
/**
* snd_soc_component_exit_regmap() - De-initialize regmap instance for the
* component
* @component: The component for which to de-initialize the regmap instance
*
* Calls regmap_exit() on the regmap instance associated to the component and
* removes the regmap instance from the component.
*
* This function should only be used if snd_soc_component_init_regmap() was used
* to initialize the regmap instance.
*/
void snd_soc_component_exit_regmap(struct snd_soc_component *component)
{
regmap_exit(component->regmap);
component->regmap = NULL;
}
EXPORT_SYMBOL_GPL(snd_soc_component_exit_regmap);
#endif
static unsigned int soc_component_read_no_lock(
struct snd_soc_component *component,
unsigned int reg)
{
int ret;
unsigned int val = 0;
if (component->regmap)
ret = regmap_read(component->regmap, reg, &val);
else if (component->driver->read) {
ret = 0;
val = component->driver->read(component, reg);
}
else
ret = -EIO;
if (ret < 0)
soc_component_ret(component, ret);
return val;
}
/**
* snd_soc_component_read() - Read register value
* @component: Component to read from
* @reg: Register to read
*
* Return: read value
*/
unsigned int snd_soc_component_read(struct snd_soc_component *component,
unsigned int reg)
{
unsigned int val;
mutex_lock(&component->io_mutex);
val = soc_component_read_no_lock(component, reg);
mutex_unlock(&component->io_mutex);
return val;
}
EXPORT_SYMBOL_GPL(snd_soc_component_read);
static int soc_component_write_no_lock(
struct snd_soc_component *component,
unsigned int reg, unsigned int val)
{
int ret = -EIO;
if (component->regmap)
ret = regmap_write(component->regmap, reg, val);
else if (component->driver->write)
ret = component->driver->write(component, reg, val);
return soc_component_ret(component, ret);
}
/**
* snd_soc_component_write() - Write register value
* @component: Component to write to
* @reg: Register to write
* @val: Value to write to the register
*
* Return: 0 on success, a negative error code otherwise.
*/
int snd_soc_component_write(struct snd_soc_component *component,
unsigned int reg, unsigned int val)
{
int ret;
mutex_lock(&component->io_mutex);
ret = soc_component_write_no_lock(component, reg, val);
mutex_unlock(&component->io_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(snd_soc_component_write);
static int snd_soc_component_update_bits_legacy(
struct snd_soc_component *component, unsigned int reg,
unsigned int mask, unsigned int val, bool *change)
{
unsigned int old, new;
int ret = 0;
mutex_lock(&component->io_mutex);
old = soc_component_read_no_lock(component, reg);
new = (old & ~mask) | (val & mask);
*change = old != new;
if (*change)
ret = soc_component_write_no_lock(component, reg, new);
mutex_unlock(&component->io_mutex);
return soc_component_ret(component, ret);
}
/**
* snd_soc_component_update_bits() - Perform read/modify/write cycle
* @component: Component to update
* @reg: Register to update
* @mask: Mask that specifies which bits to update
* @val: New value for the bits specified by mask
*
* Return: 1 if the operation was successful and the value of the register
* changed, 0 if the operation was successful, but the value did not change.
* Returns a negative error code otherwise.
*/
int snd_soc_component_update_bits(struct snd_soc_component *component,
unsigned int reg, unsigned int mask, unsigned int val)
{
bool change;
int ret;
if (component->regmap)
ret = regmap_update_bits_check(component->regmap, reg, mask,
val, &change);
else
ret = snd_soc_component_update_bits_legacy(component, reg,
mask, val, &change);
if (ret < 0)
return soc_component_ret(component, ret);
return change;
}
EXPORT_SYMBOL_GPL(snd_soc_component_update_bits);
/**
* snd_soc_component_update_bits_async() - Perform asynchronous
* read/modify/write cycle
* @component: Component to update
* @reg: Register to update
* @mask: Mask that specifies which bits to update
* @val: New value for the bits specified by mask
*
* This function is similar to snd_soc_component_update_bits(), but the update
* operation is scheduled asynchronously. This means it may not be completed
* when the function returns. To make sure that all scheduled updates have been
* completed snd_soc_component_async_complete() must be called.
*
* Return: 1 if the operation was successful and the value of the register
* changed, 0 if the operation was successful, but the value did not change.
* Returns a negative error code otherwise.
*/
int snd_soc_component_update_bits_async(struct snd_soc_component *component,
unsigned int reg, unsigned int mask, unsigned int val)
{
bool change;
int ret;
if (component->regmap)
ret = regmap_update_bits_check_async(component->regmap, reg,
mask, val, &change);
else
ret = snd_soc_component_update_bits_legacy(component, reg,
mask, val, &change);
if (ret < 0)
return soc_component_ret(component, ret);
return change;
}
EXPORT_SYMBOL_GPL(snd_soc_component_update_bits_async);
/**
* snd_soc_component_async_complete() - Ensure asynchronous I/O has completed
* @component: Component for which to wait
*
* This function blocks until all asynchronous I/O which has previously been
* scheduled using snd_soc_component_update_bits_async() has completed.
*/
void snd_soc_component_async_complete(struct snd_soc_component *component)
{
if (component->regmap)
regmap_async_complete(component->regmap);
}
EXPORT_SYMBOL_GPL(snd_soc_component_async_complete);
/**
* snd_soc_component_test_bits - Test register for change
* @component: component
* @reg: Register to test
* @mask: Mask that specifies which bits to test
* @value: Value to test against
*
* Tests a register with a new value and checks if the new value is
* different from the old value.
*
* Return: 1 for change, otherwise 0.
*/
int snd_soc_component_test_bits(struct snd_soc_component *component,
unsigned int reg, unsigned int mask, unsigned int value)
{
unsigned int old, new;
old = snd_soc_component_read(component, reg);
new = (old & ~mask) | value;
return old != new;
}
EXPORT_SYMBOL_GPL(snd_soc_component_test_bits);
int snd_soc_pcm_component_pointer(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_component *component;
int i;
/* FIXME: use 1st pointer */
for_each_rtd_components(rtd, i, component)
if (component->driver->pointer)
return component->driver->pointer(component, substream);
return 0;
}
int snd_soc_pcm_component_ioctl(struct snd_pcm_substream *substream,
unsigned int cmd, void *arg)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_component *component;
int i;
/* FIXME: use 1st ioctl */
for_each_rtd_components(rtd, i, component)
if (component->driver->ioctl)
return soc_component_ret(
component,
component->driver->ioctl(component,
substream, cmd, arg));
return snd_pcm_lib_ioctl(substream, cmd, arg);
}
int snd_soc_pcm_component_sync_stop(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_component *component;
int i, ret;
for_each_rtd_components(rtd, i, component) {
if (component->driver->sync_stop) {
ret = component->driver->sync_stop(component,
substream);
if (ret < 0)
return soc_component_ret(component, ret);
}
}
return 0;
}
int snd_soc_pcm_component_copy_user(struct snd_pcm_substream *substream,
int channel, unsigned long pos,
void __user *buf, unsigned long bytes)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_component *component;
int i;
/* FIXME. it returns 1st copy now */
for_each_rtd_components(rtd, i, component)
if (component->driver->copy_user)
return soc_component_ret(
component,
component->driver->copy_user(
component, substream, channel,
pos, buf, bytes));
return -EINVAL;
}
struct page *snd_soc_pcm_component_page(struct snd_pcm_substream *substream,
unsigned long offset)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_component *component;
struct page *page;
int i;
/* FIXME. it returns 1st page now */
for_each_rtd_components(rtd, i, component) {
if (component->driver->page) {
page = component->driver->page(component,
substream, offset);
if (page)
return page;
}
}
return NULL;
}
int snd_soc_pcm_component_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *vma)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_component *component;
int i;
/* FIXME. it returns 1st mmap now */
for_each_rtd_components(rtd, i, component)
if (component->driver->mmap)
return soc_component_ret(
component,
component->driver->mmap(component,
substream, vma));
return -EINVAL;
}
int snd_soc_pcm_component_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_soc_component *component;
int ret;
int i;
for_each_rtd_components(rtd, i, component) {
if (component->driver->pcm_construct) {
ret = component->driver->pcm_construct(component, rtd);
if (ret < 0)
return soc_component_ret(component, ret);
}
}
return 0;
}
void snd_soc_pcm_component_free(struct snd_soc_pcm_runtime *rtd)
{
struct snd_soc_component *component;
int i;
if (!rtd->pcm)
return;
for_each_rtd_components(rtd, i, component)
if (component->driver->pcm_destruct)
component->driver->pcm_destruct(component, rtd->pcm);
}
int snd_soc_pcm_component_prepare(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_component *component;
int i, ret;
for_each_rtd_components(rtd, i, component) {
if (component->driver->prepare) {
ret = component->driver->prepare(component, substream);
if (ret < 0)
return soc_component_ret(component, ret);
}
}
return 0;
}
int snd_soc_pcm_component_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_component **last)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_component *component;
int i, ret;
for_each_rtd_components(rtd, i, component) {
if (component->driver->hw_params) {
ret = component->driver->hw_params(component,
substream, params);
if (ret < 0) {
*last = component;
return soc_component_ret(component, ret);
}
}
}
*last = NULL;
return 0;
}
void snd_soc_pcm_component_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_component *last)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_component *component;
int i, ret;
for_each_rtd_components(rtd, i, component) {
if (component == last)
break;
if (component->driver->hw_free) {
ret = component->driver->hw_free(component, substream);
if (ret < 0)
soc_component_ret(component, ret);
}
}
}
int snd_soc_pcm_component_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
struct snd_soc_component *component;
int i, ret;
for_each_rtd_components(rtd, i, component) {
if (component->driver->trigger) {
ret = component->driver->trigger(component, substream, cmd);
if (ret < 0)
return soc_component_ret(component, ret);
}
}
return 0;
}