2208 lines
53 KiB
C
2208 lines
53 KiB
C
/*
|
|
* Copyright (C) 2001 Sistina Software (UK) Limited.
|
|
* Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
|
|
*
|
|
* This file is released under the GPL.
|
|
*/
|
|
|
|
#include "dm-core.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/dax.h>
|
|
|
|
#define DM_MSG_PREFIX "table"
|
|
|
|
#define NODE_SIZE L1_CACHE_BYTES
|
|
#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
|
|
#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
|
|
|
|
/*
|
|
* Similar to ceiling(log_size(n))
|
|
*/
|
|
static unsigned int int_log(unsigned int n, unsigned int base)
|
|
{
|
|
int result = 0;
|
|
|
|
while (n > 1) {
|
|
n = dm_div_up(n, base);
|
|
result++;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Calculate the index of the child node of the n'th node k'th key.
|
|
*/
|
|
static inline unsigned int get_child(unsigned int n, unsigned int k)
|
|
{
|
|
return (n * CHILDREN_PER_NODE) + k;
|
|
}
|
|
|
|
/*
|
|
* Return the n'th node of level l from table t.
|
|
*/
|
|
static inline sector_t *get_node(struct dm_table *t,
|
|
unsigned int l, unsigned int n)
|
|
{
|
|
return t->index[l] + (n * KEYS_PER_NODE);
|
|
}
|
|
|
|
/*
|
|
* Return the highest key that you could lookup from the n'th
|
|
* node on level l of the btree.
|
|
*/
|
|
static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
|
|
{
|
|
for (; l < t->depth - 1; l++)
|
|
n = get_child(n, CHILDREN_PER_NODE - 1);
|
|
|
|
if (n >= t->counts[l])
|
|
return (sector_t) - 1;
|
|
|
|
return get_node(t, l, n)[KEYS_PER_NODE - 1];
|
|
}
|
|
|
|
/*
|
|
* Fills in a level of the btree based on the highs of the level
|
|
* below it.
|
|
*/
|
|
static int setup_btree_index(unsigned int l, struct dm_table *t)
|
|
{
|
|
unsigned int n, k;
|
|
sector_t *node;
|
|
|
|
for (n = 0U; n < t->counts[l]; n++) {
|
|
node = get_node(t, l, n);
|
|
|
|
for (k = 0U; k < KEYS_PER_NODE; k++)
|
|
node[k] = high(t, l + 1, get_child(n, k));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* highs, and targets are managed as dynamic arrays during a
|
|
* table load.
|
|
*/
|
|
static int alloc_targets(struct dm_table *t, unsigned int num)
|
|
{
|
|
sector_t *n_highs;
|
|
struct dm_target *n_targets;
|
|
|
|
/*
|
|
* Allocate both the target array and offset array at once.
|
|
*/
|
|
n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
|
|
GFP_KERNEL);
|
|
if (!n_highs)
|
|
return -ENOMEM;
|
|
|
|
n_targets = (struct dm_target *) (n_highs + num);
|
|
|
|
memset(n_highs, -1, sizeof(*n_highs) * num);
|
|
kvfree(t->highs);
|
|
|
|
t->num_allocated = num;
|
|
t->highs = n_highs;
|
|
t->targets = n_targets;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dm_table_create(struct dm_table **result, fmode_t mode,
|
|
unsigned num_targets, struct mapped_device *md)
|
|
{
|
|
struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
|
|
|
|
if (!t)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&t->devices);
|
|
|
|
if (!num_targets)
|
|
num_targets = KEYS_PER_NODE;
|
|
|
|
num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
|
|
|
|
if (!num_targets) {
|
|
kfree(t);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (alloc_targets(t, num_targets)) {
|
|
kfree(t);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
t->type = DM_TYPE_NONE;
|
|
t->mode = mode;
|
|
t->md = md;
|
|
*result = t;
|
|
return 0;
|
|
}
|
|
|
|
static void free_devices(struct list_head *devices, struct mapped_device *md)
|
|
{
|
|
struct list_head *tmp, *next;
|
|
|
|
list_for_each_safe(tmp, next, devices) {
|
|
struct dm_dev_internal *dd =
|
|
list_entry(tmp, struct dm_dev_internal, list);
|
|
DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
|
|
dm_device_name(md), dd->dm_dev->name);
|
|
dm_put_table_device(md, dd->dm_dev);
|
|
kfree(dd);
|
|
}
|
|
}
|
|
|
|
static void dm_table_destroy_keyslot_manager(struct dm_table *t);
|
|
|
|
void dm_table_destroy(struct dm_table *t)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!t)
|
|
return;
|
|
|
|
/* free the indexes */
|
|
if (t->depth >= 2)
|
|
kvfree(t->index[t->depth - 2]);
|
|
|
|
/* free the targets */
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
struct dm_target *tgt = t->targets + i;
|
|
|
|
if (tgt->type->dtr)
|
|
tgt->type->dtr(tgt);
|
|
|
|
dm_put_target_type(tgt->type);
|
|
}
|
|
|
|
kvfree(t->highs);
|
|
|
|
/* free the device list */
|
|
free_devices(&t->devices, t->md);
|
|
|
|
dm_free_md_mempools(t->mempools);
|
|
|
|
dm_table_destroy_keyslot_manager(t);
|
|
|
|
kfree(t);
|
|
}
|
|
|
|
/*
|
|
* See if we've already got a device in the list.
|
|
*/
|
|
static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
|
|
{
|
|
struct dm_dev_internal *dd;
|
|
|
|
list_for_each_entry (dd, l, list)
|
|
if (dd->dm_dev->bdev->bd_dev == dev)
|
|
return dd;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If possible, this checks an area of a destination device is invalid.
|
|
*/
|
|
static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct queue_limits *limits = data;
|
|
struct block_device *bdev = dev->bdev;
|
|
sector_t dev_size =
|
|
i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
|
|
unsigned short logical_block_size_sectors =
|
|
limits->logical_block_size >> SECTOR_SHIFT;
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
if (!dev_size)
|
|
return 0;
|
|
|
|
if ((start >= dev_size) || (start + len > dev_size)) {
|
|
DMWARN("%s: %s too small for target: "
|
|
"start=%llu, len=%llu, dev_size=%llu",
|
|
dm_device_name(ti->table->md), bdevname(bdev, b),
|
|
(unsigned long long)start,
|
|
(unsigned long long)len,
|
|
(unsigned long long)dev_size);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If the target is mapped to zoned block device(s), check
|
|
* that the zones are not partially mapped.
|
|
*/
|
|
if (bdev_is_zoned(bdev)) {
|
|
unsigned int zone_sectors = bdev_zone_sectors(bdev);
|
|
|
|
if (start & (zone_sectors - 1)) {
|
|
DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
|
|
dm_device_name(ti->table->md),
|
|
(unsigned long long)start,
|
|
zone_sectors, bdevname(bdev, b));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Note: The last zone of a zoned block device may be smaller
|
|
* than other zones. So for a target mapping the end of a
|
|
* zoned block device with such a zone, len would not be zone
|
|
* aligned. We do not allow such last smaller zone to be part
|
|
* of the mapping here to ensure that mappings with multiple
|
|
* devices do not end up with a smaller zone in the middle of
|
|
* the sector range.
|
|
*/
|
|
if (len & (zone_sectors - 1)) {
|
|
DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
|
|
dm_device_name(ti->table->md),
|
|
(unsigned long long)len,
|
|
zone_sectors, bdevname(bdev, b));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (logical_block_size_sectors <= 1)
|
|
return 0;
|
|
|
|
if (start & (logical_block_size_sectors - 1)) {
|
|
DMWARN("%s: start=%llu not aligned to h/w "
|
|
"logical block size %u of %s",
|
|
dm_device_name(ti->table->md),
|
|
(unsigned long long)start,
|
|
limits->logical_block_size, bdevname(bdev, b));
|
|
return 1;
|
|
}
|
|
|
|
if (len & (logical_block_size_sectors - 1)) {
|
|
DMWARN("%s: len=%llu not aligned to h/w "
|
|
"logical block size %u of %s",
|
|
dm_device_name(ti->table->md),
|
|
(unsigned long long)len,
|
|
limits->logical_block_size, bdevname(bdev, b));
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This upgrades the mode on an already open dm_dev, being
|
|
* careful to leave things as they were if we fail to reopen the
|
|
* device and not to touch the existing bdev field in case
|
|
* it is accessed concurrently.
|
|
*/
|
|
static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
|
|
struct mapped_device *md)
|
|
{
|
|
int r;
|
|
struct dm_dev *old_dev, *new_dev;
|
|
|
|
old_dev = dd->dm_dev;
|
|
|
|
r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
|
|
dd->dm_dev->mode | new_mode, &new_dev);
|
|
if (r)
|
|
return r;
|
|
|
|
dd->dm_dev = new_dev;
|
|
dm_put_table_device(md, old_dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Convert the path to a device
|
|
*/
|
|
dev_t dm_get_dev_t(const char *path)
|
|
{
|
|
dev_t dev;
|
|
|
|
if (lookup_bdev(path, &dev))
|
|
dev = name_to_dev_t(path);
|
|
return dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_get_dev_t);
|
|
|
|
/*
|
|
* Add a device to the list, or just increment the usage count if
|
|
* it's already present.
|
|
*/
|
|
int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
|
|
struct dm_dev **result)
|
|
{
|
|
int r;
|
|
dev_t dev;
|
|
unsigned int major, minor;
|
|
char dummy;
|
|
struct dm_dev_internal *dd;
|
|
struct dm_table *t = ti->table;
|
|
|
|
BUG_ON(!t);
|
|
|
|
if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
|
|
/* Extract the major/minor numbers */
|
|
dev = MKDEV(major, minor);
|
|
if (MAJOR(dev) != major || MINOR(dev) != minor)
|
|
return -EOVERFLOW;
|
|
} else {
|
|
dev = dm_get_dev_t(path);
|
|
if (!dev)
|
|
return -ENODEV;
|
|
}
|
|
|
|
dd = find_device(&t->devices, dev);
|
|
if (!dd) {
|
|
dd = kmalloc(sizeof(*dd), GFP_KERNEL);
|
|
if (!dd)
|
|
return -ENOMEM;
|
|
|
|
if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
|
|
kfree(dd);
|
|
return r;
|
|
}
|
|
|
|
refcount_set(&dd->count, 1);
|
|
list_add(&dd->list, &t->devices);
|
|
goto out;
|
|
|
|
} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
|
|
r = upgrade_mode(dd, mode, t->md);
|
|
if (r)
|
|
return r;
|
|
}
|
|
refcount_inc(&dd->count);
|
|
out:
|
|
*result = dd->dm_dev;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(dm_get_device);
|
|
|
|
static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct queue_limits *limits = data;
|
|
struct block_device *bdev = dev->bdev;
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
if (unlikely(!q)) {
|
|
DMWARN("%s: Cannot set limits for nonexistent device %s",
|
|
dm_device_name(ti->table->md), bdevname(bdev, b));
|
|
return 0;
|
|
}
|
|
|
|
if (blk_stack_limits(limits, &q->limits,
|
|
get_start_sect(bdev) + start) < 0)
|
|
DMWARN("%s: adding target device %s caused an alignment inconsistency: "
|
|
"physical_block_size=%u, logical_block_size=%u, "
|
|
"alignment_offset=%u, start=%llu",
|
|
dm_device_name(ti->table->md), bdevname(bdev, b),
|
|
q->limits.physical_block_size,
|
|
q->limits.logical_block_size,
|
|
q->limits.alignment_offset,
|
|
(unsigned long long) start << SECTOR_SHIFT);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Decrement a device's use count and remove it if necessary.
|
|
*/
|
|
void dm_put_device(struct dm_target *ti, struct dm_dev *d)
|
|
{
|
|
int found = 0;
|
|
struct list_head *devices = &ti->table->devices;
|
|
struct dm_dev_internal *dd;
|
|
|
|
list_for_each_entry(dd, devices, list) {
|
|
if (dd->dm_dev == d) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
DMWARN("%s: device %s not in table devices list",
|
|
dm_device_name(ti->table->md), d->name);
|
|
return;
|
|
}
|
|
if (refcount_dec_and_test(&dd->count)) {
|
|
dm_put_table_device(ti->table->md, d);
|
|
list_del(&dd->list);
|
|
kfree(dd);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(dm_put_device);
|
|
|
|
/*
|
|
* Checks to see if the target joins onto the end of the table.
|
|
*/
|
|
static int adjoin(struct dm_table *table, struct dm_target *ti)
|
|
{
|
|
struct dm_target *prev;
|
|
|
|
if (!table->num_targets)
|
|
return !ti->begin;
|
|
|
|
prev = &table->targets[table->num_targets - 1];
|
|
return (ti->begin == (prev->begin + prev->len));
|
|
}
|
|
|
|
/*
|
|
* Used to dynamically allocate the arg array.
|
|
*
|
|
* We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
|
|
* process messages even if some device is suspended. These messages have a
|
|
* small fixed number of arguments.
|
|
*
|
|
* On the other hand, dm-switch needs to process bulk data using messages and
|
|
* excessive use of GFP_NOIO could cause trouble.
|
|
*/
|
|
static char **realloc_argv(unsigned *size, char **old_argv)
|
|
{
|
|
char **argv;
|
|
unsigned new_size;
|
|
gfp_t gfp;
|
|
|
|
if (*size) {
|
|
new_size = *size * 2;
|
|
gfp = GFP_KERNEL;
|
|
} else {
|
|
new_size = 8;
|
|
gfp = GFP_NOIO;
|
|
}
|
|
argv = kmalloc_array(new_size, sizeof(*argv), gfp);
|
|
if (argv && old_argv) {
|
|
memcpy(argv, old_argv, *size * sizeof(*argv));
|
|
*size = new_size;
|
|
}
|
|
|
|
kfree(old_argv);
|
|
return argv;
|
|
}
|
|
|
|
/*
|
|
* Destructively splits up the argument list to pass to ctr.
|
|
*/
|
|
int dm_split_args(int *argc, char ***argvp, char *input)
|
|
{
|
|
char *start, *end = input, *out, **argv = NULL;
|
|
unsigned array_size = 0;
|
|
|
|
*argc = 0;
|
|
|
|
if (!input) {
|
|
*argvp = NULL;
|
|
return 0;
|
|
}
|
|
|
|
argv = realloc_argv(&array_size, argv);
|
|
if (!argv)
|
|
return -ENOMEM;
|
|
|
|
while (1) {
|
|
/* Skip whitespace */
|
|
start = skip_spaces(end);
|
|
|
|
if (!*start)
|
|
break; /* success, we hit the end */
|
|
|
|
/* 'out' is used to remove any back-quotes */
|
|
end = out = start;
|
|
while (*end) {
|
|
/* Everything apart from '\0' can be quoted */
|
|
if (*end == '\\' && *(end + 1)) {
|
|
*out++ = *(end + 1);
|
|
end += 2;
|
|
continue;
|
|
}
|
|
|
|
if (isspace(*end))
|
|
break; /* end of token */
|
|
|
|
*out++ = *end++;
|
|
}
|
|
|
|
/* have we already filled the array ? */
|
|
if ((*argc + 1) > array_size) {
|
|
argv = realloc_argv(&array_size, argv);
|
|
if (!argv)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* we know this is whitespace */
|
|
if (*end)
|
|
end++;
|
|
|
|
/* terminate the string and put it in the array */
|
|
*out = '\0';
|
|
argv[*argc] = start;
|
|
(*argc)++;
|
|
}
|
|
|
|
*argvp = argv;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Impose necessary and sufficient conditions on a devices's table such
|
|
* that any incoming bio which respects its logical_block_size can be
|
|
* processed successfully. If it falls across the boundary between
|
|
* two or more targets, the size of each piece it gets split into must
|
|
* be compatible with the logical_block_size of the target processing it.
|
|
*/
|
|
static int validate_hardware_logical_block_alignment(struct dm_table *table,
|
|
struct queue_limits *limits)
|
|
{
|
|
/*
|
|
* This function uses arithmetic modulo the logical_block_size
|
|
* (in units of 512-byte sectors).
|
|
*/
|
|
unsigned short device_logical_block_size_sects =
|
|
limits->logical_block_size >> SECTOR_SHIFT;
|
|
|
|
/*
|
|
* Offset of the start of the next table entry, mod logical_block_size.
|
|
*/
|
|
unsigned short next_target_start = 0;
|
|
|
|
/*
|
|
* Given an aligned bio that extends beyond the end of a
|
|
* target, how many sectors must the next target handle?
|
|
*/
|
|
unsigned short remaining = 0;
|
|
|
|
struct dm_target *ti;
|
|
struct queue_limits ti_limits;
|
|
unsigned i;
|
|
|
|
/*
|
|
* Check each entry in the table in turn.
|
|
*/
|
|
for (i = 0; i < dm_table_get_num_targets(table); i++) {
|
|
ti = dm_table_get_target(table, i);
|
|
|
|
blk_set_stacking_limits(&ti_limits);
|
|
|
|
/* combine all target devices' limits */
|
|
if (ti->type->iterate_devices)
|
|
ti->type->iterate_devices(ti, dm_set_device_limits,
|
|
&ti_limits);
|
|
|
|
/*
|
|
* If the remaining sectors fall entirely within this
|
|
* table entry are they compatible with its logical_block_size?
|
|
*/
|
|
if (remaining < ti->len &&
|
|
remaining & ((ti_limits.logical_block_size >>
|
|
SECTOR_SHIFT) - 1))
|
|
break; /* Error */
|
|
|
|
next_target_start =
|
|
(unsigned short) ((next_target_start + ti->len) &
|
|
(device_logical_block_size_sects - 1));
|
|
remaining = next_target_start ?
|
|
device_logical_block_size_sects - next_target_start : 0;
|
|
}
|
|
|
|
if (remaining) {
|
|
DMWARN("%s: table line %u (start sect %llu len %llu) "
|
|
"not aligned to h/w logical block size %u",
|
|
dm_device_name(table->md), i,
|
|
(unsigned long long) ti->begin,
|
|
(unsigned long long) ti->len,
|
|
limits->logical_block_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dm_table_add_target(struct dm_table *t, const char *type,
|
|
sector_t start, sector_t len, char *params)
|
|
{
|
|
int r = -EINVAL, argc;
|
|
char **argv;
|
|
struct dm_target *tgt;
|
|
|
|
if (t->singleton) {
|
|
DMERR("%s: target type %s must appear alone in table",
|
|
dm_device_name(t->md), t->targets->type->name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUG_ON(t->num_targets >= t->num_allocated);
|
|
|
|
tgt = t->targets + t->num_targets;
|
|
memset(tgt, 0, sizeof(*tgt));
|
|
|
|
if (!len) {
|
|
DMERR("%s: zero-length target", dm_device_name(t->md));
|
|
return -EINVAL;
|
|
}
|
|
|
|
tgt->type = dm_get_target_type(type);
|
|
if (!tgt->type) {
|
|
DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (dm_target_needs_singleton(tgt->type)) {
|
|
if (t->num_targets) {
|
|
tgt->error = "singleton target type must appear alone in table";
|
|
goto bad;
|
|
}
|
|
t->singleton = true;
|
|
}
|
|
|
|
if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
|
|
tgt->error = "target type may not be included in a read-only table";
|
|
goto bad;
|
|
}
|
|
|
|
if (t->immutable_target_type) {
|
|
if (t->immutable_target_type != tgt->type) {
|
|
tgt->error = "immutable target type cannot be mixed with other target types";
|
|
goto bad;
|
|
}
|
|
} else if (dm_target_is_immutable(tgt->type)) {
|
|
if (t->num_targets) {
|
|
tgt->error = "immutable target type cannot be mixed with other target types";
|
|
goto bad;
|
|
}
|
|
t->immutable_target_type = tgt->type;
|
|
}
|
|
|
|
if (dm_target_has_integrity(tgt->type))
|
|
t->integrity_added = 1;
|
|
|
|
tgt->table = t;
|
|
tgt->begin = start;
|
|
tgt->len = len;
|
|
tgt->error = "Unknown error";
|
|
|
|
/*
|
|
* Does this target adjoin the previous one ?
|
|
*/
|
|
if (!adjoin(t, tgt)) {
|
|
tgt->error = "Gap in table";
|
|
goto bad;
|
|
}
|
|
|
|
r = dm_split_args(&argc, &argv, params);
|
|
if (r) {
|
|
tgt->error = "couldn't split parameters (insufficient memory)";
|
|
goto bad;
|
|
}
|
|
|
|
r = tgt->type->ctr(tgt, argc, argv);
|
|
kfree(argv);
|
|
if (r)
|
|
goto bad;
|
|
|
|
t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
|
|
|
|
if (!tgt->num_discard_bios && tgt->discards_supported)
|
|
DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
|
|
dm_device_name(t->md), type);
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
|
|
dm_put_target_type(tgt->type);
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Target argument parsing helpers.
|
|
*/
|
|
static int validate_next_arg(const struct dm_arg *arg,
|
|
struct dm_arg_set *arg_set,
|
|
unsigned *value, char **error, unsigned grouped)
|
|
{
|
|
const char *arg_str = dm_shift_arg(arg_set);
|
|
char dummy;
|
|
|
|
if (!arg_str ||
|
|
(sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
|
|
(*value < arg->min) ||
|
|
(*value > arg->max) ||
|
|
(grouped && arg_set->argc < *value)) {
|
|
*error = arg->error;
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
|
|
unsigned *value, char **error)
|
|
{
|
|
return validate_next_arg(arg, arg_set, value, error, 0);
|
|
}
|
|
EXPORT_SYMBOL(dm_read_arg);
|
|
|
|
int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
|
|
unsigned *value, char **error)
|
|
{
|
|
return validate_next_arg(arg, arg_set, value, error, 1);
|
|
}
|
|
EXPORT_SYMBOL(dm_read_arg_group);
|
|
|
|
const char *dm_shift_arg(struct dm_arg_set *as)
|
|
{
|
|
char *r;
|
|
|
|
if (as->argc) {
|
|
as->argc--;
|
|
r = *as->argv;
|
|
as->argv++;
|
|
return r;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(dm_shift_arg);
|
|
|
|
void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
|
|
{
|
|
BUG_ON(as->argc < num_args);
|
|
as->argc -= num_args;
|
|
as->argv += num_args;
|
|
}
|
|
EXPORT_SYMBOL(dm_consume_args);
|
|
|
|
static bool __table_type_bio_based(enum dm_queue_mode table_type)
|
|
{
|
|
return (table_type == DM_TYPE_BIO_BASED ||
|
|
table_type == DM_TYPE_DAX_BIO_BASED);
|
|
}
|
|
|
|
static bool __table_type_request_based(enum dm_queue_mode table_type)
|
|
{
|
|
return table_type == DM_TYPE_REQUEST_BASED;
|
|
}
|
|
|
|
void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
|
|
{
|
|
t->type = type;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_table_set_type);
|
|
|
|
/* validate the dax capability of the target device span */
|
|
int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
int blocksize = *(int *) data, id;
|
|
bool rc;
|
|
|
|
id = dax_read_lock();
|
|
rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
|
|
dax_read_unlock(id);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Check devices support synchronous DAX */
|
|
static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
|
|
}
|
|
|
|
bool dm_table_supports_dax(struct dm_table *t,
|
|
iterate_devices_callout_fn iterate_fn, int *blocksize)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
/* Ensure that all targets support DAX. */
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!ti->type->direct_access)
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, iterate_fn, blocksize))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct block_device *bdev = dev->bdev;
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
/* request-based cannot stack on partitions! */
|
|
if (bdev_is_partition(bdev))
|
|
return false;
|
|
|
|
return queue_is_mq(q);
|
|
}
|
|
|
|
static int dm_table_determine_type(struct dm_table *t)
|
|
{
|
|
unsigned i;
|
|
unsigned bio_based = 0, request_based = 0, hybrid = 0;
|
|
struct dm_target *tgt;
|
|
struct list_head *devices = dm_table_get_devices(t);
|
|
enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
|
|
int page_size = PAGE_SIZE;
|
|
|
|
if (t->type != DM_TYPE_NONE) {
|
|
/* target already set the table's type */
|
|
if (t->type == DM_TYPE_BIO_BASED) {
|
|
/* possibly upgrade to a variant of bio-based */
|
|
goto verify_bio_based;
|
|
}
|
|
BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
|
|
goto verify_rq_based;
|
|
}
|
|
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
tgt = t->targets + i;
|
|
if (dm_target_hybrid(tgt))
|
|
hybrid = 1;
|
|
else if (dm_target_request_based(tgt))
|
|
request_based = 1;
|
|
else
|
|
bio_based = 1;
|
|
|
|
if (bio_based && request_based) {
|
|
DMERR("Inconsistent table: different target types"
|
|
" can't be mixed up");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (hybrid && !bio_based && !request_based) {
|
|
/*
|
|
* The targets can work either way.
|
|
* Determine the type from the live device.
|
|
* Default to bio-based if device is new.
|
|
*/
|
|
if (__table_type_request_based(live_md_type))
|
|
request_based = 1;
|
|
else
|
|
bio_based = 1;
|
|
}
|
|
|
|
if (bio_based) {
|
|
verify_bio_based:
|
|
/* We must use this table as bio-based */
|
|
t->type = DM_TYPE_BIO_BASED;
|
|
if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
|
|
(list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
|
|
t->type = DM_TYPE_DAX_BIO_BASED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
BUG_ON(!request_based); /* No targets in this table */
|
|
|
|
t->type = DM_TYPE_REQUEST_BASED;
|
|
|
|
verify_rq_based:
|
|
/*
|
|
* Request-based dm supports only tables that have a single target now.
|
|
* To support multiple targets, request splitting support is needed,
|
|
* and that needs lots of changes in the block-layer.
|
|
* (e.g. request completion process for partial completion.)
|
|
*/
|
|
if (t->num_targets > 1) {
|
|
DMERR("request-based DM doesn't support multiple targets");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (list_empty(devices)) {
|
|
int srcu_idx;
|
|
struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
|
|
|
|
/* inherit live table's type */
|
|
if (live_table)
|
|
t->type = live_table->type;
|
|
dm_put_live_table(t->md, srcu_idx);
|
|
return 0;
|
|
}
|
|
|
|
tgt = dm_table_get_immutable_target(t);
|
|
if (!tgt) {
|
|
DMERR("table load rejected: immutable target is required");
|
|
return -EINVAL;
|
|
} else if (tgt->max_io_len) {
|
|
DMERR("table load rejected: immutable target that splits IO is not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Non-request-stackable devices can't be used for request-based dm */
|
|
if (!tgt->type->iterate_devices ||
|
|
!tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
|
|
DMERR("table load rejected: including non-request-stackable devices");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
enum dm_queue_mode dm_table_get_type(struct dm_table *t)
|
|
{
|
|
return t->type;
|
|
}
|
|
|
|
struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
|
|
{
|
|
return t->immutable_target_type;
|
|
}
|
|
|
|
struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
|
|
{
|
|
/* Immutable target is implicitly a singleton */
|
|
if (t->num_targets > 1 ||
|
|
!dm_target_is_immutable(t->targets[0].type))
|
|
return NULL;
|
|
|
|
return t->targets;
|
|
}
|
|
|
|
struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
if (dm_target_is_wildcard(ti->type))
|
|
return ti;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
bool dm_table_bio_based(struct dm_table *t)
|
|
{
|
|
return __table_type_bio_based(dm_table_get_type(t));
|
|
}
|
|
|
|
bool dm_table_request_based(struct dm_table *t)
|
|
{
|
|
return __table_type_request_based(dm_table_get_type(t));
|
|
}
|
|
|
|
static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
|
|
{
|
|
enum dm_queue_mode type = dm_table_get_type(t);
|
|
unsigned per_io_data_size = 0;
|
|
unsigned min_pool_size = 0;
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
if (unlikely(type == DM_TYPE_NONE)) {
|
|
DMWARN("no table type is set, can't allocate mempools");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (__table_type_bio_based(type))
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
ti = t->targets + i;
|
|
per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
|
|
min_pool_size = max(min_pool_size, ti->num_flush_bios);
|
|
}
|
|
|
|
t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
|
|
per_io_data_size, min_pool_size);
|
|
if (!t->mempools)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void dm_table_free_md_mempools(struct dm_table *t)
|
|
{
|
|
dm_free_md_mempools(t->mempools);
|
|
t->mempools = NULL;
|
|
}
|
|
|
|
struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
|
|
{
|
|
return t->mempools;
|
|
}
|
|
|
|
static int setup_indexes(struct dm_table *t)
|
|
{
|
|
int i;
|
|
unsigned int total = 0;
|
|
sector_t *indexes;
|
|
|
|
/* allocate the space for *all* the indexes */
|
|
for (i = t->depth - 2; i >= 0; i--) {
|
|
t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
|
|
total += t->counts[i];
|
|
}
|
|
|
|
indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
|
|
if (!indexes)
|
|
return -ENOMEM;
|
|
|
|
/* set up internal nodes, bottom-up */
|
|
for (i = t->depth - 2; i >= 0; i--) {
|
|
t->index[i] = indexes;
|
|
indexes += (KEYS_PER_NODE * t->counts[i]);
|
|
setup_btree_index(i, t);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Builds the btree to index the map.
|
|
*/
|
|
static int dm_table_build_index(struct dm_table *t)
|
|
{
|
|
int r = 0;
|
|
unsigned int leaf_nodes;
|
|
|
|
/* how many indexes will the btree have ? */
|
|
leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
|
|
t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
|
|
|
|
/* leaf layer has already been set up */
|
|
t->counts[t->depth - 1] = leaf_nodes;
|
|
t->index[t->depth - 1] = t->highs;
|
|
|
|
if (t->depth >= 2)
|
|
r = setup_indexes(t);
|
|
|
|
return r;
|
|
}
|
|
|
|
static bool integrity_profile_exists(struct gendisk *disk)
|
|
{
|
|
return !!blk_get_integrity(disk);
|
|
}
|
|
|
|
/*
|
|
* Get a disk whose integrity profile reflects the table's profile.
|
|
* Returns NULL if integrity support was inconsistent or unavailable.
|
|
*/
|
|
static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
|
|
{
|
|
struct list_head *devices = dm_table_get_devices(t);
|
|
struct dm_dev_internal *dd = NULL;
|
|
struct gendisk *prev_disk = NULL, *template_disk = NULL;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
struct dm_target *ti = dm_table_get_target(t, i);
|
|
if (!dm_target_passes_integrity(ti->type))
|
|
goto no_integrity;
|
|
}
|
|
|
|
list_for_each_entry(dd, devices, list) {
|
|
template_disk = dd->dm_dev->bdev->bd_disk;
|
|
if (!integrity_profile_exists(template_disk))
|
|
goto no_integrity;
|
|
else if (prev_disk &&
|
|
blk_integrity_compare(prev_disk, template_disk) < 0)
|
|
goto no_integrity;
|
|
prev_disk = template_disk;
|
|
}
|
|
|
|
return template_disk;
|
|
|
|
no_integrity:
|
|
if (prev_disk)
|
|
DMWARN("%s: integrity not set: %s and %s profile mismatch",
|
|
dm_device_name(t->md),
|
|
prev_disk->disk_name,
|
|
template_disk->disk_name);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Register the mapped device for blk_integrity support if the
|
|
* underlying devices have an integrity profile. But all devices may
|
|
* not have matching profiles (checking all devices isn't reliable
|
|
* during table load because this table may use other DM device(s) which
|
|
* must be resumed before they will have an initialized integity
|
|
* profile). Consequently, stacked DM devices force a 2 stage integrity
|
|
* profile validation: First pass during table load, final pass during
|
|
* resume.
|
|
*/
|
|
static int dm_table_register_integrity(struct dm_table *t)
|
|
{
|
|
struct mapped_device *md = t->md;
|
|
struct gendisk *template_disk = NULL;
|
|
|
|
/* If target handles integrity itself do not register it here. */
|
|
if (t->integrity_added)
|
|
return 0;
|
|
|
|
template_disk = dm_table_get_integrity_disk(t);
|
|
if (!template_disk)
|
|
return 0;
|
|
|
|
if (!integrity_profile_exists(dm_disk(md))) {
|
|
t->integrity_supported = true;
|
|
/*
|
|
* Register integrity profile during table load; we can do
|
|
* this because the final profile must match during resume.
|
|
*/
|
|
blk_integrity_register(dm_disk(md),
|
|
blk_get_integrity(template_disk));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If DM device already has an initialized integrity
|
|
* profile the new profile should not conflict.
|
|
*/
|
|
if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
|
|
DMWARN("%s: conflict with existing integrity profile: "
|
|
"%s profile mismatch",
|
|
dm_device_name(t->md),
|
|
template_disk->disk_name);
|
|
return 1;
|
|
}
|
|
|
|
/* Preserve existing integrity profile */
|
|
t->integrity_supported = true;
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
|
|
|
|
struct dm_keyslot_manager {
|
|
struct blk_keyslot_manager ksm;
|
|
struct mapped_device *md;
|
|
};
|
|
|
|
struct dm_keyslot_evict_args {
|
|
const struct blk_crypto_key *key;
|
|
int err;
|
|
};
|
|
|
|
static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct dm_keyslot_evict_args *args = data;
|
|
int err;
|
|
|
|
err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
|
|
if (!args->err)
|
|
args->err = err;
|
|
/* Always try to evict the key from all devices. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When an inline encryption key is evicted from a device-mapper device, evict
|
|
* it from all the underlying devices.
|
|
*/
|
|
static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
|
|
const struct blk_crypto_key *key, unsigned int slot)
|
|
{
|
|
struct dm_keyslot_manager *dksm = container_of(ksm,
|
|
struct dm_keyslot_manager,
|
|
ksm);
|
|
struct mapped_device *md = dksm->md;
|
|
struct dm_keyslot_evict_args args = { key };
|
|
struct dm_table *t;
|
|
int srcu_idx;
|
|
int i;
|
|
struct dm_target *ti;
|
|
|
|
t = dm_get_live_table(md, &srcu_idx);
|
|
if (!t)
|
|
return 0;
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
if (!ti->type->iterate_devices)
|
|
continue;
|
|
ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
|
|
}
|
|
dm_put_live_table(md, srcu_idx);
|
|
return args.err;
|
|
}
|
|
|
|
static const struct blk_ksm_ll_ops dm_ksm_ll_ops = {
|
|
.keyslot_evict = dm_keyslot_evict,
|
|
};
|
|
|
|
static int device_intersect_crypto_modes(struct dm_target *ti,
|
|
struct dm_dev *dev, sector_t start,
|
|
sector_t len, void *data)
|
|
{
|
|
struct blk_keyslot_manager *parent = data;
|
|
struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
|
|
|
|
blk_ksm_intersect_modes(parent, child);
|
|
return 0;
|
|
}
|
|
|
|
void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
|
|
{
|
|
struct dm_keyslot_manager *dksm = container_of(ksm,
|
|
struct dm_keyslot_manager,
|
|
ksm);
|
|
|
|
if (!ksm)
|
|
return;
|
|
|
|
blk_ksm_destroy(ksm);
|
|
kfree(dksm);
|
|
}
|
|
|
|
static void dm_table_destroy_keyslot_manager(struct dm_table *t)
|
|
{
|
|
dm_destroy_keyslot_manager(t->ksm);
|
|
t->ksm = NULL;
|
|
}
|
|
|
|
/*
|
|
* Constructs and initializes t->ksm with a keyslot manager that
|
|
* represents the common set of crypto capabilities of the devices
|
|
* described by the dm_table. However, if the constructed keyslot
|
|
* manager does not support a superset of the crypto capabilities
|
|
* supported by the current keyslot manager of the mapped_device,
|
|
* it returns an error instead, since we don't support restricting
|
|
* crypto capabilities on table changes. Finally, if the constructed
|
|
* keyslot manager doesn't actually support any crypto modes at all,
|
|
* it just returns NULL.
|
|
*/
|
|
static int dm_table_construct_keyslot_manager(struct dm_table *t)
|
|
{
|
|
struct dm_keyslot_manager *dksm;
|
|
struct blk_keyslot_manager *ksm;
|
|
struct dm_target *ti;
|
|
unsigned int i;
|
|
bool ksm_is_empty = true;
|
|
|
|
dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
|
|
if (!dksm)
|
|
return -ENOMEM;
|
|
dksm->md = t->md;
|
|
|
|
ksm = &dksm->ksm;
|
|
blk_ksm_init_passthrough(ksm);
|
|
ksm->ksm_ll_ops = dm_ksm_ll_ops;
|
|
ksm->max_dun_bytes_supported = UINT_MAX;
|
|
memset(ksm->crypto_modes_supported, 0xFF,
|
|
sizeof(ksm->crypto_modes_supported));
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!dm_target_passes_crypto(ti->type)) {
|
|
blk_ksm_intersect_modes(ksm, NULL);
|
|
break;
|
|
}
|
|
if (!ti->type->iterate_devices)
|
|
continue;
|
|
ti->type->iterate_devices(ti, device_intersect_crypto_modes,
|
|
ksm);
|
|
}
|
|
|
|
if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
|
|
DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
|
|
dm_destroy_keyslot_manager(ksm);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If the new KSM doesn't actually support any crypto modes, we may as
|
|
* well represent it with a NULL ksm.
|
|
*/
|
|
ksm_is_empty = true;
|
|
for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
|
|
if (ksm->crypto_modes_supported[i]) {
|
|
ksm_is_empty = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ksm_is_empty) {
|
|
dm_destroy_keyslot_manager(ksm);
|
|
ksm = NULL;
|
|
}
|
|
|
|
/*
|
|
* t->ksm is only set temporarily while the table is being set
|
|
* up, and it gets set to NULL after the capabilities have
|
|
* been transferred to the request_queue.
|
|
*/
|
|
t->ksm = ksm;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dm_update_keyslot_manager(struct request_queue *q,
|
|
struct dm_table *t)
|
|
{
|
|
if (!t->ksm)
|
|
return;
|
|
|
|
/* Make the ksm less restrictive */
|
|
if (!q->ksm) {
|
|
blk_ksm_register(t->ksm, q);
|
|
} else {
|
|
blk_ksm_update_capabilities(q->ksm, t->ksm);
|
|
dm_destroy_keyslot_manager(t->ksm);
|
|
}
|
|
t->ksm = NULL;
|
|
}
|
|
|
|
#else /* CONFIG_BLK_INLINE_ENCRYPTION */
|
|
|
|
static int dm_table_construct_keyslot_manager(struct dm_table *t)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
|
|
{
|
|
}
|
|
|
|
static void dm_table_destroy_keyslot_manager(struct dm_table *t)
|
|
{
|
|
}
|
|
|
|
static void dm_update_keyslot_manager(struct request_queue *q,
|
|
struct dm_table *t)
|
|
{
|
|
}
|
|
|
|
#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
|
|
|
|
/*
|
|
* Prepares the table for use by building the indices,
|
|
* setting the type, and allocating mempools.
|
|
*/
|
|
int dm_table_complete(struct dm_table *t)
|
|
{
|
|
int r;
|
|
|
|
r = dm_table_determine_type(t);
|
|
if (r) {
|
|
DMERR("unable to determine table type");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_build_index(t);
|
|
if (r) {
|
|
DMERR("unable to build btrees");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_register_integrity(t);
|
|
if (r) {
|
|
DMERR("could not register integrity profile.");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_construct_keyslot_manager(t);
|
|
if (r) {
|
|
DMERR("could not construct keyslot manager.");
|
|
return r;
|
|
}
|
|
|
|
r = dm_table_alloc_md_mempools(t, t->md);
|
|
if (r)
|
|
DMERR("unable to allocate mempools");
|
|
|
|
return r;
|
|
}
|
|
|
|
static DEFINE_MUTEX(_event_lock);
|
|
void dm_table_event_callback(struct dm_table *t,
|
|
void (*fn)(void *), void *context)
|
|
{
|
|
mutex_lock(&_event_lock);
|
|
t->event_fn = fn;
|
|
t->event_context = context;
|
|
mutex_unlock(&_event_lock);
|
|
}
|
|
|
|
void dm_table_event(struct dm_table *t)
|
|
{
|
|
mutex_lock(&_event_lock);
|
|
if (t->event_fn)
|
|
t->event_fn(t->event_context);
|
|
mutex_unlock(&_event_lock);
|
|
}
|
|
EXPORT_SYMBOL(dm_table_event);
|
|
|
|
inline sector_t dm_table_get_size(struct dm_table *t)
|
|
{
|
|
return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
|
|
}
|
|
EXPORT_SYMBOL(dm_table_get_size);
|
|
|
|
struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
|
|
{
|
|
if (index >= t->num_targets)
|
|
return NULL;
|
|
|
|
return t->targets + index;
|
|
}
|
|
|
|
/*
|
|
* Search the btree for the correct target.
|
|
*
|
|
* Caller should check returned pointer for NULL
|
|
* to trap I/O beyond end of device.
|
|
*/
|
|
struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
|
|
{
|
|
unsigned int l, n = 0, k = 0;
|
|
sector_t *node;
|
|
|
|
if (unlikely(sector >= dm_table_get_size(t)))
|
|
return NULL;
|
|
|
|
for (l = 0; l < t->depth; l++) {
|
|
n = get_child(n, k);
|
|
node = get_node(t, l, n);
|
|
|
|
for (k = 0; k < KEYS_PER_NODE; k++)
|
|
if (node[k] >= sector)
|
|
break;
|
|
}
|
|
|
|
return &t->targets[(KEYS_PER_NODE * n) + k];
|
|
}
|
|
|
|
/*
|
|
* type->iterate_devices() should be called when the sanity check needs to
|
|
* iterate and check all underlying data devices. iterate_devices() will
|
|
* iterate all underlying data devices until it encounters a non-zero return
|
|
* code, returned by whether the input iterate_devices_callout_fn, or
|
|
* iterate_devices() itself internally.
|
|
*
|
|
* For some target type (e.g. dm-stripe), one call of iterate_devices() may
|
|
* iterate multiple underlying devices internally, in which case a non-zero
|
|
* return code returned by iterate_devices_callout_fn will stop the iteration
|
|
* in advance.
|
|
*
|
|
* Cases requiring _any_ underlying device supporting some kind of attribute,
|
|
* should use the iteration structure like dm_table_any_dev_attr(), or call
|
|
* it directly. @func should handle semantics of positive examples, e.g.
|
|
* capable of something.
|
|
*
|
|
* Cases requiring _all_ underlying devices supporting some kind of attribute,
|
|
* should use the iteration structure like dm_table_supports_nowait() or
|
|
* dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
|
|
* uses an @anti_func that handle semantics of counter examples, e.g. not
|
|
* capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
|
|
*/
|
|
static bool dm_table_any_dev_attr(struct dm_table *t,
|
|
iterate_devices_callout_fn func, void *data)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (ti->type->iterate_devices &&
|
|
ti->type->iterate_devices(ti, func, data))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int count_device(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
unsigned *num_devices = data;
|
|
|
|
(*num_devices)++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check whether a table has no data devices attached using each
|
|
* target's iterate_devices method.
|
|
* Returns false if the result is unknown because a target doesn't
|
|
* support iterate_devices.
|
|
*/
|
|
bool dm_table_has_no_data_devices(struct dm_table *table)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i, num_devices;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(table); i++) {
|
|
ti = dm_table_get_target(table, i);
|
|
|
|
if (!ti->type->iterate_devices)
|
|
return false;
|
|
|
|
num_devices = 0;
|
|
ti->type->iterate_devices(ti, count_device, &num_devices);
|
|
if (num_devices)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
enum blk_zoned_model *zoned_model = data;
|
|
|
|
return blk_queue_zoned_model(q) != *zoned_model;
|
|
}
|
|
|
|
/*
|
|
* Check the device zoned model based on the target feature flag. If the target
|
|
* has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
|
|
* also accepted but all devices must have the same zoned model. If the target
|
|
* has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
|
|
* zoned model with all zoned devices having the same zone size.
|
|
*/
|
|
static bool dm_table_supports_zoned_model(struct dm_table *t,
|
|
enum blk_zoned_model zoned_model)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (dm_target_supports_zoned_hm(ti->type)) {
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_zoned_model,
|
|
&zoned_model))
|
|
return false;
|
|
} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
|
|
if (zoned_model == BLK_ZONED_HM)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
unsigned int *zone_sectors = data;
|
|
|
|
if (!blk_queue_is_zoned(q))
|
|
return 0;
|
|
|
|
return blk_queue_zone_sectors(q) != *zone_sectors;
|
|
}
|
|
|
|
/*
|
|
* Check consistency of zoned model and zone sectors across all targets. For
|
|
* zone sectors, if the destination device is a zoned block device, it shall
|
|
* have the specified zone_sectors.
|
|
*/
|
|
static int validate_hardware_zoned_model(struct dm_table *table,
|
|
enum blk_zoned_model zoned_model,
|
|
unsigned int zone_sectors)
|
|
{
|
|
if (zoned_model == BLK_ZONED_NONE)
|
|
return 0;
|
|
|
|
if (!dm_table_supports_zoned_model(table, zoned_model)) {
|
|
DMERR("%s: zoned model is not consistent across all devices",
|
|
dm_device_name(table->md));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check zone size validity and compatibility */
|
|
if (!zone_sectors || !is_power_of_2(zone_sectors))
|
|
return -EINVAL;
|
|
|
|
if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
|
|
DMERR("%s: zone sectors is not consistent across all zoned devices",
|
|
dm_device_name(table->md));
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Establish the new table's queue_limits and validate them.
|
|
*/
|
|
int dm_calculate_queue_limits(struct dm_table *table,
|
|
struct queue_limits *limits)
|
|
{
|
|
struct dm_target *ti;
|
|
struct queue_limits ti_limits;
|
|
unsigned i;
|
|
enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
|
|
unsigned int zone_sectors = 0;
|
|
|
|
blk_set_stacking_limits(limits);
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(table); i++) {
|
|
blk_set_stacking_limits(&ti_limits);
|
|
|
|
ti = dm_table_get_target(table, i);
|
|
|
|
if (!ti->type->iterate_devices)
|
|
goto combine_limits;
|
|
|
|
/*
|
|
* Combine queue limits of all the devices this target uses.
|
|
*/
|
|
ti->type->iterate_devices(ti, dm_set_device_limits,
|
|
&ti_limits);
|
|
|
|
if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
|
|
/*
|
|
* After stacking all limits, validate all devices
|
|
* in table support this zoned model and zone sectors.
|
|
*/
|
|
zoned_model = ti_limits.zoned;
|
|
zone_sectors = ti_limits.chunk_sectors;
|
|
}
|
|
|
|
/* Set I/O hints portion of queue limits */
|
|
if (ti->type->io_hints)
|
|
ti->type->io_hints(ti, &ti_limits);
|
|
|
|
/*
|
|
* Check each device area is consistent with the target's
|
|
* overall queue limits.
|
|
*/
|
|
if (ti->type->iterate_devices(ti, device_area_is_invalid,
|
|
&ti_limits))
|
|
return -EINVAL;
|
|
|
|
combine_limits:
|
|
/*
|
|
* Merge this target's queue limits into the overall limits
|
|
* for the table.
|
|
*/
|
|
if (blk_stack_limits(limits, &ti_limits, 0) < 0)
|
|
DMWARN("%s: adding target device "
|
|
"(start sect %llu len %llu) "
|
|
"caused an alignment inconsistency",
|
|
dm_device_name(table->md),
|
|
(unsigned long long) ti->begin,
|
|
(unsigned long long) ti->len);
|
|
}
|
|
|
|
/*
|
|
* Verify that the zoned model and zone sectors, as determined before
|
|
* any .io_hints override, are the same across all devices in the table.
|
|
* - this is especially relevant if .io_hints is emulating a disk-managed
|
|
* zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
|
|
* BUT...
|
|
*/
|
|
if (limits->zoned != BLK_ZONED_NONE) {
|
|
/*
|
|
* ...IF the above limits stacking determined a zoned model
|
|
* validate that all of the table's devices conform to it.
|
|
*/
|
|
zoned_model = limits->zoned;
|
|
zone_sectors = limits->chunk_sectors;
|
|
}
|
|
if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
|
|
return -EINVAL;
|
|
|
|
return validate_hardware_logical_block_alignment(table, limits);
|
|
}
|
|
|
|
/*
|
|
* Verify that all devices have an integrity profile that matches the
|
|
* DM device's registered integrity profile. If the profiles don't
|
|
* match then unregister the DM device's integrity profile.
|
|
*/
|
|
static void dm_table_verify_integrity(struct dm_table *t)
|
|
{
|
|
struct gendisk *template_disk = NULL;
|
|
|
|
if (t->integrity_added)
|
|
return;
|
|
|
|
if (t->integrity_supported) {
|
|
/*
|
|
* Verify that the original integrity profile
|
|
* matches all the devices in this table.
|
|
*/
|
|
template_disk = dm_table_get_integrity_disk(t);
|
|
if (template_disk &&
|
|
blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
|
|
return;
|
|
}
|
|
|
|
if (integrity_profile_exists(dm_disk(t->md))) {
|
|
DMWARN("%s: unable to establish an integrity profile",
|
|
dm_device_name(t->md));
|
|
blk_integrity_unregister(dm_disk(t->md));
|
|
}
|
|
}
|
|
|
|
static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
unsigned long flush = (unsigned long) data;
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return (q->queue_flags & flush);
|
|
}
|
|
|
|
static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
/*
|
|
* Require at least one underlying device to support flushes.
|
|
* t->devices includes internal dm devices such as mirror logs
|
|
* so we need to use iterate_devices here, which targets
|
|
* supporting flushes must provide.
|
|
*/
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!ti->num_flush_bios)
|
|
continue;
|
|
|
|
if (ti->flush_supported)
|
|
return true;
|
|
|
|
if (ti->type->iterate_devices &&
|
|
ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int device_dax_write_cache_enabled(struct dm_target *ti,
|
|
struct dm_dev *dev, sector_t start,
|
|
sector_t len, void *data)
|
|
{
|
|
struct dax_device *dax_dev = dev->dax_dev;
|
|
|
|
if (!dax_dev)
|
|
return false;
|
|
|
|
if (dax_write_cache_enabled(dax_dev))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !blk_queue_nonrot(q);
|
|
}
|
|
|
|
static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !blk_queue_add_random(q);
|
|
}
|
|
|
|
static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !q->limits.max_write_same_sectors;
|
|
}
|
|
|
|
static bool dm_table_supports_write_same(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!ti->num_write_same_bios)
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !q->limits.max_write_zeroes_sectors;
|
|
}
|
|
|
|
static bool dm_table_supports_write_zeroes(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i = 0;
|
|
|
|
while (i < dm_table_get_num_targets(t)) {
|
|
ti = dm_table_get_target(t, i++);
|
|
|
|
if (!ti->num_write_zeroes_bios)
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !blk_queue_nowait(q);
|
|
}
|
|
|
|
static bool dm_table_supports_nowait(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i = 0;
|
|
|
|
while (i < dm_table_get_num_targets(t)) {
|
|
ti = dm_table_get_target(t, i++);
|
|
|
|
if (!dm_target_supports_nowait(ti->type))
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
|
|
sector_t start, sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !blk_queue_discard(q);
|
|
}
|
|
|
|
static bool dm_table_supports_discards(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!ti->num_discard_bios)
|
|
return false;
|
|
|
|
/*
|
|
* Either the target provides discard support (as implied by setting
|
|
* 'discards_supported') or it relies on _all_ data devices having
|
|
* discard support.
|
|
*/
|
|
if (!ti->discards_supported &&
|
|
(!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_not_secure_erase_capable(struct dm_target *ti,
|
|
struct dm_dev *dev, sector_t start,
|
|
sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return !blk_queue_secure_erase(q);
|
|
}
|
|
|
|
static bool dm_table_supports_secure_erase(struct dm_table *t)
|
|
{
|
|
struct dm_target *ti;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
|
ti = dm_table_get_target(t, i);
|
|
|
|
if (!ti->num_secure_erase_bios)
|
|
return false;
|
|
|
|
if (!ti->type->iterate_devices ||
|
|
ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int device_requires_stable_pages(struct dm_target *ti,
|
|
struct dm_dev *dev, sector_t start,
|
|
sector_t len, void *data)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(dev->bdev);
|
|
|
|
return blk_queue_stable_writes(q);
|
|
}
|
|
|
|
int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
|
|
struct queue_limits *limits)
|
|
{
|
|
bool wc = false, fua = false;
|
|
int page_size = PAGE_SIZE;
|
|
int r;
|
|
|
|
/*
|
|
* Copy table's limits to the DM device's request_queue
|
|
*/
|
|
q->limits = *limits;
|
|
|
|
if (dm_table_supports_nowait(t))
|
|
blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
|
|
|
|
if (!dm_table_supports_discards(t)) {
|
|
blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
|
|
/* Must also clear discard limits... */
|
|
q->limits.max_discard_sectors = 0;
|
|
q->limits.max_hw_discard_sectors = 0;
|
|
q->limits.discard_granularity = 0;
|
|
q->limits.discard_alignment = 0;
|
|
q->limits.discard_misaligned = 0;
|
|
} else
|
|
blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
|
|
|
|
if (dm_table_supports_secure_erase(t))
|
|
blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
|
|
|
|
if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
|
|
wc = true;
|
|
if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
|
|
fua = true;
|
|
}
|
|
blk_queue_write_cache(q, wc, fua);
|
|
|
|
if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
|
|
blk_queue_flag_set(QUEUE_FLAG_DAX, q);
|
|
if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
|
|
set_dax_synchronous(t->md->dax_dev);
|
|
}
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
|
|
|
|
if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
|
|
dax_write_cache(t->md->dax_dev, true);
|
|
|
|
/* Ensure that all underlying devices are non-rotational. */
|
|
if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
|
|
blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
|
|
else
|
|
blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
|
|
|
|
if (!dm_table_supports_write_same(t))
|
|
q->limits.max_write_same_sectors = 0;
|
|
if (!dm_table_supports_write_zeroes(t))
|
|
q->limits.max_write_zeroes_sectors = 0;
|
|
|
|
dm_table_verify_integrity(t);
|
|
|
|
/*
|
|
* Some devices don't use blk_integrity but still want stable pages
|
|
* because they do their own checksumming.
|
|
* If any underlying device requires stable pages, a table must require
|
|
* them as well. Only targets that support iterate_devices are considered:
|
|
* don't want error, zero, etc to require stable pages.
|
|
*/
|
|
if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
|
|
blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
|
|
else
|
|
blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
|
|
|
|
/*
|
|
* Determine whether or not this queue's I/O timings contribute
|
|
* to the entropy pool, Only request-based targets use this.
|
|
* Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
|
|
* have it set.
|
|
*/
|
|
if (blk_queue_add_random(q) &&
|
|
dm_table_any_dev_attr(t, device_is_not_random, NULL))
|
|
blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
|
|
|
|
/*
|
|
* For a zoned target, setup the zones related queue attributes
|
|
* and resources necessary for zone append emulation if necessary.
|
|
*/
|
|
if (blk_queue_is_zoned(q)) {
|
|
r = dm_set_zones_restrictions(t, q);
|
|
if (r)
|
|
return r;
|
|
}
|
|
|
|
dm_update_keyslot_manager(q, t);
|
|
blk_queue_update_readahead(q);
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned int dm_table_get_num_targets(struct dm_table *t)
|
|
{
|
|
return t->num_targets;
|
|
}
|
|
|
|
struct list_head *dm_table_get_devices(struct dm_table *t)
|
|
{
|
|
return &t->devices;
|
|
}
|
|
|
|
fmode_t dm_table_get_mode(struct dm_table *t)
|
|
{
|
|
return t->mode;
|
|
}
|
|
EXPORT_SYMBOL(dm_table_get_mode);
|
|
|
|
enum suspend_mode {
|
|
PRESUSPEND,
|
|
PRESUSPEND_UNDO,
|
|
POSTSUSPEND,
|
|
};
|
|
|
|
static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
|
|
{
|
|
int i = t->num_targets;
|
|
struct dm_target *ti = t->targets;
|
|
|
|
lockdep_assert_held(&t->md->suspend_lock);
|
|
|
|
while (i--) {
|
|
switch (mode) {
|
|
case PRESUSPEND:
|
|
if (ti->type->presuspend)
|
|
ti->type->presuspend(ti);
|
|
break;
|
|
case PRESUSPEND_UNDO:
|
|
if (ti->type->presuspend_undo)
|
|
ti->type->presuspend_undo(ti);
|
|
break;
|
|
case POSTSUSPEND:
|
|
if (ti->type->postsuspend)
|
|
ti->type->postsuspend(ti);
|
|
break;
|
|
}
|
|
ti++;
|
|
}
|
|
}
|
|
|
|
void dm_table_presuspend_targets(struct dm_table *t)
|
|
{
|
|
if (!t)
|
|
return;
|
|
|
|
suspend_targets(t, PRESUSPEND);
|
|
}
|
|
|
|
void dm_table_presuspend_undo_targets(struct dm_table *t)
|
|
{
|
|
if (!t)
|
|
return;
|
|
|
|
suspend_targets(t, PRESUSPEND_UNDO);
|
|
}
|
|
|
|
void dm_table_postsuspend_targets(struct dm_table *t)
|
|
{
|
|
if (!t)
|
|
return;
|
|
|
|
suspend_targets(t, POSTSUSPEND);
|
|
}
|
|
|
|
int dm_table_resume_targets(struct dm_table *t)
|
|
{
|
|
int i, r = 0;
|
|
|
|
lockdep_assert_held(&t->md->suspend_lock);
|
|
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
struct dm_target *ti = t->targets + i;
|
|
|
|
if (!ti->type->preresume)
|
|
continue;
|
|
|
|
r = ti->type->preresume(ti);
|
|
if (r) {
|
|
DMERR("%s: %s: preresume failed, error = %d",
|
|
dm_device_name(t->md), ti->type->name, r);
|
|
return r;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < t->num_targets; i++) {
|
|
struct dm_target *ti = t->targets + i;
|
|
|
|
if (ti->type->resume)
|
|
ti->type->resume(ti);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct mapped_device *dm_table_get_md(struct dm_table *t)
|
|
{
|
|
return t->md;
|
|
}
|
|
EXPORT_SYMBOL(dm_table_get_md);
|
|
|
|
const char *dm_table_device_name(struct dm_table *t)
|
|
{
|
|
return dm_device_name(t->md);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dm_table_device_name);
|
|
|
|
void dm_table_run_md_queue_async(struct dm_table *t)
|
|
{
|
|
if (!dm_table_request_based(t))
|
|
return;
|
|
|
|
if (t->md->queue)
|
|
blk_mq_run_hw_queues(t->md->queue, true);
|
|
}
|
|
EXPORT_SYMBOL(dm_table_run_md_queue_async);
|
|
|